1
|
Bhat AS, Chakkittukandiyil A, Muthu SK, Kotha S, Muruganandham S, Rajagopal K, Jayaram S, Kothandan R, Selvaraj D. Network-based drug repositioning of linagliptin as a potential agent for uterine fibroids targeting transforming growth factor-beta mediated fibrosis. Biochem Biophys Res Commun 2024; 703:149611. [PMID: 38354463 DOI: 10.1016/j.bbrc.2024.149611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Uterine fibroid is the most common non-cancerous tumor with no satisfactory options for long-term pharmacological treatment. Fibroblast activation protein-α (FAP) is one of the critical enzymes that enhances the fibrosis in uterine fibroids. Through STITCH database mining, we found that dipeptidyl peptidase-4 inhibitors (DPP4i) have the potential to inhibit the activity of FAP. Both DPP4 and FAP belong to the dipeptidyl peptidase family and share a similar catalytic domain. Hence, ligands which have a binding affinity with DPP4 could also bind with FAP. Among the DPP4i, linagliptin exhibited the highest binding affinity (Dock score = -8.562 kcal/mol) with FAP. Our study uncovered that the differences in the S2 extensive-subsite residues between DPP4 and FAP could serve as a basis for designing selective inhibitors specifically targeting FAP. Furthermore, in a dynamic environment, linagliptin was able to destabilize the dimerization interface of FAP, resulting in potential inhibition of its biological activity. True to the in-silico results, linagliptin reduced the fibrotic process in estrogen and progesterone-induced fibrosis in rat uterus. Furthermore, linagliptin reduced the gene expression of transforming growth factor-β (TGF-β), a critical factor in collagen secretion and fibrotic process. Masson trichrome staining confirmed that the anti-fibrotic effects of linagliptin were due to its ability to reduce collagen deposition in rat uterus. Altogether, our research proposes that linagliptin has the potential to be repurposed for the treatment of uterine fibroids.
Collapse
Affiliation(s)
- Anusha Shreenidhi Bhat
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Santhosh Kumar Muthu
- Department of Biochemistry, Kongunadu Arts and Science College, GN Mills, Coimbatore, Tamil Nadu, India
| | - Satvik Kotha
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Sudharsan Muruganandham
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Kalirajan Rajagopal
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Saravanan Jayaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India
| | - Ram Kothandan
- Bioinformatics Laboratory, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India.
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, Tamil Nadu, India.
| |
Collapse
|
2
|
Yang F, Hu Y, Shi Z, Liu M, Hu K, Ye G, Pang Q, Hou R, Tang K, Zhu Y. The occurrence and development mechanisms of esophageal stricture: state of the art review. J Transl Med 2024; 22:123. [PMID: 38297325 PMCID: PMC10832115 DOI: 10.1186/s12967-024-04932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/26/2024] [Indexed: 02/02/2024] Open
Abstract
BACKGROUND Esophageal strictures significantly impair patient quality of life and present a therapeutic challenge, particularly due to the high recurrence post-ESD/EMR. Current treatments manage symptoms rather than addressing the disease's etiology. This review concentrates on the mechanisms of esophageal stricture formation and recurrence, seeking to highlight areas for potential therapeutic intervention. METHODS A literature search was conducted through PUBMED using search terms: esophageal stricture, mucosal resection, submucosal dissection. Relevant articles were identified through manual review with reference lists reviewed for additional articles. RESULTS Preclinical studies and data from animal studies suggest that the mechanisms that may lead to esophageal stricture include overdifferentiation of fibroblasts, inflammatory response that is not healed in time, impaired epithelial barrier function, and multimethod factors leading to it. Dysfunction of the epithelial barrier may be the initiating mechanism for esophageal stricture. Achieving perfect in-epithelialization by tissue-engineered fabrication of cell patches has been shown to be effective in the treatment and prevention of esophageal strictures. CONCLUSION The development of esophageal stricture involves three stages: structural damage to the esophageal epithelial barrier (EEB), chronic inflammation, and severe fibrosis, in which dysfunction or damage to the EEB is the initiating mechanism leading to esophageal stricture. Re-epithelialization is essential for the treatment and prevention of esophageal stricture. This information will help clinicians or scientists to develop effective techniques to treat esophageal stricture in the future.
