1
|
Fiorino E, Rossin D, Vanni R, Aubry M, Giachino C, Rastaldo R. Recent Insights into Endogenous Mammalian Cardiac Regeneration Post-Myocardial Infarction. Int J Mol Sci 2024; 25:11747. [PMID: 39519298 PMCID: PMC11546116 DOI: 10.3390/ijms252111747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial infarction (MI) is a critical global health issue and a leading cause of heart failure. Indeed, while neonatal mammals can regenerate cardiac tissue mainly through cardiomyocyte proliferation, this ability is lost shortly after birth, resulting in the adult heart's inability to regenerate after injury effectively. In adult mammals, the adverse cardiac remodelling, which compensates for the loss of cardiac cells, impairs cardiac function due to the non-contractile nature of fibrotic tissue. Moreover, the neovascularisation after MI is inadequate to restore blood flow to the infarcted myocardium. This review aims to synthesise the most recent insights into the molecular and cellular players involved in endogenous myocardial and vascular regeneration, facilitating the identification of mechanisms that could be targeted to trigger cardiac regeneration, reduce fibrosis, and improve functional recovery post-MI. Reprogramming adult cardiomyocytes to regain their proliferative potential, along with the modulation of target cells responsible for neovascularisation, represents promising therapeutic strategies. An updated overview of endogenous mechanisms that regulate both myocardial and coronary vasculature regeneration-including stem and progenitor cells, growth factors, cell cycle regulators, and key signalling pathways-could help identify new critical intervention points for therapeutic applications.
Collapse
Affiliation(s)
| | | | | | | | | | - Raffaella Rastaldo
- Department of Clinical and Biological Sciences, University of Turin, Regione Gonzole 10, 10043 Orbassano, Italy; (E.F.); (D.R.); (R.V.); (M.A.); (C.G.)
| |
Collapse
|
2
|
The Vascular Niche for Adult Cardiac Progenitor Cells. Antioxidants (Basel) 2022; 11:antiox11050882. [PMID: 35624750 PMCID: PMC9137669 DOI: 10.3390/antiox11050882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Research on cardiac progenitor cell populations has generated expectations about their potential for cardiac regeneration capacity after acute myocardial infarction and during physiological aging; however, the endogenous capacity of the adult mammalian heart is limited. The modest efficacy of exogenous cell-based treatments can guide the development of new approaches that, alone or in combination, can be applied to boost clinical efficacy. The identification and manipulation of the adult stem cell environment, termed niche, will be critical for providing new evidence on adult stem cell populations and improving stem-cell-based therapies. Here, we review and discuss the state of our understanding of the interaction of adult cardiac progenitor cells with other cardiac cell populations, with a focus on the description of the B-CPC progenitor population (Bmi1+ cardiac progenitor cell), which is a strong candidate progenitor for all main cardiac cell lineages, both in the steady state and after cardiac damage. The set of all interactions should be able to define the vascular cardiac stem cell niche, which is associated with low oxidative stress domains in vasculature, and whose manipulation would offer new hope in the cardiac regeneration field.
Collapse
|
3
|
Unraveling and Targeting Myocardial Regeneration Deficit in Diabetes. Antioxidants (Basel) 2022; 11:antiox11020208. [PMID: 35204091 PMCID: PMC8868283 DOI: 10.3390/antiox11020208] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/13/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Cardiomyopathy is a common complication in diabetic patients. Ventricular dysfunction without coronary atherosclerosis and hypertension is driven by hyperglycemia, hyperinsulinemia and impaired insulin signaling. Cardiomyocyte death, hypertrophy, fibrosis, and cell signaling defects underlie cardiomyopathy. Notably, detrimental effects of the diabetic milieu are not limited to cardiomyocytes and vascular cells. The diabetic heart acquires a senescent phenotype and also suffers from altered cellular homeostasis and the insufficient replacement of dying cells. Chronic inflammation, oxidative stress, and metabolic dysregulation damage the population of endogenous cardiac stem cells, which contribute to myocardial cell turnover and repair after injury. Therefore, deficient myocardial repair and the progressive senescence and dysfunction of stem cells in the diabetic heart can represent potential therapeutic targets. While our knowledge of the effects of diabetes on stem cells is growing, several strategies to preserve, activate or restore cardiac stem cell compartments await to be tested in diabetic cardiomyopathy.
