1
|
Sawamoto A, Itagaki I, Okuyama S, Nakajima M. Reduction in MCP-1 production in preadipocytes is mediated by PPARγ activation and JNK/SIRT1 signaling. Biochim Biophys Acta Gen Subj 2025; 1869:130737. [PMID: 39672476 DOI: 10.1016/j.bbagen.2024.130737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Obesity-induced monocyte chemoattractant protein 1 (MCP-1) production leads to the infiltration of monocytes/macrophages into white adipose tissue (WAT), which contributes to systemic insulin resistance. Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are known to reduce MCP-1 production in both humans and mice; however, the underlying mechanism in WAT remains unclear. Here, we propose a novel mechanism for the reduction in MCP-1 production in preadipocytes. The PPARγ agonist rosiglitazone (RSG) reduced MCP-1 production and secretion in response to lipopolysaccharide (LPS) in 3T3-L1 preadipocytes and mouse stromal vascular fraction-derived primary preadipocytes. Both RSG and SP600125 (a c-Jun N-terminal kinase (JNK) inhibitor) inhibited LPS-induced degradation of silent information regulator 2 homolog 1 (SIRT1), a negative regulator of MCP-1 production in 3T3-L1 preadipocytes. Furthermore, RSG inhibited LPS-induced activation of nuclear factor-κB. These effects of RSG were abolished in 3T3-L1 preadipocytes transfected with Pparg siRNA. These findings highlight a novel mechanism by which PPARγ activation inhibits JNK/SIRT1 signaling in preadipocytes and contributes to the reduction in MCP-1 production, suggesting that preadipocytes could be a potential therapeutic target for the treatment of insulin resistance.
Collapse
Affiliation(s)
- Atsushi Sawamoto
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan.
| | - Ibuki Itagaki
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Satoshi Okuyama
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| | - Mitsunari Nakajima
- Department of Pharmaceutical Pharmacology, College of Pharmaceutical Sciences, Matsuyama University, 4-2 Bunkyo-cho, Matsuyama, Ehime 790-8578, Japan
| |
Collapse
|
2
|
Liao J, Fu L, Tai S, Xu Y, Wang S, Guo L, Guo D, Du Y, He J, Yang H, Hu X, Tao L, Shen X. Essential oil from Fructus Alpiniae zerumbet ameliorates vascular endothelial cell senescence in diabetes by regulating PPAR-γ signalling: A 4D label-free quantitative proteomics and network pharmacology study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117550. [PMID: 38065350 DOI: 10.1016/j.jep.2023.117550] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 11/30/2023] [Accepted: 12/03/2023] [Indexed: 12/30/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vascular endothelial cell senescence is associated with cardiovascular complications in diabetes. Essential oil from Fructus Alpiniae zerumbet (Pers.) B.L.Burtt & R.M.Sm. (EOFAZ) has potentially beneficial and promising diabetes-related vascular endothelial cell senescence-mitigating effects; however, the underlying molecular mechanisms remain unclear. AIM OF THE STUDY To investigate the molecular effects of EOFAZ on vascular endothelial cell senescence in diabetes. MATERIALS AND METHODS A diabetes mouse model was developed using a high-fat and high-glucose diet (HFD) combined with intraperitoneal injection of low-dose streptozotocin (STZ, 30 mg/kg) and oral treatment with EOFAZ. 4D label-free quantitative proteomics, network pharmacology, and molecular docking techniques were employed to explore the molecular mechanisms via which EOFAZ alleviates diabetes-related vascular endothelial cell senescence. A human aortic endothelial cells (HAECs) senescence model was developed using high palmitic acid and high glucose (PA/HG) concentrations in vitro. Western blotting, immunofluorescence, SA-β-galactosidase staining, cell cycle, reactive oxygen species (ROS), cell migration, and enzyme linked immunosorbent assays were performed to determine the protective role of EOFAZ against vascular endothelial cell senescence in diabetes. Moreover, the PPAR-γ agonist rosiglitazone, inhibitor GW9662, and siRNA were used to verify the underlying mechanism by which EOFAZ combats vascular endothelial cell senescence in diabetes. RESULTS EOFAZ treatment ameliorated abnormal lipid metabolism, vascular histopathological damage, and vascular endothelial aging in diabetic mice. Proteomics and network pharmacology analysis revealed that the differentially expressed proteins (DEPs) and drug-disease targets were associated with the peroxisome proliferator-activated receptor gamma (PPAR-γ) signalling pathway, a key player in vascular endothelial cell senescence. Molecular docking indicated that the small-molecule compounds in EOFAZ had a high affinity for the PPAR-γ protein. Western blotting and immunofluorescence analyses confirmed the significance of DEPs and the involvement of the PPAR-γ signalling pathway. In vitro, EOFAZ and rosiglitazone treatment reversed the effects of PA/HG on the number of senescent endothelial cells, expression of senescence-related proteins, the proportion of cells in the G0/G1 phase, ROS levels, cell migration rate, and expression of pro-inflammatory factors. The protective effects of EOFAZ against vascular endothelial cell senescence in diabetes were aborted following treatment with GW9662 or PPAR-γ siRNA. CONCLUSIONS EOFAZ ameliorates vascular endothelial cell senescence in diabetes by activating PPAR-γ signalling. The results of the present study highlight the potential beneficial and promising therapeutic effects of EOFAZ and provide a basis for its clinical application in diabetes-related vascular endothelial cell senescence.