Collapse
Affiliation(s)
- Fang Yang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Yiwei Hu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Zewen Shi
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
- Ningbo No.2 Hospital, Ningbo, 315001, People's Republic of China
| | - Mujie Liu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Kefeng Hu
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Guoliang Ye
- The First Affiliated Hospital of Ningbo University, Ningbo, 315000, People's Republic of China
| | - Qian Pang
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Ruixia Hou
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China
| | - Keqi Tang
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, 315211, People's Republic of China.
| | - Yabin Zhu
- Health Science Center, Ningbo University, Ningbo, 315211, People's Republic of China.
| |
Collapse
|
3
|
Li X, Li L, Lei W, Chua HZ, Li Z, Huang X, Wang Q, Li N, Zhang H. Traditional Chinese medicine as a therapeutic option for cardiac fibrosis: Pharmacology and mechanisms. Biomed Pharmacother 2021; 142:111979. [PMID: 34358754 DOI: 10.1016/j.biopha.2021.111979] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/05/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases are one of the leading causes of death worldwide and cardiac fibrosis is a common pathological process for cardiac remodeling in cardiovascular diseases. Cardiac fibrosis not only accelerates the deterioration progress of diseases but also becomes a pivotal contributor for futile treatment in clinical cardiovascular trials. Although cardiac fibrosis is common and prevalent, effective medicines to provide sufficient clinical intervention for cardiac fibrosis are still unavailable. Traditional Chinese medicine (TCM) is the natural essence experienced boiling, fry, and other processing methods, including active ingredients, extracts, and herbal formulas, which have been applied to treat human diseases for a long history. Recently, research has increasingly focused on the great potential of TCM for the prevention and treatment of cardiac fibrosis. Here, we aim to clarify the identified pro-fibrotic mechanisms and intensively summarize the application of TCM in improving cardiac fibrosis by working on these mechanisms. Through comprehensively analyzing, TCM mainly regulates the following pathways during ameliorating cardiac fibrosis: attenuation of inflammation and oxidative stress, inhibition of cardiac fibroblasts activation, reduction of extracellular matrix accumulation, modulation of the renin-angiotensin-aldosterone system, modulation of autophagy, regulation of metabolic-dependent mechanisms, and targeting microRNAs. We also discussed the deficiencies and the development direction of anti-fibrotic therapies on cardiac fibrosis. The data reviewed here demonstrates that TCM shows a robust effect on alleviating cardiac fibrosis, which provides us a rich source of new drugs or drug candidates. Besides, we also hope this review may give some enlightenment for treating cardiac fibrosis in clinical practice.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Lin Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Wei Lei
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Hui Zi Chua
- Evidence-Based Medicine Center, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Zining Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xianglong Huang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China.
| | - Qilong Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Nan Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Han Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Innovation Team of Research on Compound Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
4
|
Zhang Y, Shen L, Zhu H, Dreissigacker K, Distler D, Zhou X, Györfi AH, Bergmann C, Meng X, Dees C, Trinh-Minh T, Ludolph I, Horch R, Ramming A, Schett G, Distler JHW. PGC-1α regulates autophagy to promote fibroblast activation and tissue fibrosis. Ann Rheum Dis 2020; 79:1227-1233. [PMID: 32482644 DOI: 10.1136/annrheumdis-2020-216963] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/23/2020] [Accepted: 05/16/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Coactivators are a heterogeneous family of transcriptional regulators that are essential for modulation of transcriptional outcomes and fine-tune numerous cellular processes. The aim of the present study was to evaluate the role of the coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) in the pathogenesis of systemic sclerosis (SSc). METHODS Expression of PGC-1α was analysed by real-time PCR, western blot and immunofluorescence. Modulation of autophagy was analysed by reporter studies by expression of autophagy-related genes. The effects of PGC-1α knockdown on