Collapse
|
4
|
In vitro CSC-derived cardiomyocytes exhibit the typical microRNA-mRNA blueprint of endogenous cardiomyocytes. Commun Biol 2021; 4:1146. [PMID: 34593953 PMCID: PMC8484596 DOI: 10.1038/s42003-021-02677-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 02/08/2023] Open
Abstract
miRNAs modulate cardiomyocyte specification by targeting mRNAs of cell cycle regulators and acting in cardiac muscle lineage gene regulatory loops. It is unknown if or to-what-extent these miRNA/mRNA networks are operative during cardiomyocyte differentiation of adult cardiac stem/progenitor cells (CSCs). Clonally-derived mouse CSCs differentiated into contracting cardiomyocytes in vitro (iCMs). Comparison of "CSCs vs. iCMs" mRNome and microRNome showed a balanced up-regulation of CM-related mRNAs together with a down-regulation of cell cycle and DNA replication mRNAs. The down-regulation of cell cycle genes and the up-regulation of the mature myofilament genes in iCMs reached intermediate levels between those of fetal and neonatal cardiomyocytes. Cardiomyo-miRs were up-regulated in iCMs. The specific networks of miRNA/mRNAs operative in iCMs closely resembled those of adult CMs (aCMs). miR-1 and miR-499 enhanced myogenic commitment toward terminal differentiation of iCMs. In conclusions, CSC specification/differentiation into contracting iCMs follows known cardiomyo-MiR-dependent developmental cardiomyocyte differentiation trajectories and iCMs transcriptome/miRNome resembles that of CMs.
Collapse
|
5
|
Jolly AJ, Lu S, Strand KA, Dubner AM, Mutryn MF, Nemenoff RA, Majesky MW, Moulton KS, Weiser-Evans MCM. Heterogeneous subpopulations of adventitial progenitor cells regulate vascular homeostasis and pathological vascular remodeling. Cardiovasc Res 2021; 118:1452-1465. [PMID: 33989378 DOI: 10.1093/cvr/cvab174] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/12/2021] [Indexed: 12/12/2022] Open
Abstract
Cardiovascular diseases are characterized by chronic vascular dysfunction and provoke pathological remodeling events such as neointima formation, atherosclerotic lesion development, and adventitial fibrosis. While lineage-tracing studies have shown that phenotypically modulated smooth muscle cells (SMCs) are the major cellular component of neointimal lesions, the cellular origins and microenvironmental signaling mechanisms that underlie remodeling along the adventitial vascular layer are not fully understood. However, a growing body of evidence supports a unique population of adventitial lineage-restricted progenitor cells expressing the stem cell marker, stem cell antigen-1 (Sca1; AdvSca1 cells) as important effectors of adventitial remodeling and suggests that they are at least partially responsible for subsequent pathological changes that occur in the media and intima. AdvSca1 cells are being studied in murine models of atherosclerosis, perivascular fibrosis, and neointima formation in response to acute vascular injury. Depending on the experimental conditions, AdvSca1 cells exhibit the capacity to differentiate into SMCs, endothelial cells, chondrocytes, adipocytes, and pro-remodeling cells such as myofibroblasts and macrophages. These data indicate that AdvSca1 cells may be a targetable cell population to influence the outcomes of pathologic vascular remodeling. Important questions remain regarding the origins of AdvSca1 cells and the essential signaling mechanisms and microenvironmental factors that regulate both maintenance of their stem-like, progenitor phenotype and their differentiation into lineage-specified cell types. Adding complexity to the story, recent data indicate that the collective population of adventitial progenitor cells is likely composed of several smaller, lineage-restricted subpopulations which are not fully defined by their transcriptomic profile and differentiation capabilities. The aim of this review is to outline the heterogeneity of Sca1+ adventitial progenitor cells, summarize their role in vascular homeostasis and remodeling, and comment on their translational relevance in humans.