Collapse
Affiliation(s)
- Jiajia Liao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Lingyun Fu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Shidie Tai
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Yini Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Shengquan Wang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Linlin Guo
- The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Die Guo
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Youqi Du
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Jinggang He
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China.
| | - Hong Yang
- Department of Pharmacy, Guiyang Maternal and Child Health Care Hospital, Guiyang, 550003, Guizhou, China.
| | - Xiaoxia Hu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, 550004, Guiyang, China.
| | - Ling Tao
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, 550004, Guiyang, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, 550025, Guiyang, China; The Department of Pharmacology of Materia Medica (The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province and the High Educational Key Laboratory of Guizhou Province for Natural Medicinal Pharmacology and Druggability), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Optimal Utilization of Natural Medicine Resources (The Union Key Laboratory of Guiyang City-Guizhou Medical University), School of Pharmaceutical Sciences, Guizhou Medical University, 550025, Guiyang, China; The Key Laboratory of Endemic and Ethnic Diseases of Ministry of Education, Guizhou Medical University, 550004, Guiyang, China.
| |
Collapse
|
3
|
DiNicolantonio JJ, McCarty MF, O'Keefe JH. Nutraceutical activation of Sirt1: a review. Open Heart 2022; 9:openhrt-2022-002171. [PMID: 36522127 PMCID: PMC9756291 DOI: 10.1136/openhrt-2022-002171] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The deacetylase sirtuin 1 (Sirt1), activated by calorie restriction and fasting, exerts several complementary effects on cellular function that are favourable to healthspan; it is often thought of as an 'anti-aging' enzyme. Practical measures which might boost Sirt1 activity are therefore of considerable interest. A number of nutraceuticals have potential in this regard. Nutraceuticals reported to enhance Sirt1 synthesis or protein expression include ferulic acid, tetrahydrocurcumin, urolithin A, melatonin, astaxanthin, carnosic acid and neochlorogenic acid. The half-life of Sirt1 protein can be enhanced with the natural nicotinamide catabolite N1-methylnicotinamide. The availability of Sirt1's obligate substrate NAD+ can be increased in several ways: nicotinamide riboside and nicotinamide mononucleotide can function as substrates for NAD+ synthesis; activators of AMP-activated kinase-such as berberine-can increase expression of nicotinamide phosphoribosyltransferase, which is rate limiting for NAD+ synthesis; and nutraceutical quinones such as thymoquinone and pyrroloquinoline quinone can boost NAD+ by promoting oxidation of NADH. Induced ketosis-as via ingestion of medium-chain triglycerides-can increase NAD+ in the brain by lessening the reduction of NAD+ mediated by glycolysis. Post-translational modifications of Sirt1 by O-GlcNAcylation or sulfonation can increase its activity, suggesting that administration of glucosamine or of agents promoting hydrogen sulfide synthesis may aid Sirt1 activity. Although resveratrol has poor pharmacokinetics, it can bind to Sirt1 and activate it allosterically-as can so-called sirtuin-activating compound drugs. Since oxidative stress can reduce Sirt1 activity in multiple ways, effective antioxidant supplementation that blunts such stress may also help preserve Sirt1 activity in some circumstances. Combination nutraceutical regimens providing physiologically meaningful doses of several of these agents, capable of activating Sirt1 in complementary ways, may have considerable potential for health promotion. Such measures may also amplify the benefits of sodium-glucose cotransporter-2 (SGLT2) inhibitors in non-diabetic disorders, as these benefits appear to reflect upregulation of Sirt1 and AMP-activated protein kinase activities.