collagen production and myofibroblast differentiation were analysed in cultured human fibroblasts and in two mouse models with fibroblast-specific knockout of PGC-1α. RESULTS The expression of PGC-1α was induced in dermal fibroblasts of patients with SSc and experimental murine fibrosis. Transforming growth factor beta (TGFβ), hypoxia and epigenetic mechanisms regulate the expression of PGC-1α in fibroblasts. Knockdown of PGC-1α prevented the activation of autophagy by TGFβ and this translated into reduced fibroblast-to-myofibroblast differentiation and collagen release. Knockout of PGC-1α in fibroblasts prevented skin fibrosis induced by bleomycin and by overexpression of a constitutively active TGFβ receptor type I. Moreover, pharmacological inhibition of PGC-1α by SR18292 induced regression of pre-established, bleomycin-induced skin fibrosis. CONCLUSION PGC-1α is upregulated in SSc and promotes autophagy to foster TGFβ-induced fibroblast activation. Targeting of PGC-1α prevents aberrant autophagy, inhibits fibroblast activation and tissue fibrosis and may over therapeutic potential.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Lichong Shen
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Honglin Zhu
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Rheumatology, Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Katja Dreissigacker
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Diana Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xiang Zhou
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andrea Hermina Györfi
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Xianyi Meng
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Thuong Trinh-Minh
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ingo Ludolph
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Raymund Horch
- Department of Plastic and Hand Surgery and Laboratory for Tissue Engineering and Regenerative Medicine, Friedrich-Alexander University of Erlangen-Nürnberg (FAU), University Hospital of Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3-Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
5
|
Zhang Y, Zhu H, Layritz F, Luo H, Wohlfahrt T, Chen CW, Soare A, Bergmann C, Ramming A, Groeber F, Reuter C, Fornasini G, Soukhareva N, Schreiber B, Ramamurthy S, Amann K, Schett G, Distler JHW. Recombinant Adenosine Deaminase Ameliorates Inflammation, Vascular Disease, and Fibrosis in Preclinical Models of Systemic Sclerosis. Arthritis Rheumatol 2020; 72:1385-1395. [PMID: 32182396 DOI: 10.1002/art.41259] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/10/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Systemic sclerosis (SSc) is characterized by fibrosis, vascular disease, and inflammation. Adenosine signaling plays a central role in fibroblast activation. We undertook this study to evaluate the therapeutic effects of adenosine depletion with PEGylated adenosine deaminase (PEG-ADA) in preclinical models of SSc. METHODS The effects of PEG-ADA on inflammation, vascular remodeling, and tissue fibrosis were analyzed in Fra-2 mice and in a B10.D2→BALB/c (H-2d ) model of sclerodermatous chronic graft-versus-host disease (GVHD). The effects of PEG-ADA were confirmed in vitro in a human full-thickness skin model. RESULTS PEG-ADA effectively inhibited myofibroblast differentiation and reduced pulmonary fibrosis by 34.3% (with decreased collagen expression) (P = 0.0079; n = 6), dermal fibrosis by 51.8% (P = 0.0006; n = 6), and intestinal fibrosis by 17.7% (P = 0.0228; n = 6) in Fra-2 mice. Antifibrotic effects of PEG-ADA were also demonstrated in sclerodermatous chronic GVHD (reduced by 38.4%) (P = 0.0063; n = 8), and in a human full-thickness skin model. PEG-ADA treatment decreased inflammation and corrected the M2/Th2/group 2 innate lymphoid cell 2 bias. Moreover, PEG-ADA inhibited proliferation of pulmonary vascular smooth muscle cells (reduced by 40.5%) (P < 0.0001; n = 6), and prevented thickening of the vessel walls (reduced by 39.6%) (P = 0.0028; n = 6) and occlusions of pulmonary arteries (reduced by 63.9%) (P = 0.0147; n = 6). Treatment with PEG-ADA inhibited apoptosis of microvascular endothelial cells (reduced by 65.4%) (P = 0.0001; n = 6) and blunted the capillary rarefication (reduced by 32.5%) (P = 0.0199; n = 6). RNA sequencing demonstrated that treatment with PEG-ADA normalized multiple pathways related to fibrosis, vasculopathy, and inflammation in Fra-2 mice. CONCLUSION Treatment with PEG-ADA ameliorates the 3 cardinal features of SSc in pharmacologically relevant and well-tolerated doses. These findings may have direct translational implications, as PEG-ADA has already been approved by the Food and Drug Administration for the treatment of patients with ADA-deficient severe combined immunodeficiency disease.
