1
|
Cools R, Vermeulen K, Celen S, Leitao R, Bormans G. Radiosynthesis and Evaluation of [ 18F]FEHSP990 as Novel PET Tracer for Hsp90 PET Imaging. J Labelled Comp Radiopharm 2025; 68:e4144. [PMID: 40219580 PMCID: PMC11992409 DOI: 10.1002/jlcr.4144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/24/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
Heat shock protein 90 (Hsp90) is a critical chaperone in the protein quality control system, essential for maintaining cellular proteostasis. Aberrant Hsp90 function has been implicated in cancer and neurodegenerative disorders, making it an attractive therapeutic target and a potential biomarker for disease characterisation and progression using PET imaging. In this study, we aimed to develop the first fluorine-18 labelled brain permeable PET imaging agent, [18F]FEHSP990, suitable for imaging Hsp90 in both brain and tumour tissue. The radiosynthesis of [18F]FEHSP990 was achieved with a radiochemical yield of 48 ± 29%, high radiochemical purity of > 99% and a molar activity of 213 ± 101 GBq/μmol at the end of synthesis. Competition binding studies in healthy mouse brain homogenate samples indicated a Ki value of approximately 200 nM. In vitro tracer binding to rodent brain and glioblastoma tumour tissue slices was high and deemed Hsp90-specific, as demonstrated by autoradiography blocking studies, whereas binding to living glioblastoma U87 cells was notably low. Ex vivo biodistribution and in vivo PET imaging studies in healthy rodents demonstrated limited brain exposure of the tracer, potentially due to insufficient affinity for Hsp90 and/or restricted blood-brain barrier permeability. Further development of fluorine-18 labelled Hsp90 tracers is warranted.
Collapse
Affiliation(s)
- Romy Cools
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacological SciencesKU LeuvenLeuvenBelgium
| | - Koen Vermeulen
- Nuclear Medical Applications InstituteBelgian Nuclear Research Centre (SCK CEN)MolBelgium
| | - Sofie Celen
- Nuclear Medicine and Molecular ImagingUZ LeuvenLeuvenBelgium
| | - Renan C. F. Leitao
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacological SciencesKU LeuvenLeuvenBelgium
| | - Guy Bormans
- Laboratory for Radiopharmaceutical Research, Department of Pharmacy and Pharmacological SciencesKU LeuvenLeuvenBelgium
| |
Collapse
|
2
|
Chakraborty P, Zweckstetter M. Interplay of p23 with FKBP51 and their chaperone complex in regulating tau aggregation. Nat Commun 2025; 16:669. [PMID: 39809798 PMCID: PMC11733250 DOI: 10.1038/s41467-025-56028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/06/2025] [Indexed: 01/30/2025] Open
Abstract
The pathological deposition of tau and amyloid-beta into insoluble amyloid fibrils are pathological hallmarks of Alzheimer's disease. Molecular chaperones are important cellular factors contributing to the regulation of tau misfolding and aggregation. Here we reveal an Hsp90-independent mechanism by which the co-chaperone p23 as well as a molecular complex formed by two co-chaperones, p23 and FKBP51, modulates tau aggregation. Integrating NMR spectroscopy, SAXS, molecular docking, and site-directed mutagenesis we reveal the structural basis of the p23-FKBP51 complex. We show that p23 specifically recognizes the TPR domain of FKBP51 and interacts with tau through its C-terminal disordered tail. We further show that the p23-FKBP51 complex binds tau to form a dynamic p23-FKBP51-tau trimeric complex that delays tau aggregation and thus may counteract Hsp90-FKBP51 mediated toxicity. Taken together, our findings reveal a co-chaperone mediated Hsp90-independent chaperoning of tau protein.