Collapse
Affiliation(s)
- James J DiNicolantonio
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | - Mark F McCarty
- Catalytic Longevity Foundation, Encinitas, California, USA
| | - James H O'Keefe
- Department of Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
4
|
Yang J, Wei Y, Zhao T, Li X, Zhao X, Ouyang X, Zhou L, Zhan X, Qian M, Wang J, Shen X. Magnolol effectively ameliorates diabetic peripheral neuropathy in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 107:154434. [PMID: 36122436 DOI: 10.1016/j.phymed.2022.154434] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/25/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Diabetic peripheral neuropathy (DPN) is a common complication of diabetes lacking efficient treatment. Magnolol (MG), a peroxisome proliferator-activated receptor γ (PPARγ) agonist, is a natural product derived from Magnolia officinalis and widely used to treat a variety of diseases as a traditional Chinese medicine and Japanese Kampo medicine. PURPOSE Here, we aimed to investigate the potential of MG in ameliorating DPN-like pathology in mice and decipher the mechanism of MG in treating DPN. MATERIALS AND METHODS 12-week-old male streptozotocin (STZ)-induced type 1 diabetic (T1DM) mice and 15-week-old male BKS Cg-m+/+Lepr db/J (db/db) type 2 diabetic mice (T2DM) were used as DPN mice. MG was administrated (i.p) daily for 4 weeks. Peripheral nerve functions of mice were evaluated by measuring mechanical response latency, thermal response latency and motor nerve conduction velocity (MNCV). The mechanisms underlying the amelioration of MG on DPN-like pathology were examined by qRT-PCR, western blot and immunohistochemistry assays, and verified in the DPN mice with PPARγ-specific knockdown in dorsal root ganglia (DRG) neuron and sciatic nerve tissues by injecting adeno-associated virus (AAV)8-PPARγ-RNAi. RESULTS MG promoted DRG neuronal neurite outgrowth and effectively ameliorated neurological dysfunctions in both T1DM and T2DM diabetic mice, including improvement of paw withdrawal threshold, thermal response latency and MNCV. Additionally, MG promoted neurite outgrowth of DRG neurons, protected sciatic nerve myelin sheath structure, and ameliorated foot skin intraepidermal nerve fiber (IENF) density in DPN mice by targeting PPARγ. Mechanism research results indicated that MG improved mitochondrial dysfunction involving PPARγ/MKP-7/JNK/SIRT1/LKB1/AMPK/PGC-1α pathway in DRG neurons, repressed inflammation via PPARγ/NF-κB signaling and inhibited apoptosis through regulation of PPARγ-mediated Bcl-2 family proteins in DRG neurons and sciatic nerves. CONCLUSIONS Our work has detailed the mechanism underlying the amelioration of PPARγ agonist on DPN-like pathology in mice with MG as a probe, and highlighted the potential of MG in the treatment of DPN.
Collapse
Affiliation(s)
- Juanzhen Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Yuxi Wei
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Tong Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xiaoqian Li
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xuejian Zhao
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xingnan Ouyang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Lihua Zhou
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Xiuqin Zhan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China
| | - Minyi Qian
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| | - Jiaying Wang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| | - Xu Shen
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Avenue, Qixia, Nanjing 210023, China.
| |
Collapse
|
5
|
Murata K, Fujita N, Takahashi R. Ninjinyoeito ameliorated cigarette smoke extract-induced apoptosis and inflammation through JNK signaling inhibition in human lung fibroblasts. BMC Complement Med Ther 2022; 22:96. [PMID: 35361188 PMCID: PMC8973640 DOI: 10.1186/s12906-022-03574-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 03/18/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Cigarette smoke is a major risk factor for various lung diseases, such as chronic obstructive pulmonary disease (COPD). Ninjinyoeito (NYT), a traditional Chinese medicine, has been prescribed for patients with post-illness or post-operative weakness, fatigue, loss of appetite, rash, cold limbs, and anemia. In addition to its traditional use, NYT has been prescribed for treating frailty in gastrointestinal, respiratory, and urinary functions. Further, NYT treatment can ameliorate cigarette smoke-induced lung injury, which is a destructive index in mice; however, the detailed underlying mechanism remains unknown. The purpose of this study was to investigate whether NYT ameliorates cigarette smoke-induced cell injury and inflammation in human lung fibroblasts and determine its mechanism of action. METHODS We prepared a cigarette smoke extract (CSE) from commercially available cigarettes to induce cell injury and inflammation in the human lung fibroblast cell line HFL1. The cells were pretreated with NYT for 24 h prior to CSE exposure. Cytotoxicity and cell viability were measured by lactate dehydrogenase (LDH) cytotoxicity assay and cell counting kit (CCK)-8. IL-8 level in the cell culture medium was measured by performing Enzyme-Linked Immuno Sorbent Assay (ELISA). To clarify the mechanisms of NYT, we used CellROX Green Reagent for reactive oxygen species (ROS) production and western blotting analysis for cell signaling. RESULTS Exposure of HFL1 cells to CSE for 24 h induced apoptosis and interleukin (IL)-8 release. Pretreatment with NYT inhibited apoptosis and IL-8 release. Furthermore, CSE exposure for 24 h increased the production of ROS and phosphorylation levels of p38 and JNK. Pretreatment with NYT only inhibited CSE-induced JNK phosphorylation, and not ROS production and p38 phosphorylation. These results suggest that NYT acts as a JNK-specific inhibitor. CONCLUSION NYT treatment ameliorated CSE-induced apoptosis and inflammation by inhibiting the JNK signaling pathway. Finally, these results suggest that NYT may be a promising therapeutic agent for patients with COPD.