Collapse
Affiliation(s)
- Yun Zhang
- University of Erlangen-Nuremberg, Erlangen, Germany
| | - Honglin Zhu
- University of Erlangen-Nuremberg, Erlangen, Germany, and Xiangya Hospital and Central South University, Changsha, China
| | | | - Hui Luo
- Xiangya Hospital and Central South University, Changsha, China
| | | | | | - Alina Soare
- University of Erlangen-Nuremberg, Erlangen, Germany
| | | | | | - Florian Groeber
- Universitätsklinikum Würzburg and Fraunhofer Institute for Interfacial Engineering and Biotechnology, Würzburg, Germany
| | - Christian Reuter
- Universitätsklinikum Würzburg and Fraunhofer Institute for Interfacial Engineering and Biotechnology, Würzburg, Germany
| | | | | | | | | | | | - Georg Schett
- University of Erlangen-Nuremberg, Erlangen, Germany
| | | |
Collapse
|
6
|
Soare A, Györfi HA, Matei AE, Dees C, Rauber S, Wohlfahrt T, Chen C, Ludolph I, Horch RE, Bäuerle T, Hörsten S, Mihai C, Distler O, Ramming A, Schett G, Distler JHW. Dipeptidylpeptidase 4 as a Marker of Activated Fibroblasts and a Potential Target for the Treatment of Fibrosis in Systemic Sclerosis. Arthritis Rheumatol 2019; 72:137-149. [DOI: 10.1002/art.41058] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/23/2019] [Indexed: 12/17/2022]
Affiliation(s)
- Alina Soare
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen, Erlangen, Germany, and Davila University of Medicine and Pharmacy Bucharest Romania
| | - Hermina A. Györfi
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Alexandru E. Matei
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Clara Dees
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Simon Rauber
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Thomas Wohlfahrt
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Chih‐Wei Chen
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Ingo Ludolph
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Raymund E. Horch
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Tobias Bäuerle
- Friedrich‐Alexander University Erlangen‐Nuremberg Erlangen Germany
| | - Stephan Hörsten
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Carina Mihai
- University Hospital Zurich, Zurich, Switzerland, and Carol Davila University of Medicine and Pharmacy Bucharest Romania
| | | | - Andreas Ramming
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Georg Schett
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| | - Jörg H. W. Distler
- Friedrich‐Alexander University Erlangen‐Nuremberg and Universitätsklinikum Erlangen Erlangen Germany
| |
Collapse
|
7
|
Sivanantham A, Pattarayan D, Rajasekar N, Kannan A, Loganathan L, Bethunaickan R, Mahapatra SK, Palanichamy R, Muthusamy K, Rajasekaran S. Tannic acid prevents macrophage-induced pro-fibrotic response in lung epithelial cells via suppressing TLR4-mediated macrophage polarization. Inflamm Res 2019; 68:1011-1024. [DOI: 10.1007/s00011-019-01282-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 02/08/2023] Open
|
8
|
Liang R, Kagwiria R, Zehender A, Dees C, Bergmann C, Ramming A, Krasowska D, Michalska-Jakubus M, Kreuter A, Kraner ME, Schett G, Distler JHW. Acyltransferase skinny hedgehog regulates TGFβ-dependent fibroblast activation in SSc. Ann Rheum Dis 2019; 78:1269-1273. [PMID: 31177096 DOI: 10.1136/annrheumdis-2019-215066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/10/2019] [Accepted: 05/24/2019] [Indexed: 01/24/2023]
Abstract
OBJECTIVES Systemic sclerosis (SSc) is characterised by aberrant hedgehog signalling in fibrotic tissues. The hedgehog acyltransferase (HHAT) skinny hedgehog catalyses the attachment of palmitate onto sonic hedgehog (SHH). Palmitoylation of SHH is required for multimerisation of SHH proteins, which is thought to promote long-range, endocrine hedgehog signalling. The aim of this study was to evaluate the role of HHAT in the pathogenesis of SSc. METHODS Expression of HHAT was analysed by real-time polymerase chain reaction(RT-PCR), immunofluorescence and histomorphometry. The effects of HHAT knockdown were analysed by reporter assays, target gene studies and quantification of collagen release and myofibroblast differentiation in cultured human fibroblasts and in two mouse models. RESULTS The expression of HHAT was upregulated in dermal fibroblasts of patients with SSc in a transforming growth factor-β (TGFβ)/SMAD-dependent manner. Knockdown of HHAT reduced TGFβ-induced hedgehog signalling as well as myofibroblast differentiation and collagen release in human dermal fibroblasts. Knockdown of HHAT in the skin of mice ameliorated bleomycin-induced and topoisomerase-induced skin fibrosis. CONCLUSION HHAT is regulated in SSc in a TGFβ-dependent manner and in turn stimulates TGFβ-induced long-range hedgehog signalling to promote fibroblast activation and tissue fibrosis. Targeting of HHAT might be a novel approach to more selectively interfere with the profibrotic effects of long-range hedgehog signalling.