Collapse
Affiliation(s)
- Pijush Chakraborty
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany.
| |
Collapse
|
3
|
Afjadi MN, Dabirmanesh B, Uversky VN. Therapeutic approaches in proteinopathies. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 206:341-388. [PMID: 38811085 DOI: 10.1016/bs.pmbts.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
A family of maladies known as amyloid disorders, proteinopathy, or amyloidosis, are characterized by the accumulation of abnormal protein aggregates containing cross-β-sheet amyloid fibrils in many organs and tissues. Often, proteins that have been improperly formed or folded make up these fibrils. Nowadays, most treatments for amyloid illness focus on managing symptoms rather than curing or preventing the underlying disease process. However, recent advances in our understanding of the biology of amyloid diseases have led to the development of innovative therapies that target the emergence and accumulation of amyloid fibrils. Examples of these treatments include the use of small compounds, monoclonal antibodies, gene therapy, and others. In the end, even if the majority of therapies for amyloid diseases are symptomatic, greater research into the biology behind these disorders is identifying new targets for potential therapy and paving the way for the development of more effective treatments in the future.
Collapse
Affiliation(s)
- Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahareh Dabirmanesh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Vladimir N Uversky
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute for Biological Instrumentation, Pushchino, Moscow, Russia; Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.
| |
Collapse
|
4
|
Venediktov AA, Bushueva OY, Kudryavtseva VA, Kuzmin EA, Moiseeva AV, Baldycheva A, Meglinski I, Piavchenko GA. Closest horizons of Hsp70 engagement to manage neurodegeneration. Front Mol Neurosci 2023; 16:1230436. [PMID: 37795273 PMCID: PMC10546621 DOI: 10.3389/fnmol.2023.1230436] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/18/2023] [Indexed: 10/06/2023] Open
Abstract
Our review seeks to elucidate the current state-of-the-art in studies of 70-kilodalton-weighed heat shock proteins (Hsp70) in neurodegenerative diseases (NDs). The family has already been shown to play a crucial role in pathological aggregation for a wide spectrum of brain pathologies. However, a slender boundary between a big body of fundamental data and its implementation has only recently been crossed. Currently, we are witnessing an anticipated advancement in the domain with dozens of studies published every month. In this review, we briefly summarize scattered results regarding the role of Hsp70 in the most common NDs including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We also bridge translational studies and clinical trials to portray the output for medical practice. Available options to regulate Hsp70 activity in NDs are outlined, too.
Collapse
Affiliation(s)
- Artem A. Venediktov
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Olga Yu Bushueva
- Laboratory of Genomic Research, Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia
| | - Varvara A. Kudryavtseva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Egor A. Kuzmin
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Aleksandra V. Moiseeva
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Anna Baldycheva
- STEMM Laboratory, University of Exeter, Exeter, United Kingdom
| | - Igor Meglinski
- Department of Physics, University of Oulu, Oulu, Finland
- College of Engineering and Physical Sciences, Aston University, Birmingham, United Kingdom
| | - Gennadii A. Piavchenko
- Department of Human Anatomy and Histology, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| |
Collapse
|
5
|
Tseng HJ, Banerjee S, Qian B, Lai MJ, Wu TY, Hsu TI, Lin TE, Hsu KC, Chuang KH, Liou JP, Shih JC. Design, synthesis, and biological activity of dual monoamine oxidase A and heat shock protein 90 inhibitors, N-Methylpropargylamine-conjugated 4-isopropylresorcinol for glioblastoma. Eur J Med Chem 2023; 256:115459. [PMID: 37172473 PMCID: PMC10247544 DOI: 10.1016/j.ejmech.2023.115459] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Monoamine oxidase A (MAO A) and heat shock protein 90 (HSP90) inhibitors have been shown to decrease the progression of glioblastoma (GBM) and other cancers. In this study, a series of MAO A/HSP90 dual inhibitors were designed and synthesized in the hope to develop more effective treatment of GBM. Compounds 4-b and 4-c are conjugates of isopropylresorcinol (pharmacophore of HSP90 inhibitor) with the phenyl group of clorgyline (MAO A inhibitor) by a tertiary amide bond substituted with methyl (4-b) or ethyl (4-c) group, respectively. They inhibited MAO A activity, HSP90 binding, and the growth of both TMZ-sensitive and -resistant GBM cells. Western blots showed that they increased HSP70 expression indicating reduced function of HSP90, reduced HER2 and phospho-Akt expression similar to MAO A or HSP90 inhibitor itself. Both compounds decreased IFN-γ induced PD-L1 expression in GL26 cells, suggesting they can act as immune checkpoint inhibitor. Further, they reduced tumor growth in GL26 mouse model. NCI-60 analysis showed they also inhibited the growth of colon cancer, leukemia, non-small cell lung and other cancers. Taken together, this study demonstrates MAO A/HSP90 dual inhibitors 4-b and 4-c reduced the growth of GBM and other cancers, and they have potential to inhibit tumor immune escape.