Collapse
Affiliation(s)
- Kenta Murata
- Kampo Research Laboratories, Kracie Pharma, Ltd., 3-1 Kanebo-machi, Takaoka-City, Toyama, 933-0856, Japan.
| | - Nina Fujita
- Kampo Research Laboratories, Kracie Pharma, Ltd., 3-1 Kanebo-machi, Takaoka-City, Toyama, 933-0856, Japan
| | - Ryuji Takahashi
- Kampo Research Laboratories, Kracie Pharma, Ltd., 3-1 Kanebo-machi, Takaoka-City, Toyama, 933-0856, Japan
| |
Collapse
|
6
|
García-Viñuales S, Sciacca MFM, Lanza V, Santoro AM, Grasso G, Tundo GR, Sbardella D, Coletta M, Grasso G, La Rosa C, Milardi D. The interplay between lipid and Aβ amyloid homeostasis in Alzheimer's Disease: risk factors and therapeutic opportunities. Chem Phys Lipids 2021; 236:105072. [PMID: 33675779 DOI: 10.1016/j.chemphyslip.2021.105072] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's Diseases (AD) is characterized by the accumulation of amyloid deposits of Aβ peptide in the brain. Besides genetic background, the presence of other diseases and an unhealthy lifestyle are known risk factors for AD development. Albeit accumulating clinical evidence suggests that an impaired lipid metabolism is related to Aβ deposition, mechanistic insights on the link between amyloid fibril formation/clearance and aberrant lipid interactions are still unavailable. Recently, many studies have described the key role played by membrane bound Aβ assemblies in neurotoxicity. Moreover, it has been suggested that a derangement of the ubiquitin proteasome pathway and autophagy is significantly correlated with toxic Aβ aggregation and dysregulation of lipid levels. Thus, studies focusing on the role played by lipids in Aβ aggregation and proteostasis could represent a promising area of investigation for the design of valuable treatments. In this review we examine current knowledge concerning the effects of lipids in Aβ aggregation and degradation processes, focusing on the therapeutic opportunities that a comprehensive understanding of all biophysical, biochemical, and biological processes involved may disclose.
Collapse
Affiliation(s)
| | - Michele F M Sciacca
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Valeria Lanza
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Anna Maria Santoro
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Giulia Grasso
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy
| | - Grazia R Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | | | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Grasso
- Department of Chemistry, University of Catania, Catania, Italy
| | - Carmelo La Rosa
- Department of Chemistry, University of Catania, Catania, Italy
| | - Danilo Milardi
- Consiglio Nazionale delle Ricerche, Istituto di Cristallografia, Catania, Italy.
| |
Collapse
|
7
|
Milardi D, Gazit E, Radford SE, Xu Y, Gallardo RU, Caflisch A, Westermark GT, Westermark P, Rosa CL, Ramamoorthy A. Proteostasis of Islet Amyloid Polypeptide: A Molecular Perspective of Risk Factors and Protective Strategies for Type II Diabetes. Chem Rev 2021; 121:1845-1893. [PMID: 33427465 PMCID: PMC10317076 DOI: 10.1021/acs.chemrev.0c00981] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The possible link between hIAPP accumulation and β-cell death in diabetic patients has inspired numerous studies focusing on amyloid structures and aggregation pathways of this hormone. Recent studies have reported on the importance of early oligomeric intermediates, the many roles of their interactions with lipid membrane, pH, insulin, and zinc on the mechanism of aggregation of hIAPP. The challenges posed by the transient nature of amyloid oligomers, their structural heterogeneity, and the complex nature of their interaction with lipid membranes have resulted in the development of a wide range of biophysical and chemical approaches to characterize the aggregation process. While the cellular processes and factors activating hIAPP-mediated cytotoxicity are still not clear, it has recently been suggested that its impaired turnover and cellular processing by proteasome and autophagy may contribute significantly toward toxic hIAPP accumulation and, eventually, β-cell death. Therefore, studies focusing on the restoration of hIAPP proteostasis may represent a promising arena for the design of effective therapies. In this review we discuss the current knowledge of the structures and pathology associated with hIAPP self-assembly and point out the opportunities for therapy that a detailed biochemical, biophysical, and cellular understanding of its aggregation may unveil.