Collapse
Affiliation(s)
- Ruifang Liang
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Rosebeth Kagwiria
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Ariella Zehender
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Clara Dees
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Dorota Krasowska
- Department of Dermatology, Venereology and Pediatric Dermatology, Medical University of Lublin, Lublin, Poland
| | | | - Alexander Kreuter
- Department of Dermatology, Venereolog and Allergology, HELIOS St Elisabeth Hospital Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | - Max E Kraner
- Department of Biology, Division of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3- Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nuremberg and Universitätsklinikum Erlangen, Erlangen, Bayern, Germany
| |
Collapse
|
9
|
Wohlfahrt T, Rauber S, Uebe S, Luber M, Soare A, Ekici A, Weber S, Matei AE, Chen CW, Maier C, Karouzakis E, Kiener HP, Pachera E, Dees C, Beyer C, Daniel C, Gelse K, Kremer AE, Naschberger E, Stürzl M, Butter F, Sticherling M, Finotto S, Kreuter A, Kaplan MH, Jüngel A, Gay S, Nutt SL, Boykin DW, Poon GMK, Distler O, Schett G, Distler JHW, Ramming A. PU.1 controls fibroblast polarization and tissue fibrosis. Nature 2019; 566:344-349. [PMID: 30700907 PMCID: PMC6526281 DOI: 10.1038/s41586-019-0896-x] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 12/21/2018] [Indexed: 02/06/2023]
Abstract
Fibroblasts are polymorphic cells with pleiotropic roles in organ morphogenesis, tissue homeostasis and immune responses. In fibrotic diseases, fibroblasts synthesize abundant amounts of extracellular matrix which lead to scaring and organ failure. In contrast, the hallmark feature of fibroblasts in arthritis is matrix degradation by the release of metalloproteinases and degrading enzymes, and subsequent tissue destruction. The mechanisms driving these functionally opposing pro-fibrotic and pro-inflammatory phenotypes of fibroblasts are enigmatic. We identified the transcription factor PU.1 as an essential orchestrator of the pro-fibrotic gene expression program. The interplay between transcriptional and post-transcriptional mechanisms which normally control PU.1 expression is perturbed in various fibrotic diseases, resulting in upregulation of PU.1, induction of fibrosis-associated gene sets, and a phenotypic switch in matrix-producing pro-fibrotic fibroblasts. In contrast, pharmacological and genetic inactivation of PU.1 disrupts the fibrotic network and enables re-programming of fibrotic fibroblasts into resting fibroblasts with regression of fibrosis in different organs.
Collapse
Affiliation(s)
- Thomas Wohlfahrt
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Simon Rauber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Steffen Uebe
- Institute of Human Genetics, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Markus Luber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arif Ekici
- Institute of Human Genetics, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Stefanie Weber
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexandru-Emil Matei
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christiane Maier
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Hans P Kiener
- Division of Rheumatology, Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | - Elena Pachera
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas E Kremer
- Department of Internal Medicine 1, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Butter
- Quantitative Proteomics Group, Institute of Molecular Biology, Mainz, Germany
| | - Michael Sticherling
- Department of Dermatology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Susetta Finotto
- Department of Molecular Pneumology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Alexander Kreuter
- Department of Dermatology, Venereology and Allergology, HELIOS St. Elisabeth Klinik Oberhausen, University Witten-Herdecke, Oberhausen, Germany
| | - Mark H Kaplan
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Astrid Jüngel
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Steffen Gay
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Molecular Immunology Division, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David W Boykin
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Gregory M K Poon
- Department of Chemistry, Georgia State University, Atlanta, GA, USA
| | - Oliver Distler
- Department of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
10
|
