1
|
Liu X, Guo X, Pei YA, Pei M, Ge Z. Charting a quarter-century of commercial cartilage regeneration products. J Orthop Translat 2025; 50:354-363. [PMID: 39968336 PMCID: PMC11833628 DOI: 10.1016/j.jot.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 02/20/2025] Open
Abstract
Functional cartilage regeneration remains difficult to achieve despite decades of research. Dozens of commercial products have been proposed, with each targeting different facets of successful cartilage engineering, including mechanical properties, integration, lubrication and inflammation; however, there remains a lack of breakthroughs in meaningful clinical outcomes. Prior research categorized commercial products based on their components and elucidated challenges faced during the market approval process. This paper, for the first time, comprehensively reviews the properties of commercial products covering the last 25 years, including design trends in components, compatibility with minimally invasive surgery, indications for cartilage defects, long-term follow-up, as well as active sponsorship support of the International Cartilage Regeneration and Joint Preservation Society (ICRS). We aim to summarize the key factors for potentially successful commercial products and elucidate overarching trends in technology development in this field. Given that no revolutionary products have yielded significantly improved clinical results, emerging products compete with one another on user-friendliness and cost-efficiency. Other relevant characteristics include compatibility with minimally invasive surgery, extensiveness of required surgery (one-stage vs. two-stage), use of versatile artificial polymers and application of cells and biomaterials. Specific products continue to lead the market due to their cost-efficiency or indications for larger cartilage defects. However, they have been shown to result in no significant improvement upon clinical follow-up. Thus, there is a need for products that surpass current commercial products and show clinical effectiveness. Translation potential of this article: This review analyzes product components, compatibility with minimally invasive surgery, indication for cartilage defect areas, clinical performance as well as sponsorship for the World Conference of International Cartilage Regeneration & Joint Preservation Society, based on information about cartilage regeneration products from 1997 to 2023. It shines a light on future development of design and commercialization of cartilage products.
Collapse
Affiliation(s)
- Xinyi Liu
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
| | - Xiaolei Guo
- Center for Medical Device Evaluation, National Medical Products Administration, Beijing, China
| | - Yixuan Amy Pei
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA, 19104
| | - Ming Pei
- Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University, Morgantown, WV, USA
| | - Zigang Ge
- Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, China
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan Hospital, Beijing, China
| |
Collapse
|
2
|
Li M, Yin H, Yan Z, Li H, Wu J, Wang Y, Wei F, Tian G, Ning C, Li H, Gao C, Fu L, Jiang S, Chen M, Sui X, Liu S, Chen Z, Guo Q. The immune microenvironment in cartilage injury and repair. Acta Biomater 2022; 140:23-42. [PMID: 34896634 DOI: 10.1016/j.actbio.2021.12.006] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 12/01/2021] [Accepted: 12/05/2021] [Indexed: 02/07/2023]
Abstract
The ability of articular cartilage to repair itself is limited because it lacks blood vessels, nerves, and lymph tissue. Once damaged, it can lead to joint swelling and pain, accelerating the progression of osteoarthritis. To date, complete regeneration of hyaline cartilage exhibiting mechanical properties remains an elusive goal, despite the many available technologies. The inflammatory milieu created by cartilage damage is critical for chondrocyte death and hypertrophy, extracellular matrix breakdown, ectopic bone formation, and progression of cartilage injury to osteoarthritis. In the inflammatory microenvironment, mesenchymal stem cells (MSCs) undergo aberrant differentiation, and chondrocytes begin to convert or dedifferentiate into cells with a fibroblast phenotype, thereby resulting in fibrocartilage with poor mechanical qualities. All these factors suggest that inflammatory problems may be a major stumbling block to cartilage repair. To produce a milieu conducive to cartilage repair, multi-dimensional management of the joint inflammatory microenvironment in place and time is required. Therefore, this calls for elucidation of the immune microenvironment of cartilage repair after injury. This review provides a brief overview of: (1) the pathogenesis of cartilage injury; (2) immune cells in cartilage injury and repair; (3) effects of inflammatory cytokines on cartilage repair; (4) clinical strategies for treating cartilage defects; and (5) strategies for targeted immunoregulation in cartilage repair. STATEMENT OF SIGNIFICANCE: Immune response is increasingly considered the key factor affecting cartilage repair. It has both negative and positive regulatory effects on the process of regeneration and repair. Proinflammatory factors are secreted in large numbers, and necrotic cartilage is removed. During the repair period, immune cells can secrete anti-inflammatory factors and chondrogenic cytokines, which can inhibit inflammation and promote cartilage repair. However, inflammatory factors persist, which accelerate the degradation of the cartilage matrix. Furthermore, in an inflammatory microenvironment, MSCs undergo abnormal differentiation, and chondrocytes begin to transform or dedifferentiate into fibroblast-like cells, forming fibrocartilage with poor mechanical properties. Consequently, cartilage regeneration requires multi-dimensional regulation of the joint inflammatory microenvironment in space and time to make it conducive to cartilage regeneration.