Collapse
Affiliation(s)
- Austin J Jolly
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Sizhao Lu
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Keith A Strand
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Allison M Dubner
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Marie F Mutryn
- Department of Medicine, Division of Renal Diseases and Hypertension
| | - Raphael A Nemenoff
- Department of Medicine, Division of Renal Diseases and Hypertension.,School of Medicine,Consortium for Fibrosis Research and Translation
| | - Mark W Majesky
- Center for Developmental Biology & Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA 98101.,Departments of Pediatrics and Pathology, University of Washington, Seattle, WA, 98195
| | | | - Mary C M Weiser-Evans
- Department of Medicine, Division of Renal Diseases and Hypertension.,School of Medicine,Consortium for Fibrosis Research and Translation.,Cardiovascular Pulmonary Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO 80045 USA
| |
Collapse
|
6
|
Scalise M, Torella M, Marino F, Ravo M, Giurato G, Vicinanza C, Cianflone E, Mancuso T, Aquila I, Salerno L, Nassa G, Agosti V, De Angelis A, Urbanek K, Berrino L, Veltri P, Paolino D, Mastroroberto P, De Feo M, Viglietto G, Weisz A, Nadal-Ginard B, Ellison-Hughes GM, Torella D. Atrial myxomas arise from multipotent cardiac stem cells. Eur Heart J 2021; 41:4332-4345. [PMID: 32330934 PMCID: PMC7735815 DOI: 10.1093/eurheartj/ehaa156] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 12/22/2019] [Accepted: 03/03/2020] [Indexed: 12/11/2022] Open
Abstract
Aims Cardiac myxomas usually develop in the atria and consist of an acid-mucopolysaccharide-rich myxoid matrix with polygonal stromal cells scattered throughout. These human benign tumours are a valuable research model because of the rarity of cardiac tumours, their clinical presentation and uncertain origin. Here, we assessed whether multipotent cardiac stem/progenitor cells (CSCs) give rise to atrial myxoma tissue. Methods and results Twenty-three myxomas were collected and analysed for the presence of multipotent CSCs. We detected myxoma cells positive for c-kit (c-kitpos) but very rare Isl-1 positive cells. Most of the c-kitpos cells were blood lineage-committed CD45pos/CD31pos cells. However, c-kitpos/CD45neg/CD31neg cardiac myxoma cells expressed stemness and cardiac progenitor cell transcription factors. Approximately ≤10% of the c-kitpos/CD45neg/CD31neg myxoma cells also expressed calretinin, a characteristic of myxoma stromal cells. In vitro, the c-kitpos/CD45neg/CD31neg myxoma cells secrete chondroitin-6-sulfate and hyaluronic acid, which are the main components of gelatinous myxoma matrix in vivo. In vitro, c-kitpos/CD45neg/CD31neg myxoma cells have stem cell properties being clonogenic, self-renewing, and sphere forming while exhibiting an abortive cardiac differentiation potential. Myxoma-derived CSCs possess a mRNA and microRNA transcriptome overall similar to normal myocardium-derived c-kitpos/CD45neg/CD31negCSCs , yet showing a relatively small and relevant fraction of dysregulated mRNA/miRNAs (miR-126-3p and miR-335-5p, in particular). Importantly, myxoma-derived CSCs but not normal myocardium-derived CSCs, seed human myxoma tumours in xenograft’s in immunodeficient NOD/SCID mice. Conclusion Myxoma-derived c-kitpos/CD45neg/CD31neg CSCs fulfill the criteria expected of atrial myxoma-initiating stem cells. The transcriptome of these cells indicates that they belong to or are derived from the same lineage as the atrial multipotent c-kitpos/CD45neg/CD31neg CSCs. Taken together the data presented here suggest that human myxomas could be the first-described CSC-related human heart disease. ![]()
Collapse
Affiliation(s)
- Mariangela Scalise
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania "L. Vanvitelli", Via Leonardo Bianchi, 80131 Naples, Italy
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Maria Ravo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Laboratory of Molecular Medicine and Genomics, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy.,Genomix4Life, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy
| | - Giorgio Giurato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Laboratory of Molecular Medicine and Genomics, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy.,Genomix4Life, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy
| | - Carla Vicinanza
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Eleonora Cianflone
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy.,Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Teresa Mancuso
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Iolanda Aquila
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Luca Salerno
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Giovanni Nassa
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Laboratory of Molecular Medicine and Genomics, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy
| | - Valter Agosti
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Antonella De Angelis
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy.,Department of Experimental Medicine, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli, 80138 Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "L. Vanvitelli", Via Santa Maria di Costantinopoli, 80138 Naples, Italy
| | - Pierangelo Veltri
- Department of Medical and Surgical Sciences, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Pasquale Mastroroberto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Marisa De Feo