Collapse
Affiliation(s)
- Hui-Ju Tseng
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States; School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Suddhasatwa Banerjee
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Bin Qian
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States
| | - Mei-Jung Lai
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan
| | - Tung-Yun Wu
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Tsung-I Hsu
- Ph.D. Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University and National Health Research Institutes, Taipei, 11031, Taiwan; International Master Program in Medical Neuroscience, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Ph.D. Program in Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan; Ph.D. Program in Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, 11031, Taiwan
| | - Kuo-Hsiang Chuang
- TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan
| | - Jing-Ping Liou
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, 110031, Taiwan; TMU Research Center for Drug Discovery, Taipei Medical University, Taipei, 110031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, 11031, Taiwan.
| | - Jean C Shih
- Department of Pharmacology and Pharmaceutical Sciences, Alfred E. Mann School of Pharmacy and Pharmaceutical Sciences, University of Southern California, Los Angeles, CA, 90089, United States; Department of Integrative Anatomical Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; USC-Taiwan Center for Translational Research, Los Angeles, CA, 90089, United States.
| |
Collapse
|
6
|
Franks H, Wang R, Li M, Wang B, Wildmann A, Ortyl T, O’Brien S, Young D, Liao FF, Sakata K. Heat shock factor HSF1 regulates BDNF gene promoters upon acute stress in the hippocampus, together with pCREB. J Neurochem 2023; 165:131-148. [PMID: 36227087 PMCID: PMC10097844 DOI: 10.1111/jnc.15707] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/30/2022] [Accepted: 10/08/2022] [Indexed: 11/29/2022]
Abstract
Heat shock factor 1 (HSF1) is a master stress-responsive transcriptional factor, protecting cells from death. However, its gene regulation in vivo in the brain in response to neuronal stimuli remains elusive. Here, we investigated its direct regulation of the brain-derived neurotrophic factor (BDNF) gene (Bdnf) in response to acute neuronal stress stimuli in the brain. The results of immunohistochemistry and chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) showed that administration of kainic acid (a glutamate receptor agonist inducing excitotoxity) to young adult mice induced HSF1 nuclear translocation and its binding to multiple Bdnf promoters in the hippocampus. Footshock, a physical stressor used for learning, also induced HSF1 binding to selected Bdnf promoters I and IV. This is, to our knowledge, the first demonstration of HSF1 gene regulation in response to neuronal stimuli in the hippocampus in vivo. HSF1 binding sites (HSEs) in Bdnf promoters I and IV were also detected when immunoprecipitated by an antibody of phosphorylated (p)CREB (cAMP-responsive element-binding protein), suggesting their possible interplay in acute stress-induced Bdnf transcription. Interestingly, their promoter binding patterns differed by KA and footshock, suggesting that HSF1 and pCREB orchestrate to render fine-tuned promoter control depending on the types of stress. Further, HSF1 overexpression increased Bdnf promoter activity in a luciferase assay, while virus infection of constitutively active-form HSF1 increased levels of BDNF mRNA and protein in vitro in primary cultured neurons. These results indicated that HSF1 activation of Bdnf promoter was sufficient to induce BDNF expression. Taken together, these results suggest that HSF1 promoter-specific control of Bdnf gene regulation plays an important role in neuronal protection and plasticity in the hippocampus in response to acute stress, possibly interplaying with pCREB.