Beyer C, Huscher D, Ramming A, Bergmann C, Avouac J, Guiducci S, Meier F, Vettori S, Siegert E, Jaeger VK, Maurer B, Riemekasten G, Walker U, Müller-Ladner U, Valentini G, Matucci-Cerinic M, Allanore Y, Distler O, Schett G, Distler JHW. Elevated serum levels of sonic hedgehog are associated with fibrotic and vascular manifestations in systemic sclerosis. Ann Rheum Dis 2018; 77:626-628. [PMID: 28495672 DOI: 10.1136/annrheumdis-2016-210834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 01/23/2023]
Affiliation(s)
- Christian Beyer
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Dörte Huscher
- Epidemiology Unit, German Rheumatism Research Centre Berlin, A Leibniz Institute, Berlin, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Jerome Avouac
- Service de Rhumatologie A, Hôpital Cochin, INSERM 1016, Paris, France
| | - Serena Guiducci
- Division of Medicine & Rheumatology, University of Florence, Florence, Italy
| | - Florian Meier
- Department of Rheumatology and Clinical Immunology, Justus-Liebig University Giessen, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Serena Vettori
- Department of Internal and Experimental Medicine, Rheumatology Unit, Second University of Naples, II Policlinico, Naples, Italy
| | - Elise Siegert
- Department Rheumatology and Clinical Immunology, Charité University Hospital Berlin, Berlin, Germany
| | - Veronika K Jaeger
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Britta Maurer
- Department of Rheumaklinik, University Zurich, Zurich, Switzerland
| | | | - Ulrich Walker
- Department of Rheumatology, University Hospital Basel, Basel, Switzerland
| | - Ulf Müller-Ladner
- Department of Rheumatology and Clinical Immunology, Justus-Liebig University Giessen, Kerckhoff Clinic, Bad Nauheim, Germany
| | - Gabriele Valentini
- Department of Internal and Experimental Medicine, Rheumatology Unit, Second University of Naples, II Policlinico, Naples, Italy
| | | | - Yannick Allanore
- Service de Rhumatologie A, Hôpital Cochin, INSERM 1016, Paris, France
| | - Oliver Distler
- Department of Rheumaklinik, University Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
11
|
Huang J, Maier C, Zhang Y, Soare A, Dees C, Beyer C, Harre U, Chen CW, Distler O, Schett G, Wollin L, Distler JHW. Nintedanib inhibits macrophage activation and ameliorates vascular and fibrotic manifestations in the Fra2 mouse model of systemic sclerosis. Ann Rheum Dis 2017; 76:1941-1948. [PMID: 28814429 DOI: 10.1136/annrheumdis-2016-210823] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 05/29/2017] [Accepted: 07/18/2017] [Indexed: 01/24/2023]
Abstract
BACKGROUND Nintedanib is an inhibitor targeting platelet-derived growth factor receptor, fibroblast growth factor receptor and vascular endothelial growth factor receptor tyrosine kinases that has recently been approved for the treatment of idiopathic pulmonary fibrosis. The aim of this study was to analyse the effects of nintedanib in the fos-related antigen-2 (Fra2) mouse model of systemic sclerosis (SSc). METHODS The effects of nintedanib on pulmonary arterial hypertension with proliferation of pulmonary vascular smooth muscle cells (PVSMCs) and luminal occlusion, on microvascular disease with apoptosis of microvascular endothelial cells (MVECs) and on fibroblast activation with myofibroblast differentiation and accumulation of extracellular matrix were analysed. We also studied the effects of nintedanib on the levels of key mediators involved in the pathogenesis of SSc and on macrophage polarisation. RESULTS Nintedanib inhibited proliferation of PVSMCs and prevented thickening of the vessel walls and luminal occlusion of pulmonary arteries. Treatment with nintedanib also inhibited apoptosis of MVECs and blunted the capillary rarefaction in Fra2-transgenic mice. These effects were associated with a normalisation of the serum levels of vascular endothelial growth factor in Fra2 mice on treatment with nintedanib. Nintedanib also effectively blocked myofibroblast differentiation and reduced pulmonary, dermal and myocardial fibrosis in Fra2-transgenic mice. The antifibrotic effects of nintedanib were associated with impaired M2 polarisation of monocytes and reduced numbers of M2 macrophages. CONCLUSION Nintedanib targets core features of SSc in Fra2-transgenic mice and ameliorates histological features of pulmonary arterial hypertension, destructive microangiopathy and pulmonary and dermal fibrosis. These data might have direct implications for the ongoing phase III clinical trial with nintedanib in SSc-associated interstitial lung disease.