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania "L. Vanvitelli", Via Leonardo Bianchi, 80131 Naples, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Laboratory of Molecular Medicine and Genomics, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy.,Genomix4Life, Spin-Off of the Laboratory of Molecular Medicine and Genomics, Department of Medicine, Surgery and Dentistry, University of Salerno, Via Salvador Allende, 84081 Baronissi (Salerno), Italy
| | - Bernardo Nadal-Ginard
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| | - Georgina M Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, Guys Campus - Great Maze Pond rd, SE1 1UL London, UK
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Molecular and Cellular Cardiology, Magna Graecia University, Viale Europa, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Cianflone E, Cappetta D, Mancuso T, Sabatino J, Marino F, Scalise M, Albanese M, Salatino A, Parrotta EI, Cuda G, De Angelis A, Berrino L, Rossi F, Nadal-Ginard B, Torella D, Urbanek K. Statins Stimulate New Myocyte Formation After Myocardial Infarction by Activating Growth and Differentiation of the Endogenous Cardiac Stem Cells. Int J Mol Sci 2020; 21:ijms21217927. [PMID: 33114544 PMCID: PMC7663580 DOI: 10.3390/ijms21217927] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/20/2022] Open
Abstract
The 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) exert pleiotropic effects on cardiac cell biology which are not yet fully understood. Here we tested whether statin treatment affects resident endogenous cardiac stem/progenitor cell (CSC) activation in vitro and in vivo after myocardial infarction (MI). Statins (Rosuvastatin, Simvastatin and Pravastatin) significantly increased CSC expansion in vitro as measured by both BrdU incorporation and cell growth curve. Additionally, statins increased CSC clonal expansion and cardiosphere formation. The effects of statins on CSC growth and differentiation depended on Akt phosphorylation. Twenty-eight days after myocardial infarction by permanent coronary ligation in rats, the number of endogenous CSCs in the infarct border zone was significantly increased by Rosuvastatin-treatment as compared to untreated controls. Additionally, commitment of the activated CSCs into the myogenic lineage (c-kitpos/Gata4pos CSCs) was increased by Rosuvastatin administration. Accordingly, Rosuvastatin fostered new cardiomyocyte formation after MI. Finally, Rosuvastatin treatment reversed the cardiomyogenic defects of CSCs in c-kit haploinsufficient mice, increasing new cardiomyocyte formation by endogenous CSCs in these mice after myocardial infarction. In summary, statins, by sustaining Akt activation, foster CSC growth and differentiation in vitro and in vivo. The activation and differentiation of the endogenous CSC pool and consequent new myocyte formation by statins improve myocardial remodeling after coronary occlusion in rodents. Similar effects might contribute to the beneficial effects of statins on human cardiovascular diseases.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Donato Cappetta
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.); (L.B.); (F.R.)
| | - Teresa Mancuso
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Jolanda Sabatino
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Fabiola Marino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Mariangela Scalise
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Michele Albanese
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Alessandro Salatino
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Elvira Immacolata Parrotta
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.); (L.B.); (F.R.)
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.); (L.B.); (F.R.)
| | - Francesco Rossi
- Department of Experimental Medicine, University of Campania “L. Vanvitelli”, 80138 Naples, Italy; (D.C.); (A.D.A.); (L.B.); (F.R.)
| | - Bernardo Nadal-Ginard
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy; (E.C.); (J.S.); (M.A.); (E.I.P.); (B.N.-G.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
- Correspondence: (D.T.); (K.U.)
| | - Konrad Urbanek
- Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (F.M.); (M.S.); (A.S.); (G.C.)
- Correspondence: (D.T.); (K.U.)
| |
Collapse
|
8
|
Cardiac Stem Cell-Loaded Delivery Systems: A New Challenge for Myocardial Tissue Regeneration. Int J Mol Sci 2020; 21:ijms21207701. [PMID: 33080988 PMCID: PMC7589970 DOI: 10.3390/ijms21207701] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains the leading cause of death in Western countries. Post-myocardial infarction heart failure can be considered a degenerative disease where myocyte loss outweighs any regenerative potential. In this scenario, regenerative biology and tissue engineering can provide effective solutions to repair the infarcted failing heart. The main strategies involve the use of stem and progenitor cells to regenerate/repair lost and dysfunctional tissue, administrated as a suspension or encapsulated in specific delivery systems. Several studies demonstrated that effectiveness of direct injection of cardiac stem cells (CSCs) is limited in humans by the hostile cardiac microenvironment and poor cell engraftment; therefore, the use of injectable hydrogel or pre-formed patches have been strongly advocated to obtain a better integration between delivered stem cells and host myocardial tissue. Several approaches were used to refine these types of constructs, trying to obtain an optimized functional scaffold. Despite the promising features of these stem cells’ delivery systems, few have reached the clinical practice. In this review, we summarize the advantages, and the novelty but also the current limitations of engineered patches and injectable hydrogels for tissue regenerative purposes, offering a perspective of how we believe tissue engineering should evolve to obtain the optimal delivery system applicable to the everyday clinical scenario.