Collapse
Affiliation(s)
- Hunter Franks
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ruishan Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Mingqi Li
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Bin Wang
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Ashton Wildmann
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Tyler Ortyl
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Shannon O’Brien
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Deborah Young
- Department of Pharmacology & Clinical Pharmacology, The
University of Auckland, Auckland, New Zealand
| | - Francesca-Fang Liao
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| | - Kazuko Sakata
- Department of Pharmacology, University of Tennessee Health
Science Center, Memphis, TN, USA
| |
Collapse
|
7
|
Pokrovsky VM, Patrakhanov EA, Antsiferov OV, Kolesnik IM, Belashova AV, Soldatova VA, Pokopeiko ON, Karagodina AY, Arkhipov IA, Voronina DG, Sushkova DN. HEAT SHOCK PROTEIN HSP70: PREREQUISITES FOR USE AS A MEDICINAL PRODUCT. PHARMACY & PHARMACOLOGY 2021; 9:346-355. [DOI: 10.19163/2307-9266-2021-9-5-346-355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Heat shock protein Hsp70 is one of the main cytoprotection components under the action of various external stimuli. The analysis of the literature data shows that nowadays, the researches’ overwhelming evidence has proven the role of Hsp70 as a biological target for the drug development; however, the ideas about its use as a drug are often multidirectional.The aim of the article is to analyze and generalize the literature data on the features of the physiological functions of heat shock protein Hsp 70, and indicate the possibilities of its use for the pharmacological correction of various pathological conditions.Materials and methods. In the process of selecting material for writing this review article, such databases as Google Patents, Science Research Portal, Google Scholar, ScienceDirect, CiteSeer, Publications, ResearchIndex, Ingenta, PubMed, KEGG, etc. were used The following words and word combinations were selected as markers for identifying the literature: Hsp70, Hsp70 stroke, Hsp70 neuroprotection, Hsp70 cytoprotection, recombinant drugs.Results. In this review, the pharmacology of one of the key members of this family, Hsp70, was focused on. The literary analysis confirms that this molecule is an endogenous regulator of many physiological processes and demonstrates tissue protective effects in modeling ischemic, neurodegenerative and inflammatory processes. The use of recombinant exogenous Hsp70 mimics the endogenous function of the protein, indicating the absence of a number of typical limitations characteristic of pharmacotherapy with high molecular weight compounds, such as immunogenicity, a rapid degradation by proteases, or a low penetration of histohematogenous barriers.Conclusion. Thus, Hsp70 may become a promising agent for clinical trials as a drug for the treatment of patients with neurological, immunological, and cardiovascular profiles.
Collapse
Affiliation(s)
- V. M. Pokrovsky
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - E. A. Patrakhanov
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - O. V. Antsiferov
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - I. M. Kolesnik
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - A. V. Belashova
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - V. A. Soldatova
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - O. N. Pokopeiko
- First Moscow State Medical University n. a. I.M. Sechenov (Sechenov University)
Bldg. 2, 8, Trubetskaya St., Moscow, Russia, 119991
| | - A. Yu. Karagodina
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - I. A. Arkhipov
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - D. G. Voronina
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| | - D. N. Sushkova
- Belgorod State National Research University (NRU “BelSU”)
85, Pobeda St., Belgorod, Russia, 308015
| |
Collapse
|
8
|
Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021; 145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Defective proteostasis is associated with the gradual accumulations of misfolded proteins and is a hallmark of many age-associated neurodegenerative diseases. In the aged brain, maintenance of the proteostasis network presents a substantial challenge, and its loss contributes to the onset and progression of neurological diseases associated with cognitive decline due to the generation of toxic protein aggregates, a process termed 'proteinopathy'. Emerging evidence suggests that reversing proteinopathies by boosting proteostasis might provide an effective means of preventing neurodegeneration. From this perspective, phytochemicals may play significant roles as potent modulators of the proteostasis network, as previous reports have suggested they can interact with various network components to modify pathologies and confer neuroprotection. This review focuses on some potent phytochemicals that directly or indirectly modulate the proteostasis network and on their possible molecular targets. In addition, we propose strategies for the natural product-based modulation of proteostasis machinery that target proteinopathies.