Collapse
Affiliation(s)
- Jingang Huang
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christiane Maier
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Yun Zhang
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Christian Beyer
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ulrike Harre
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Oliver Distler
- Rheumaklinik, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Lutz Wollin
- Boehringer-Ingelheim Pharma, Div. Research Germany, Biberach, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 and Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
12
|
Zhang Y, Liang R, Chen CW, Mallano T, Dees C, Distler A, Reich A, Bergmann C, Ramming A, Gelse K, Mielenz D, Distler O, Schett G, Distler JHW. JAK1-dependent transphosphorylation of JAK2 limits the antifibrotic effects of selective JAK2 inhibitors on long-term treatment. Ann Rheum Dis 2017; 76:1467-1475. [PMID: 28478401 DOI: 10.1136/annrheumdis-2016-210911] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/28/2017] [Accepted: 04/09/2017] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Janus kinase 2 (JAK2) has recently been described as a novel downstream mediator of the pro-fibrotic effects of transforming growth factor-β. Although JAK2 inhibitors are in clinical use for myelodysplastic syndromes, patients often rapidly develop resistance. Tumour cells can escape the therapeutic effects of selective JAK2 inhibitors by mutation-independent transactivation of JAK2 by JAK1. Here, we used selective JAK2 inhibition as a model to test the hypothesis that chronic treatment may provoke resistance by facilitating non-physiological signalling pathways in fibroblasts. METHODS The antifibrotic effects of long-term treatment with selective JAK2 inhibitors and reactivation of JAK2 signalling by JAK1-dependent transphosphorylation was analysed in cultured fibroblasts and experimental dermal and pulmonary fibrosis. Combined JAK1/JAK2 inhibition and co-treatment with an HSP90 inhibitor were evaluated as strategies to overcome resistance. RESULTS The antifibrotic effects of selective JAK2 inhibitors on fibroblasts decreased with prolonged treatment as JAK2 signalling was reactivated by JAK1-dependent transphosphorylation of JAK2. This reactivation could be prevented by HSP90 inhibition, which destabilised JAK2 protein, or with combined JAK1/JAK2 inhibitors. Treatment with combined JAK1/JAK2 inhibitors or with JAK2 inhibitors in combination with HSP90 inhibitors was more effective than monotherapy with JAK2 inhibitors in bleomycin-induced pulmonary fibrosis and in adTBR-induced dermal fibrosis. CONCLUSION Fibroblasts can develop resistance to chronic treatment with JAK2 inhibitors by induction of non-physiological JAK1-dependent transactivation of JAK2 and that inhibition of this compensatory signalling pathway, for example, by co-inhibition of JAK1 or HSP90 is important to maintain the antifibrotic effects of JAK2 inhibition with long-term treatment.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Ruifang Liang
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Tatjana Mallano
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Clara Dees
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Alfiya Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Adam Reich
- Department of Dermatology, Venereology and Allergology, Wrocław Medical University, Wrocław, Poland
| | - Christina Bergmann
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Dirk Mielenz
- Division of Molecular Immunology, Nikolaus Fiebiger Center, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Oliver Distler
- Division of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
13
|
Palumbo-Zerr K, Soare A, Zerr P, Liebl A, Mancuso R, Tomcik M, Sumova B, Dees C, Chen CW, Wohlfahrt T, Mallano T, Distler A, Ramming A, Gelse K, Mihai C, Distler O, Schett G, Distler JHW. Composition of TWIST1 dimers regulates fibroblast activation and tissue fibrosis. Ann Rheum Dis 2017; 76:244-251. [PMID: 27113414 DOI: 10.1136/annrheumdis-2015-208470] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 02/26/2016] [Accepted: 03/31/2016] [Indexed: 01/23/2023]
Abstract
OBJECTIVES TWIST1 is a member of the class B of basic helix-loop-helix transcription factors that regulates cell lineage determination and differentiation and has been implicated in epithelial-to-mesenchymal transition. Here, we aimed to investigate the role of TWIST1 for the activation of resident fibroblasts in systemic sclerosis (SSc). METHODS The expression of Twist1 in fibroblasts was modulated by forced overexpression or siRNA-mediated knockdown. Interaction of Twist1, E12 and inhibitor Of differentiation (Id) was analysed by co-immunoprecipitation. The role of Twist1 in vivo was evaluated using inducible, conditional knockout mice with either ubiquitous or fibroblast-specific depletion of Twist1. Mice were either challenged with bleomycin or overexpressing a constitutively active transforming growth factor (TGF)β receptor I. RESULT The expression of TWIST1 was increased in fibroblasts in fibrotic human and murine skin in a TGFβ/SMAD3-dependent manner. TWIST1 in turn enhanced TGFβ-induced fibroblast activation in a p38-dependent manner. The stimulatory effects of TWIST1 on resident fibroblasts were mediated by TWIST1 homodimers. TGFβ promotes the formation of TWIST1 homodimers by upregulation of TWIST1 and by induction of inhibitor of DNA-binding proteins, which have high affinity for E12/E47 and compete against TWIST1 for E12/E47 binding. Mice with selective depletion of Twist1 in fibroblasts are protected from experimental skin fibrosis in different murine models to a comparable degree as mice with ubiquitous depletion of Twist1. CONCLUSIONS Our data identify TWIST1 as a central pro-fibrotic factor in SSc, which facilitates fibroblast activation by amplifying TGFβ signalling. Targeting of TWIST1 may thus be a novel approach to normalise aberrant TGFβ signalling in SSc.