Collapse
|
9
|
Cianflone E, Torella M, Biamonte F, De Angelis A, Urbanek K, Costanzo FS, Rota M, Ellison-Hughes GM, Torella D. Targeting Cardiac Stem Cell Senescence to Treat Cardiac Aging and Disease. Cells 2020; 9:E1558. [PMID: 32604861 PMCID: PMC7349658 DOI: 10.3390/cells9061558] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/19/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022] Open
Abstract
Adult stem/progenitor are a small population of cells that reside in tissue-specific niches and possess the potential to differentiate in all cell types of the organ in which they operate. Adult stem cells are implicated with the homeostasis, regeneration, and aging of all tissues. Tissue-specific adult stem cell senescence has emerged as an attractive theory for the decline in mammalian tissue and organ function during aging. Cardiac aging, in particular, manifests as functional tissue degeneration that leads to heart failure. Adult cardiac stem/progenitor cell (CSC) senescence has been accordingly associated with physiological and pathological processes encompassing both non-age and age-related decline in cardiac tissue repair and organ dysfunction and disease. Senescence is a highly active and dynamic cell process with a first classical hallmark represented by its replicative limit, which is the establishment of a stable growth arrest over time that is mainly secondary to DNA damage and reactive oxygen species (ROS) accumulation elicited by different intrinsic stimuli (like metabolism), as well as external stimuli and age. Replicative senescence is mainly executed by telomere shortening, the activation of the p53/p16INK4/Rb molecular pathways, and chromatin remodeling. In addition, senescent cells produce and secrete a complex mixture of molecules, commonly known as the senescence-associated secretory phenotype (SASP), that regulate most of their non-cell-autonomous effects. In this review, we discuss the molecular and cellular mechanisms regulating different characteristics of the senescence phenotype and their consequences for adult CSCs in particular. Because senescent cells contribute to the outcome of a variety of cardiac diseases, including age-related and unrelated cardiac diseases like diabetic cardiomyopathy and anthracycline cardiotoxicity, therapies that target senescent cell clearance are actively being explored. Moreover, the further understanding of the reversibility of the senescence phenotype will help to develop novel rational therapeutic strategies.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Flavia Biamonte
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| | - Francesco S. Costanzo
- Department of Experimental and Clinical Medicine and Interdepartmental Centre of Services (CIS), Magna Graecia University, 88100 Catanzaro, Italy; (F.B.); (F.S.C.)
| | - Marcello Rota
- Department of Physiology, New York Medical College, Valhalla, NY 10595, USA;
| | - Georgina M. Ellison-Hughes
- Centre for Human and Applied Physiological Sciences and Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King’s College London, Guys Campus-Great Maze Pond rd, London SE1 1UL, UK;
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy
| |
Collapse
|
10
|
Jeong YM, Cheng XW, Lee KH, Lee S, Cho H, Kim W. Substance P enhances the local activation of NK 1R-expressing c-kit + cardiac progenitor cells in right atrium of ischemia/reperfusion-injured heart. BMC Mol Cell Biol 2020; 21:41. [PMID: 32517655 PMCID: PMC7285458 DOI: 10.1186/s12860-020-00286-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 06/01/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Localization of neurokinin 1 receptor (NK1R), the endogenous receptor for neuropeptide substance P (SP), has already been described for the right atrium (RA) of the heart. However, the biological role of SP/NK1R signal pathways in the RA remains unclear. Sprague-Dawley rats were randomly divided into 4 groups (n = 22 each); subjected to sham, ischemia/reperfusion-injury (I/R), I/R with 5 nmole/kg SP injection (SP + I/R), and SP + I/R with 1 mg/kg RP67580 injection (RP, a selective non-peptide tachykinin NK1R antagonist) (RP/SP + I/R). The left anterior descending coronary artery was occluded for 40 min followed by 1 day reperfusion with SP or SP + RP or without either. After 1 day, both atria and ventricles as well as the heart apexes were collected. RESULTS SP promoted the expression of c-Kit, GATA4, Oct4, Nanog, and Sox2 in only the RA of the SP + I/R rats via NK1R activation. In agreement with these observations, NK1R-expressing c-Kit+ Nkx2.5+GATA4+ cardiac progenitor cells (CPCs) in the ex vivo RA explant outgrowth assay markedly migrated out from RA1 day SP + I/R approximately 2-fold increase more than RA1 day I/R. Treatment of SP promoted proliferation, migration, cardiosphere formation, and potential to differentiate into cardiomyocytes. Using RP inhibitor, NK1R antagonist not only inhibited cell proliferation and migration but also reduced the formation of cardiosphere and differentiation of c-Kit+ CPCs. CONCLUSION SP/NK1R might play a role as a key mediator involved in the cellular response to c-Kit+ CPC expansion in RA of the heart within 24 h after I/R.