Collapse
|
3
|
Maciulaitis J, Miskiniene M, Rekštytė S, Bratchikov M, Darinskas A, Simbelyte A, Daunoras G, Laurinaviciene A, Laurinavicius A, Gudas R, Malinauskas M, Maciulaitis R. Osteochondral Repair and Electromechanical Evaluation of Custom 3D Scaffold Microstructured by Direct Laser Writing Lithography. Cartilage 2021; 13:615S-625S. [PMID: 31072136 PMCID: PMC8804810 DOI: 10.1177/1947603519847745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE The objective of this study was to assess a novel 3D microstructured scaffold seeded with allogeneic chondrocytes (cells) in a rabbit osteochondral defect model. DESIGN Direct laser writing lithography in pre-polymers was employed to fabricate custom silicon-zirconium containing hybrid organic-inorganic (HOI) polymer SZ2080 scaffolds of a predefined morphology. Hexagon-pored HOI scaffolds were seeded with chondrocytes (cells), and tissue-engineered cartilage biocompatibility, potency, efficacy, and shelf-life in vitro was assessed by morphological, ELISA (enzyme-linked immunosorbent assay) and PCR (polymerase chain reaction) analysis. Osteochondral defect was created in the weight-bearing area of medial femoral condyle for in vivo study. Polymerized fibrin was added to every defect of 5 experimental groups. Cartilage repair was analyzed after 6 months using macroscopical (Oswestry Arthroscopy Score [OAS]), histological, and electromechanical quantitative potential (QP) scores. Collagen scaffold (CS) was used as a positive comparator for in vitro and in vivo studies. RESULTS Type II collagen gene upregulation and protein secretion was maintained up to 8 days in seeded HOI. In vivo analysis revealed improvement in all scaffold treatment groups. For the first time, electromechanical properties of a cellular-based scaffold were analyzed in a preclinical study. Cell addition did not enhance OAS but improved histological and QP scores in HOI groups. CONCLUSIONS HOI material is biocompatible for up to 8 days in vitro and is supportive of cartilage formation at 6 months in vivo. Electromechanical measurement offers a reliable quality assessment of repaired cartilage.
Collapse
Affiliation(s)
- Justinas Maciulaitis
- Institute of Sports, Lithuanian
University of Health Sciences, Kaunas, Lithuania,Justinas Maciulaitis, Institute of Sports,
Lithuanian University of Health Sciences, Tilzes st. 18, 9 House, Kaunas 47181,
Lithuania.
| | - Milda Miskiniene
- Laboratory of Immunology, National
Institute of Cancer, Vilnius, Lithuania
| | - Sima Rekštytė
- Laser Research Center, Faculty of
Physics, Vilnius University, Vilnius, Lithuania
| | - Maksim Bratchikov
- Department of Physiology, Biochemistry,
Microbiology and Laboratory Medicine, Institute of Biomedical Sciences, Faculty of
Medicine, Vilnius University, Vilnius, Lithuania
| | - Adas Darinskas
- Laboratory of Immunology, National
Institute of Cancer, Vilnius, Lithuania
| | - Agne Simbelyte
- National Center of Pathology, Affiliate
of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Gintaras Daunoras
- Non-infectious Disease Department,
Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Aida Laurinaviciene
- National Center of Pathology, Affiliate
of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Arvydas Laurinavicius
- National Center of Pathology, Affiliate
of Vilnius University Hospital Santaros Klinikos, Vilnius, Lithuania
| | - Rimtautas Gudas
- Institute of Sports, Lithuanian
University of Health Sciences, Kaunas, Lithuania
| | | | - Romaldas Maciulaitis
- Institute of Physiology and
Pharmacology, Medical Academy, Lithuanian University of Health Sciences, Kaunas,
Lithuania
| |
Collapse
|
4
|
Marchiori G, Berni M, Boi M, Filardo G. Cartilage mechanical tests: Evolution of current standards for cartilage repair and tissue engineering. A literature review. Clin Biomech (Bristol, Avon) 2019; 68:58-72. [PMID: 31158591 DOI: 10.1016/j.clinbiomech.2019.05.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 05/07/2019] [Accepted: 05/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Repair procedures and tissue engineering are solutions available in the clinical practice for the treatment of damaged articular cartilage. Regulatory bodies defined the requirements that any products, intended to regenerate cartilage, should have to be applied. In order to verify these requirements, the Food and Drug Administration (FDA, USA) and the International Standard Organization (ISO) indicated some Standard tests, which allow evaluating, in a reproducible way, the performances of scaffolds/treatments for cartilage tissue regeneration. METHODS A review of the literature about cartilage mechanical characterization found 394 studies, from 1970 to date. They were classified by material (simulated/animal/human cartilage) and method (theoretical/applied; static/dynamic; standard/non-standard study), and analyzed by nation and year of publication. FINDINGS While Standard methods for cartilage mechanical characterization still refer to studies developed in the eighties, expertise and interest on cartilage mechanics research are evolving continuously and internationally, with studies both in vitro - on human and animal tissues - and in silico, dealing with tissue function and modelling, using static and dynamic loading conditions. INTERPRETATION there is a consensus on the importance of mechanical characterization that should be considered to evaluate cartilage treatments. Still, relative Standards need to be updated to describe advanced constructs and procedures for cartilage regeneration in a more exhaustive way. The use of the more complex, fibre-reinforced biphasic model, instead of the standard simple biphasic model, to describe cartilage response to loading, and the standardisation of dynamic tests can represent a first step in this direction.