Collapse
Affiliation(s)
- Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Israt Jahan
- Department of Pharmacy, Faculty of Life and Earth Sciences, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Chayan Ali
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia, 7003, Bangladesh
| | - Sarmistha Mitra
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Yeasmin Akter Munni
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Binod Timalsina
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea
| | - Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea; Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju, 38066, Republic of Korea.
| |
Collapse
|
9
|
Badolo L, Thirstrup K, Nielsen SM, Püschl A, Jensen T, Watson S, Bundgaard C. Target-Mediated Brain Tissue Binding for Small Molecule Inhibitors of Heat Shock Protein 90. Pharmaceutics 2020; 12:pharmaceutics12111009. [PMID: 33105895 PMCID: PMC7690585 DOI: 10.3390/pharmaceutics12111009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/28/2020] [Accepted: 10/19/2020] [Indexed: 11/21/2022] Open
Abstract
Drug distribution in the brain is generally associated with an affinity for fatty brain tissues and therefore known to be species- and concentration-independent. We report here the effect of target affinity on brain tissue binding for 10 small molecules designed to inhibit brain heat shock protein 90 (HSP90), a widespread protein whose expression is 1–2% of total cytosolic proteins in eucaryotes. Our results show that increasing the test item concentrations from 0.3 to 100 µM increased the unbound fraction 32-fold for the most potent molecules, with no change for the inactive one (1.1 fold change). Saturation of HSP90 led to normal concentration-independent brain tissue binding. In vivo pharmacokinetics performed in rats showed that the overall volume of distribution of compounds is correlated with their affinity for HSP90. The in vitro binding and in vivo pharmacokinetics (PK) performed in rats showed that small molecule HSP90 inhibitors followed the principle of target-mediated drug disposition. We demonstrate that assessing unbound fractions in brain homogenate was subject to HSP90 target interference; this may challenge the process of linking systemic-free drug concentrations to central nervous system unbound concentrations necessary to establish the proper pharmacokinetics/pharmacodynamics (PK/PD) relation needed for human dose prediction.
Collapse
Affiliation(s)
- Lassina Badolo
- Translational DMPK, H. Lundbeck A/S, 2500 Copenhagen-Valby, Denmark;
- Correspondence:
| | | | - Søren Møller Nielsen
- Molecular Screening and Pharmacology, H. Lundbeck A/S, 2500 Copenhagen-Valby, Denmark;
| | - Ask Püschl
- Medicinal Chemistry, H. Lundbeck A/S, 2500 Copenhagen-Valby, Denmark; (A.P.); (T.J.); (S.W.)
| | - Thomas Jensen
- Medicinal Chemistry, H. Lundbeck A/S, 2500 Copenhagen-Valby, Denmark; (A.P.); (T.J.); (S.W.)
| | - Steve Watson
- Medicinal Chemistry, H. Lundbeck A/S, 2500 Copenhagen-Valby, Denmark; (A.P.); (T.J.); (S.W.)
| | | |
Collapse
|
10
|
Sharma S, Saini R, Sharma P, Saini A, Nehru B. Maintenance of Amyloid-beta Homeostasis by Carbenoxolone Post Aβ-42 Oligomer Injection in Rat Brain. Neuroscience 2020; 431:86-102. [DOI: 10.1016/j.neuroscience.2020.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 10/25/2022]
|
11
|
Dukay B, Csoboz B, Tóth ME. Heat-Shock Proteins in Neuroinflammation. Front Pharmacol 2019; 10:920. [PMID: 31507418 PMCID: PMC6718606 DOI: 10.3389/fphar.2019.00920] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/22/2019] [Indexed: 01/01/2023] Open
Abstract
The heat-shock response, one of the main pro-survival mechanisms of a living organism, has evolved as the biochemical response of cells to cope with heat stress. The most well-characterized aspect of the heat-shock response is the accumulation of a conserved set of proteins termed heat-shock proteins (HSPs). HSPs are key players in protein homeostasis acting as chaperones by aiding the folding and assembly of nascent proteins and protecting against protein aggregation. HSPs have been associated with neurological diseases in the context of their chaperone activity, as they were found to suppress the aggregation of misfolded toxic proteins. In recent times, HSPs have proven to have functions apart from the classical molecular chaperoning in that they play a role in a wider scale of neurological disorders by modulating neuronal survival, inflammation, and disease-specific signaling processes. HSPs are gaining importance based on their ability to fine-tune inflammation and act as immune modulators in various bodily fluids. However, their effect on neuroinflammation processes is not yet fully understood. In this review, we summarize the role of neuroinflammation in acute and chronic pathological conditions affecting the brain. Moreover, we seek to explore the existing literature on HSP-mediated inflammatory function within the central nervous system and compare the function of these proteins when they are localized intracellularly compared to being present in the extracellular milieu.