Collapse
Affiliation(s)
- Danilo Milardi
- Istituto di Cristallografia, Consiglio Nazionale delle Ricerche, Via P. Gaifami 18, 95126 Catania, Italy
| | - Ehud Gazit
- Department of Molecular Microbiology and Biotechnology, The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Yong Xu
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rodrigo U Gallardo
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Amedeo Caflisch
- Department of Biochemistry, University of Zürich, Zürich CH-8057, Switzerland
| | - Gunilla T Westermark
- Department of Medical Cell Biology, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Per Westermark
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Carmelo La Rosa
- Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Ayyalusamy Ramamoorthy
- Biophysics, Department of Chemistry, Biomedical Engineering, Macromolecular Science and Engineering, University of Michigan, Ann Arbor, Michigan 41809-1055, United States
| |
Collapse
|
8
|
Regulation of histone deacetylase activities and functions by phosphorylation and its physiological relevance. Cell Mol Life Sci 2020; 78:427-445. [PMID: 32683534 DOI: 10.1007/s00018-020-03599-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/02/2020] [Accepted: 07/09/2020] [Indexed: 12/31/2022]
Abstract
Histone deacetylases (HDACs) are conserved enzymes that regulate many cellular processes by catalyzing the removal of acetyl groups from lysine residues on histones and non-histone proteins. As appropriate for proteins that occupy such an essential biological role, HDAC activities and functions are in turn highly regulated. Overwhelming evidence suggests that the dysregulation of HDACs plays a major role in many human diseases. The regulation of HDACs is achieved by multiple different mechanisms, including posttranslational modifications. One of the most common posttranslational modifications on HDACs is reversible phosphorylation. Many HDAC phosphorylations are context-dependent, occurring in specific tissues or as a consequence of certain stimuli. Additionally, whereas phosphorylation can regulate some HDACs in a non-specific manner, many HDAC phosphorylations result in specific consequences. Although some of these modifications support normal HDAC function, aberrations can contribute to disease development. Here we review and critically evaluate how reversible phosphorylation activates or deactivates HDACs and, thereby, regulates their many functions under various cellular and physiological contexts.
Collapse
|
9
|
Hwang JS, Kim E, Hur J, Yoon TJ, Seo HG. Ring finger protein 219 regulates inflammatory responses by stabilizing sirtuin 1. Br J Pharmacol 2020; 177:4601-4614. [PMID: 32220064 DOI: 10.1111/bph.15060] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Ring finger protein 219 (RNF219), a protein containing the C3 HC4 -type RING-HC motif, has been identified as a binding partner of the histone deacetylase sirtuin 1 (SIRT1). To explore the functions of RNF219, we examined its possible roles in the cellular responses to inflammation. EXPERIMENTAL APPROACH Effects of RNF219 on SIRT1 were studied in vitro using RAW264.7 cells and in male BALB/c mice, treated with LPS or IFN-γ. Western blots, RT-PCR, co-immunoprecipitation and ubiquitination assays were used, along with LC-MS/MS analysis. In vivo, survival and serum cytokines and tissue levels of RNF219 and SIRT1 were measured. KEY RESULTS Binding of RNF219 to SIRT1 inhibited degradation of SIRT1 by preventing its ubiquitination, thereby prolonging SIRT1-mediated anti-inflammatory signalling. LPS caused RNF219 deacetylation, leading to instability of RNF219 and preventing its association with SIRT1. Accordingly, the acetylation status of RNF219 is a critical determinant in its interaction with SIRT1, affecting the response to inflammatory stimuli. The deacetylase inhibitor trichostatin A, increased acetylation and stability of RNF219 and survival of mice injected with LPS, through the interaction of RNF219 with SIRT1. CONCLUSION AND IMPLICATIONS RNF219 is involved in a novel mechanism to stabilize SIRT1 protein by protein-protein interaction, leading to the resolution of cellular inflammation. These observations provide new insights into the function of RNF219 in modulation of cellular inflammation, and may aid and encourage the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Jung Seok Hwang