Collapse
Affiliation(s)
- Katrin Palumbo-Zerr
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alina Soare
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Department of Internal Medicine and Rheumatology, Dr. I. Cantacuzino Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Pawel Zerr
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andrea Liebl
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Rossella Mancuso
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Michal Tomcik
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Institute of Rheumatology and Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Sumova
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
- Institute of Rheumatology and Department of Rheumatology, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Clara Dees
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Chih-Wei Chen
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Thomas Wohlfahrt
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tatjana Mallano
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alfiya Distler
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas Ramming
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Kolja Gelse
- Department of Trauma Surgery, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carina Mihai
- Department of Internal Medicine and Rheumatology, Dr. I. Cantacuzino Clinical Hospital, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Oliver Distler
- Research of Systemic Autoimmune Diseases, Division of Rheumatology, University Hospital Zurich, Zurich, Switzerland
| | - Georg Schett
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine III, Institute for Clinical Immunology, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
14
|
Affiliation(s)
- Oliver Distler
- Division of Rheumatology, University Hospital Zurich, Switzerland.
| | - Jörg H W Distler
- Department of Internal Medicine, University of Erlangen-Nuremberg, Germany; Institute for Clinical Immunology, University of Erlangen-Nuremberg, Germany
| |
Collapse
|
15
|
Bergmann C, Distler JHW. Canonical Wnt signaling in systemic sclerosis. J Transl Med 2016; 96:151-5. [PMID: 26752744 DOI: 10.1038/labinvest.2015.154] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/16/2015] [Accepted: 11/23/2015] [Indexed: 01/10/2023] Open
Abstract
Fibrosing disorders are characterized by abundant accumulation of extracellular matrix proteins such as collagen in a variety of organs, which results in structural changes and dysfunction of the affected organ. Thus fibrotic diseases are characterized by a high morbidity and mortality and also lead to major socioeconomic costs. Systemic sclerosis (SSc) is a prototypic multi-systemic fibrosing disease, which affects the skin and a variety of internal organs, including the lungs, heart and gastrointestinal tract. Targeted antifibrotic therapies are not yet available for clinical use in SSc. In recent years, canonical Wnt signaling has been profoundly characterized as an important mediator of sustained fibroblast activation in fibrotic diseases. In the present review, we will summarize current research on the canonical Wnt signaling pathway in SSc and discuss translational implications and potential limitations of prolonged Wnt inhibition.
Collapse
Affiliation(s)
- Christina Bergmann
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jörg H W Distler
- Department of Internal Medicine 3, University of Erlangen-Nuremberg, Erlangen, Germany
| |
Collapse
|
16
|
Herro R, Croft M. The control of tissue fibrosis by the inflammatory molecule LIGHT (TNF Superfamily member 14). Pharmacol Res 2015; 104:151-5. [PMID: 26748035 DOI: 10.1016/j.phrs.2015.12.018] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/16/2015] [Indexed: 12/14/2022]
Abstract
The TNF Superfamily member LIGHT (TNFSF14) has recently emerged as a potential target for therapeutic interventions aiming to halt tissue fibrosis. In this perspective, we discuss how LIGHT may influence the inflammatory and remodeling steps that characterize fibrosis, relevant for many human diseases presenting with scarring such as asthma, idiopathic pulmonary fibrosis, systemic sclerosis, and atopic dermatitis. LIGHT acts through two receptors in the TNF receptor superfamily, HVEM (TNFRSF14) and LTβR (TNFRSF3), which are broadly expressed on hematopoietic and non-hematopoietic cells. LIGHT can regulate infiltrating T cells, macrophages, and eosinophils, controlling their trafficking or retention in the inflamed tissue, their proliferation, and their ability to produce cytokines that amplify fibrotic processes. More interestingly, LIGHT can act on structural cells, namely epithelial cells, fibroblasts, smooth muscle cells, adipocytes, and endothelial cells. By signaling through either HVEM or LTβR expressed on these cells, LIGHT can contribute to their proliferation and expression of chemokines, growth factors, and metalloproteinases. This will lead to hyperplasia of epithelial cells, fibroblasts, and smooth muscle cells, deposition of extracellular matrix proteins, vascular damage, and further immune alterations that in concert constitute fibrosis. Because of its early expression by T cells, LIGHT may be an initiator of fibrotic diseases, but other sources in the immune system could also signify a role for LIGHT in maintaining or perpetuating fibrotic activity. LIGHT may then be an attractive prognostic marker as well as an appealing target for fibrosis therapies relevant to humans.
Collapse
Affiliation(s)
- Rana Herro
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - Michael Croft
- Division of Immune Regulation, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| |
Collapse
|