Collapse
Affiliation(s)
- Brigitta Dukay
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Bálint Csoboz
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Melinda E Tóth
- Institute of Biochemistry, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|
12
|
Cuadrado-Tejedor M, Pérez-González M, García-Muñoz C, Muruzabal D, García-Barroso C, Rabal O, Segura V, Sánchez-Arias JA, Oyarzabal J, Garcia-Osta A. Taking Advantage of the Selectivity of Histone Deacetylases and Phosphodiesterase Inhibitors to Design Better Therapeutic Strategies to Treat Alzheimer's Disease. Front Aging Neurosci 2019; 11:149. [PMID: 31281249 PMCID: PMC6597953 DOI: 10.3389/fnagi.2019.00149] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022] Open
Abstract
The discouraging results with therapies for Alzheimer’s disease (AD) in clinical trials, highlights the urgent need to adopt new approaches. Like other complex diseases, it is becoming clear that AD therapies should focus on the simultaneous modulation of several targets implicated in the disease. Recently, using reference compounds and the first-in class CM-414, we demonstrated that the simultaneous inhibition of histone deacetylases [class I histone deacetylases (HDACs) and HDAC6] and phosphodiesterase 5 (PDE5) has a synergistic therapeutic effect in AD models. To identify the best inhibitory balance of HDAC isoforms and PDEs that provides a safe and efficient therapy to combat AD, we tested the compound CM-695 in the Tg2576 mouse model of this disease. CM-695 selectively inhibits HDAC6 over class I HDAC isoforms, which largely overcomes the toxicity associated with HDAC class 1 inhibition. Furthermore, CM-695 inhibits PDE9, which is expressed strongly in the brain and has been proposed as a therapeutic target for AD. Chronic treatment of aged Tg2576 mice with CM-695 ameliorates memory impairment and diminishes brain Aβ, although its therapeutic effect was no longer apparent 4 weeks after the treatment was interrupted. An increase in the presence of 78-KDa glucose regulated protein (GRP78) and heat shock protein 70 (Hsp70) chaperones may underlie the therapeutic effect of CM-695. In summary, chronic treatment with CM-695 appears to reverse the AD phenotype in a safe and effective manner. Taking into account that AD is a multifactorial disorder, the multimodal action of these compounds and the different events they affect may open new avenues to combat AD.