Collapse
Affiliation(s)
- Gregorio Marchiori
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Biomechanics and Technology Innovation, Via di Barbiano 1/10, 40136 Bologna, Italy.
| | - Matteo Berni
- IRCCS Istituto Ortopedico Rizzoli, Laboratory of Biomechanics and Technology Innovation, Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Marco Boi
- IRCCS Istituto Ortopedico Rizzoli, NanoBiotechnology Laboratory (NaBi), Via di Barbiano 1/10, 40136 Bologna, Italy
| | - Giuseppe Filardo
- IRCCS Istituto Ortopedico Rizzoli, NanoBiotechnology Laboratory (NaBi), Via di Barbiano 1/10, 40136 Bologna, Italy; IRCCS Istituto Ortopedico Rizzoli, Applied and Translational Research Center, Via di Barbiano 1/10, 40136 Bologna, Italy
| |
Collapse
|
5
|
Islas-Arteaga NC, Raya Rivera A, Esquiliano Rendon DR, Morales-Corona J, Ontiveros-Nevares PG, Flores Sánchez MG, Mojica-Cardoso C, Olayo R. Electrospun scaffolds with surfaces modified by plasma for regeneration of articular cartilage tissue: a pilot study in rabbit. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2018.1534109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Nancy C. Islas-Arteaga
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México, City
- Department of Tissue Engineering, Child Hospital of México Federico Gómez, México, City
| | - Atlántida Raya Rivera
- Department of Tissue Engineering, Child Hospital of México Federico Gómez, México, City
| | | | - Juan Morales-Corona
- Department of Physics, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México, City
| | | | - María G. Flores Sánchez
- Department of Electrical Engineering, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México, City
- Department of Tissue Engineering, Child Hospital of México Federico Gómez, México, City
| | | | - Roberto Olayo
- Department of Physics, Universidad Autónoma Metropolitana, Unidad Iztapalapa, México, City
| |
Collapse
|
6
|
Cao Z, Dou C, Dong S. Curcumin Inhibits Chondrocyte Hypertrophy of Mesenchymal Stem Cells through IHH and Notch Signaling Pathways. Chem Pharm Bull (Tokyo) 2017; 65:762-767. [PMID: 28768930 DOI: 10.1248/cpb.c17-00225] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using tissue engineering technique to repair cartilage damage caused by osteoarthritis is a promising strategy. However, the regenerated tissue usually is fibrous cartilage, which has poor mechanical characteristics compared to hyaline cartilage. Chondrocyte hypertrophy plays an important role in this process. Thus, it is very important to find out a suitable way to maintain the phenotype of chondrocytes and inhibit chondrocyte hypertrophy. Curcumin deriving from turmeric was reported with anti-inflammatory and anti-tumor pharmacological effects. However, the role of curcumin in metabolism of chondrocytes, especially in the chondrocyte hypertrophy remains unclear. Mesenchymal stem cells (MSCs) are widely used in cartilage tissue engineering as seed cells. So we investigated the effect of curcumin on chondrogenesis and chondrocyte hypertrophy in MSCs through examination of cell viability, glycosaminoglycan synthesis and specific gene expression. We found curcumin had no effect on expression of chondrogenic markers including Sox9 and Col2a1 while hypertrophic markers including Runx2 and Col10a1 were down-regulated. Further exploration showed that curcumin inhibited chondrocyte hypertrophy through Indian hedgehog homolog (IHH) and Notch signalings. Our results indicated curcumin was a potential agent in modulating cartilage homeostasis and maintaining chondrocyte phenotype.
Collapse
Affiliation(s)
- Zhen Cao
- Department of Anatomy, Third Military Medical University.,Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University
| | - Ce Dou
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University
| | - Shiwu Dong
- Department of Biomedical Materials Science, School of Biomedical Engineering, Third Military Medical University
| |
Collapse
|