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Eunsu Kim
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Jinwoo Hur
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| | - Taek Joon Yoon
- Department of Food Science and Nutrition, Yuhan University, Bucheon-si, Republic of Korea
| | - Han Geuk Seo
- College of Sang-Huh Life Sciences, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
10
|
Wang L, Wang M, Dou H, Lin W, Zou L. Sirtuin 1 inhibits lipopolysaccharide-induced inflammation in chronic myelogenous leukemia k562 cells through interacting with the Toll-like receptor 4-nuclear factor κ B-reactive oxygen species signaling axis. Cancer Cell Int 2020; 20:73. [PMID: 32165863 PMCID: PMC7059700 DOI: 10.1186/s12935-020-1152-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/24/2020] [Indexed: 12/22/2022] Open
Abstract
Background Chronic myelogenous leukemia (CML) is a clonal myeloproliferative neoplasm resulting from BCR–ABL-transformed hematopoietic stem cells. Previous research has implicated multifunctional proinflammatory cytokines in CML development. It has been reported that Sirtuin 1 (SIRT1) as well as ADP-ribosyltransferase and deacetylase may influence CML cell viability and inflammation. Methods This study was directed toward exploring the SIRT1-involved in the mechanism of lipopolysaccharide (LPS)-triggered inflammation in CML k562 cells. Results In our study, the LPS-induced inflammation in k562 cells was reflected by increases in levels of diverse inflammatory cytokines, including interleukin (IL)-10, IL-1β, IL-6, interferon-γ, tumor necrosis factor (TNF)-α and TNF-β. LPS also decreased SIRT1 expression and nuclear location in k562 cells. Furthermore, SIRT1 overexpression inhibited the release of the above mentioned cytokines in LPS-treated cells. We also determined that LPS stimulation could activate Toll-like receptor 4 (TLR4), the nuclear factor κ B (NFκB) subunit, and p65 and produce reactive oxygen species (ROS) in k562 cells. Nevertheless, SIRT1 overexpression decreased TLR4 expression, thereby repressing the phosphorylation of the NFκB subunit and p65 and decreasing ROS production. Conclusions These findings suggest that SIRT1 is a latent therapeutic target for mitigating LPS-induced inflammation via the TLR4–NFκB–ROS signaling axis.
Collapse
Affiliation(s)
- Lei Wang
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| | - Mingming Wang
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| | - Hongju Dou
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| | - Wenjie Lin
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| | - Lifang Zou
- Department of Hematology, Shanghai Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No. 639, Manufacturing Bureau Road, Shanghai, 200011 China
| |
Collapse
|
11
|
Cheng MH, Kim SJ. Inhibitory Effect of Probenecid on Osteoclast Formation via JNK, ROS and COX-2. Biomol Ther (Seoul) 2020; 28:104-109. [PMID: 31474032 PMCID: PMC6939694 DOI: 10.4062/biomolther.2019.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/09/2019] [Accepted: 08/09/2019] [Indexed: 11/29/2022] Open
Abstract
Probenecid is a representative drug used in the treatment of gout. A recent study showed that probenecid effectively inhibits oxidative stress in neural cells. In the present study, we investigated whether probenecid can affect osteoclast formation through the inhibition of reactive oxygen species (ROS) formation in RAW264.7 cells. Lipopolysaccharide (LPS)-induced ROS levels were dose-dependently reduced by probenecid. Fluorescence microscopy analysis clearly showed that probenecid inhibits the generation of ROS. Western blot analysis indicated that probenecid affects two downstream signaling molecules of ROS, cyclooxygenase 2 (COX-2) and c-Jun N-terminal kinase (JNK). These results indicate that probenecid inhibits ROS generation and exerts antiosteoclastogenic activity by inhibiting the COX-2 and JNK pathways. These results suggest that probenecid could potentially be used as a therapeutic agent to prevent bone resorption.