Collapse
Affiliation(s)
- Mar Cuadrado-Tejedor
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Marta Pérez-González
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Department of Pathology, Anatomy and Physiology, School of Medicine, University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| | - Cristina García-Muñoz
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Damián Muruzabal
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carolina García-Barroso
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Obdulia Rabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Víctor Segura
- Health Research Institute of Navarra (IDISNA), Pamplona, Spain.,Bioinformatics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Juan A Sánchez-Arias
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Julen Oyarzabal
- Small Molecule Discovery Platform, Molecular Therapeutics Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ana Garcia-Osta
- Neurobiology of Alzheimer's Disease, Neurosciences Program, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Health Research Institute of Navarra (IDISNA), Pamplona, Spain
| |
Collapse
|
13
|
Vermeulen K, Naus E, Ahamed M, Attili B, Siemons M, Luyten K, Celen S, Schymkowitz J, Rousseau F, Bormans G. Evaluation of [ 11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90. Am J Cancer Res 2019; 9:554-572. [PMID: 30809293 PMCID: PMC6376183 DOI: 10.7150/thno.27213] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 11/30/2018] [Indexed: 12/26/2022] Open
Abstract
Heat shock protein 90 is an ATP-dependent molecular chaperone important for folding, maturation and clearance of aberrantly expressed proteins and is abundantly expressed (1-2% of all proteins) in the cytosol of all normal cells. In some tumour cells, however, strong expression of HSP90 is also observed on the cell membrane and in the extracellular matrix and the affinity of tumoural HSP90 for ATP domain inhibitors was reported to increase over 100-fold compared to that of HSP90 in normal cells. Here, we explore [11C]NMS-E973 as a PET tracer for in vivo visualisation of HSP90 and as a potential tool for in vivo quantification of occupancy of HSP90 inhibitors. Methods: HSP90 expression was biochemically characterized in a panel of established cell lines including the melanoma line B16.F10. B16.F10 melanoma xenograft tumour tissue was compared to non-malignant mouse tissue. NMS-E973 was tested in vitro for HSP90 inhibitory activity in several tumour cell lines. HSP90-specific binding of [11C]NMS-E973 was evaluated in B16.F10 melanoma cells and B16.F10 melanoma, prostate cancer LNCaP and PC3, SKOV-3 xenograft tumour slices and in vivo in a B16.F10 melanoma mouse model. Results: Strong intracellular upregulation and abundant membrane localisation of HSP90 was observed in the different tumour cell lines, in the B16.F10 tumour cell line and in B16.F10 xenograft tumours compared to non-malignant tissue. NMS-E973 showed HSP90-specific inhibition and reduced proliferation of cells. [11C]NMS-E973 showed strong binding to B16.F10 melanoma cells, which was inhibited by 200 µM of PU-H71, a non-structurally related HSP90 inhibitor. HSP90-specific binding was observed by in vitro autoradiography of murine B16.F10 melanoma, LNCaP and PC3 prostate cancer and SKOV-3 ovary carcinoma tissue slices. Further, B16.F10 melanoma-inoculated mice were subjected to a µPET study, where the tracer showed fast and persistent tumour uptake. Pretreatment of B16.F10 melanoma mice with PU-H71 or Ganetespib (50 mg/kg) completely blocked tumour accumulation of [11C]NMS-E973 and confirmed in vivo HSP90 binding specificity. HSP90-specific binding of [11C]NMS-E973 was observed in blood, lungs and spleen of tumour-bearing animals but not in control animals. Conclusion: [11C]NMS-E973 is a PET tracer for in vivo visualisation of tumour HSP90 expression and can potentially be used for quantification of HSP90 occupancy. Further translational evaluation of [11C]NMS-E973 is warranted.
Collapse
|
14
|
Heat Shock Proteins in Alzheimer's Disease: Role and Targeting. Int J Mol Sci 2018; 19:ijms19092603. [PMID: 30200516 PMCID: PMC6163571 DOI: 10.3390/ijms19092603] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/28/2018] [Accepted: 08/30/2018] [Indexed: 12/12/2022] Open
Abstract
Among diseases whose cure is still far from being discovered, Alzheimer’s disease (AD) has been recognized as a crucial medical and social problem. A major issue in AD research is represented by the complexity of involved biochemical pathways, including the nature of protein misfolding, which results in the production of toxic species. Considering the involvement of (mis)folding processes in AD aetiology, targeting molecular chaperones represents a promising therapeutic perspective. This review analyses the connection between AD and molecular chaperones, with particular attention toward the most important heat shock proteins (HSPs) as representative components of the human chaperome: Hsp60, Hsp70 and Hsp90. The role of these proteins in AD is highlighted from a biological point of view. Pharmacological targeting of such HSPs with inhibitors or regulators is also discussed.