Collapse
Affiliation(s)
- Mi Hyun Cheng
- Department of Pharmacology and Toxicology, School of Dentistry, Graduate School, Kyung Hee University, Seoul 02447,
Republic of Korea
| | - Sung-Jin Kim
- Department of Pharmacology and Toxicology, School of Dentistry, Graduate School, Kyung Hee University, Seoul 02447,
Republic of Korea
| |
Collapse
|
12
|
Ham HJ, Park JW, Bae YS. Defect of SIRT1-FoxO3a axis is associated with the production of reactive oxygen species during protein kinase CK2 downregulation-mediated cellular senescence and nematode aging. BMB Rep 2019. [PMID: 30103847 PMCID: PMC6507845 DOI: 10.5483/bmbrep.2019.52.4.156] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated whether SIRT1 is associated with reactive oxygen species (ROS) accumulation during CK2 downregulationmediated senescence. SIRT1 overexpression suppressed ROS accumulation, reduced transcription of FoxO3a target genes, and nuclear export and acetylation of FoxO3a, which were induced by CK2 downregulation in HCT116 and MCF-7 cells. Conversely, overexpression of a dominant-negative mutant SIRT1 (H363Y) counteracted decreased ROS levels, increased transcriptional activity of FoxO3a, and increased nuclear import and decreased acetylation of FoxO3a, which were induced by CK2 upregulation. CK2 downregulation destabilized SIRT1 protein via an ubiquitin-proteasome pathway in human cells, whereas CK2 overexpression reduced ubiquitination of SIRT1. Finally, the SIRT1 activator resveratrol attenuated the accumulation of ROS and lipofuscin as well as lifespan shortening, and reduced expression of the DAF-16 target gene sod-3, which were induced by CK2 downregulation in nematodes. Altogether, this study demonstrates that inactivation of the SIRT1-FoxO3a axis, at least in part, is involved in ROS generation during CK2 downregulationmediated cellular senescence and nematode aging. [BMB Reports 2019; 52(4): 265-270].
Collapse
Affiliation(s)
- Hye-Jun Ham
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Jeong-Woo Park
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| | - Young-Seuk Bae
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
13
|
Hwang JS, Lee WJ, Hur J, Lee HG, Kim E, Lee GH, Choi MJ, Lim DS, Paek KS, Seo HG. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level. FASEB J 2019; 33:7707-7720. [PMID: 30897345 DOI: 10.1096/fj.201802643r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Peroxisome proliferator-activated receptor (PPAR)-γ has been implicated as a key player in the regulation of adiponectin levels via both transcriptional and posttranscriptional mechanisms. Herein, we show that PPAR-γ interacts with human antigen R (HuR) and that the PPAR-γ-HuR complex dissociates following activation of PPAR-γ by rosiglitazone, a specific ligand of PPAR-γ. This rosiglitazone-dependent dissociation of HuR from PPAR-γ leads to nucleocytoplasmic shuttling of HuR and its binding to the 3'-UTR of adiponectin mRNA. PPAR-γ with H321A and H447A double mutation (PPAR-γH321/447A), a mutant lacking ligand-binding activity, impaired HuR dissociation from the PPAR-γ-HuR complex, resulting in reduced nucleocytoplasmic shuttling, even in the presence of rosiglitazone. Consequently, rosiglitazone up-regulated adiponectin levels by modulating the stability of adiponectin mRNA, whereas these effects were abolished by HuR ablation or blocked in cells expressing the PPAR-γH321/447A mutant, indicating that the interaction of PPAR-γ and HuR is a critical event during adiponectin expression. Taken together, the findings demonstrate a novel mechanism for regulating adiponectin expression at the posttranscriptional level and suggest that ligand-mediated activation of PPAR-γ to interfere with interaction of HuR could offer a therapeutic strategy for inflammation-associated diseases that involve decreased adiponectin mRNA stability.-Hwang, J. S., Lee, W. J., Hur, J., Lee, H. G., Kim, E., Lee, G. H., Choi, M.-J., Lim, D.-S., Paek, K. S., Seo, H. G. Rosiglitazone-dependent dissociation of HuR from PPAR-γ regulates adiponectin expression at the posttranscriptional level.