Collapse
|
15
|
Zhou Y, Li M, Zhu DL, Jiang T, Gao Q, Tang XH, Zhang SG, Lu J, Zhang YD. Neuroprotective effect of angiotensin-(1–7) against rotenone-induced oxidative damage in CATH.a neurons. Toxicol In Vitro 2018; 50:373-382. [DOI: 10.1016/j.tiv.2018.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 03/05/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022]
|
16
|
Sweeney P, Park H, Baumann M, Dunlop J, Frydman J, Kopito R, McCampbell A, Leblanc G, Venkateswaran A, Nurmi A, Hodgson R. Protein misfolding in neurodegenerative diseases: implications and strategies. Transl Neurodegener 2017; 6:6. [PMID: 28293421 PMCID: PMC5348787 DOI: 10.1186/s40035-017-0077-5] [Citation(s) in RCA: 418] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
A hallmark of neurodegenerative proteinopathies is the formation of misfolded protein aggregates that cause cellular toxicity and contribute to cellular proteostatic collapse. Therapeutic options are currently being explored that target different steps in the production and processing of proteins implicated in neurodegenerative disease, including synthesis, chaperone-assisted folding and trafficking, and degradation via the proteasome and autophagy pathways. Other therapies, like mTOR inhibitors and activators of the heat shock response, can rebalance the entire proteostatic network. However, there are major challenges that impact the development of novel therapies, including incomplete knowledge of druggable disease targets and their mechanism of action as well as a lack of biomarkers to monitor disease progression and therapeutic response. A notable development is the creation of collaborative ecosystems that include patients, clinicians, basic and translational researchers, foundations and regulatory agencies to promote scientific rigor and clinical data to accelerate the development of therapies that prevent, reverse or delay the progression of neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Patrick Sweeney
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
- Royal Veterinary College, University of London, London, UK
| | - Hyunsun Park
- Health & Life Science Consulting, Los Angeles, CA USA
| | - Marc Baumann
- Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - John Dunlop
- Neuroscience Innovation Medicines, Astra Zeneca, Cambridge, MA USA
| | | | | | | | | | | | - Antti Nurmi
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| | - Robert Hodgson
- Discovery Services, Charles Rivers Laboratories, Wilmington, MA USA
| |
Collapse
|
17
|
Hooper PL, Durham HD, Török Z, Hooper PL, Crul T, Vígh L. The central role of heat shock factor 1 in synaptic fidelity and memory consolidation. Cell Stress Chaperones 2016; 21:745-53. [PMID: 27283588 PMCID: PMC5003801 DOI: 10.1007/s12192-016-0709-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2016] [Accepted: 06/01/2016] [Indexed: 12/27/2022] Open
Abstract
Networks of neuronal synapses are the fundamental basis for making and retaining memory. Reduced synapse number and quality correlates with loss of memory in dementia. Heat shock factor 1 (HSF1), the major transcription factor regulating expression of heat shock genes, plays a central role in proteostasis, in establishing and sustaining synaptic fidelity and function, and in memory consolidation. Support for this thesis is based on these observations: (1) heat shock induces improvements in synapse integrity and memory consolidation; (2) synaptic depolarization activates HSF1; (3) activation of HSF1 alone (independent of the canonical heat shock response) augments formation of essential synaptic elements-neuroligands, vesicle transport, synaptic scaffolding proteins, lipid rafts, synaptic spines, and axodendritic synapses; (4) HSF1 coalesces and activates memory receptors in the post-synaptic dendritic spine; (5) huntingtin or α-synuclein accumulation lowers HSF1 while HSF1 lowers huntingtin and α-synuclein aggregation-a potential vicious cycle; and (6) HSF1 agonists (including physical activity) can improve cognitive function in dementia models. Thus, via direct gene expression of synaptic elements, production of HSPs that assure high protein fidelity, and activation of other neuroprotective signaling pathways, HSF1 agonists could provide breakthrough therapy for dementia-associated disease.
Collapse
Affiliation(s)
- Philip L Hooper
- Division of Endocrinology, Metabolism and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| | - Heather D Durham
- Department of Neurology/Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Zsolt Török
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - Paul L Hooper
- Department of Anthropology, Emory University, 1557 Dickey Drive, Atlanta, GA, USA
| | - Tim Crul
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Vígh
- Institute of Biochemistry, Biological Research Center, Hungarian Academy of Sciences, Szeged, Hungary
| |
Collapse
|