Collapse
Affiliation(s)
- Jung Seok Hwang
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Won Jin Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Jinwoo Hur
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Hyuk Gyoon Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Eunsu Kim
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Gyeong Hee Lee
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Mi-Jung Choi
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| | - Dae-Seog Lim
- Department of Biotechnology, CHA University, Seongnam, Korea
| | | | - Han Geuk Seo
- Sanghuh College of Life Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
14
|
Cx43 Inhibition Attenuates Sepsis-Induced Intestinal Injury via Downregulating ROS Transfer and the Activation of the JNK1/Sirt1/FoxO3a Signaling Pathway. Mediators Inflamm 2019; 2019:7854389. [PMID: 30948926 PMCID: PMC6425293 DOI: 10.1155/2019/7854389] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/05/2018] [Indexed: 12/17/2022] Open
Abstract
Intestinal injury has long been considered to play a crucial role in the pathophysiology of sepsis and has even been characterized as the “motor” of it. Thus, we explored the effects of connexin43 (Cx43) on sepsis-induced intestinal injury in order to provide potential therapeutic strategies. Rat cecal ligation and puncture (CLP) models in vivo and cell models (IEC-6 cells) pretreated with LPS in vitro were used in the current study. Firstly, different methods, such as Cx43 inhibitors (18-α-GA and oleamide) or siRNA targeting Cx43 and N-acetyl cysteine (NAC) (a kind of ROS scavenger), were used to observe the effects of Cx43 channels mediating ROS transfer on intestinal injury. Secondly, the influence of ROS content on the activity of the JNK1/Sirt1/FoxO3a signaling pathway was explored through the application of NAC, sp600125 (a JNK1 inhibitor), and nicotinamide (a Sirt1 inhibitor). Finally, luciferase assays and ChIP were used to determine the direct regulation of FoxO3a on proapoptotic proteins, Bim and Puma. The results showed that sepsis-induced intestinal injury presented a dynamic change, coincident with the alternation of Cx43 expression. The inhibition of Cx43 attenuated CLP-induced intestinal injury in vivo and LPS-induced IEC-6 injury in vitro. The changes of Cx43 channel function regulated ROS transfer between the neighboring cells, which mediated the activation of the JNK1/Sirt1/FoxO3a signaling pathway. FoxO3a directly affected its downstream target genes, Bim and Puma, which are responsible for cell or tissue apoptosis. In summary, our results suggest that Cx43 inhibition suppresses ROS transfer and inactivates the JNK1/Sirt1/FoxO3a signaling pathway to protect against sepsis-induced intestinal injury.
Collapse
|
15
|
Arbutin attenuates LPS-induced lung injury via Sirt1/ Nrf2/ NF-κBp65 pathway. Pulm Pharmacol Ther 2019; 54:53-59. [DOI: 10.1016/j.pupt.2018.12.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 11/29/2018] [Accepted: 12/05/2018] [Indexed: 12/30/2022]
|
16
|
Du C, Lin X, Xu W, Zheng F, Cai J, Yang J, Cui Q, Tang C, Cai J, Xu G, Geng B. Sulfhydrated Sirtuin-1 Increasing Its Deacetylation Activity Is an Essential Epigenetics Mechanism of Anti-Atherogenesis by Hydrogen Sulfide. Antioxid Redox Signal 2019; 30:184-197. [PMID: 29343087 DOI: 10.1089/ars.2017.7195] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims: Hydrogen sulfide (H2S) has a protective role in the pathogenesis of atherosclerosis by multiple pathways. Sirtuin-1 (SIRT1) is a histone deacetylase, as an essential mediated longevity gene, and has an anti-atherogenic effect by regulating the acetylation of some functional proteins. Whether SIRT1 is involved in protecting H2S in atherosclerosis and its mechanism remains unclear. Results: In ApoE-knockout atherosclerosis mice, treatment with an H2S donor (NaHS or GYY4137) reduced atherosclerotic plaque area, macrophage infiltration, aortic inflammation, and plasma lipid level. H2S treatment increased aorta and liver SIRT1 mRNA expression. Overexpression or slicing cystathionine gamma lyase (CSE) also changed intracellular SIRT1 expression. CSE/H2S treatment increased SIRT1 deacetylation in endothelium and hepatocytes and macrophages, then induced deacetylation of its target proteins (P53, P65, and sterol response element binding protein), thereby reducing endothelial and macrophage inflammation and inhibiting macrophage cholesterol uptake and cholesterol de novo synthesis of liver. Also, CSE/H2S induced SIRT1 sulfhydration at its two zinc finger domains, increased its zinc ion binding activity to stabilize the alpha-helix structure, lowered its ubiquitination, and reduced its degradation. Innovation: H2S is a novel SIRT1 activator by direct sulfhydration. Because SIRT1 has a role in longevity, H2S may be a protector for aging-related diseases. Conclusion: Endogenous CSE/H2S directly sulfhydrated SIRT1, enhanced SIRT1 binding to zinc ion, then promoted its deacetylation activity, and increased SIRT1 stability, thus reducing atherosclerotic plaque formation.
Collapse
Affiliation(s)
- Congkuo Du
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Xianjuan Lin
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Wenjing Xu
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Fengjiao Zheng
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Junyan Cai
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Jichun Yang
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Qinghua Cui
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Chaoshu Tang
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Jun Cai
- 2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| | - Guoheng Xu
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China
| | - Bin Geng
- 1 MOE Key Lab of Cardiovascular Sciences, Department of Physiology and Pathophysiology, Department of Biomedical Informatics, Center for Noncoding RNA Medicine, School of Basic Medical Science, Peking University Health Science Center. Beijing , People's Republic of China .,2 State Key Laboratory of Cardiovascular Disease, Hypertension Center , Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic of China
| |
Collapse
|