Collapse
Affiliation(s)
- Yun-Mi Jeong
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.,Department of Mechanical Engineering, Korea Polytechnic University, 237 Sangidaehak Street, Si-heung City, Republic of Korea
| | - Xian Wu Cheng
- The Department of Cardiology, Yanbian University Hospital, Yanji, China
| | - Kyung Hye Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Sora Lee
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Haneul Cho
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Weon Kim
- Division of Cardiology, Department of Internal Medicine, Kyung Hee University Hospital, Kyung Hee University, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea.
| |
Collapse
|
11
|
Mancuso T, Barone A, Salatino A, Molinaro C, Marino F, Scalise M, Torella M, De Angelis A, Urbanek K, Torella D, Cianflone E. Unravelling the Biology of Adult Cardiac Stem Cell-Derived Exosomes to Foster Endogenous Cardiac Regeneration and Repair. Int J Mol Sci 2020; 21:E3725. [PMID: 32466282 PMCID: PMC7279257 DOI: 10.3390/ijms21103725] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cardiac remuscularization has been the stated goal of the field of regenerative cardiology since its inception. Along with the refreshment of lost and dysfunctional cardiac muscle cells, the field of cell therapy has expanded in scope encompassing also the potential of the injected cells as cardioprotective and cardio-reparative agents for cardiovascular diseases. The latter has been the result of the findings that cell therapies so far tested in clinical trials exert their beneficial effects through paracrine mechanisms acting on the endogenous myocardial reparative/regenerative potential. The endogenous regenerative potential of the adult heart is still highly debated. While it has been widely accepted that adult cardiomyocytes (CMs) are renewed throughout life either in response to wear and tear and after injury, the rate and origin of this phenomenon are yet to be clarified. The adult heart harbors resident cardiac/stem progenitor cells (CSCs/CPCs), whose discovery and characterization were initially sufficient to explain CM renewal in response to physiological and pathological stresses, when also considering that adult CMs are terminally differentiated cells. The role of CSCs in CM formation in the adult heart has been however questioned by some recent genetic fate map studies, which have been proved to have serious limitations. Nevertheless, uncontested evidence shows that clonal CSCs are effective transplantable regenerative agents either for their direct myogenic differentiation and for their paracrine effects in the allogeneic setting. In particular, the paracrine potential of CSCs has been the focus of the recent investigation, whereby CSC-derived exosomes appear to harbor relevant regenerative and reparative signals underlying the beneficial effects of CSC transplantation. This review focuses on recent advances in our knowledge about the biological role of exosomes in heart tissue homeostasis and repair with the idea to use them as tools for new therapeutic biotechnologies for "cell-less" effective cardiac regeneration approaches.
Collapse
Affiliation(s)
- Teresa Mancuso
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Antonella Barone
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Alessandro Salatino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Claudia Molinaro
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Fabiola Marino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Michele Torella
- Department of Translational Medical Sciences, AORN dei Colli/Monaldi Hospital, University of Campania “L. Vanvitelli”, Via Leonardo Bianchi, 80131 Naples, Italy;
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania “L.Vanvitelli”, 80121 Naples, Italy;
| | - Konrad Urbanek
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, Magna Graecia University, 88100 Catanzaro, Italy; (T.M.); (A.B.); (A.S.); (C.M.); (F.M.); (M.S.); (K.U.)
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, 88100 Catanzaro, Italy;
| |
Collapse
|
12
|
Ellison-Hughes GM, Torella D. Editorial commentary: The cardiac regeneration interchange. Trends Cardiovasc Med 2019; 30:344-345. [PMID: 31610950 DOI: 10.1016/j.tcm.2019.09.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 09/20/2019] [Indexed: 01/07/2023]
Affiliation(s)
- Georgina M Ellison-Hughes
- School of Basic and Medical Biosciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
13
|
Deregulation of TLR4 signaling pathway characterizes Bicuspid Aortic valve syndrome. Sci Rep 2019; 9:11028. [PMID: 31363123 PMCID: PMC6667442 DOI: 10.1038/s41598-019-47412-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 07/12/2019] [Indexed: 12/20/2022] Open
Abstract
Bicuspid aortic valve (BAV) disease is recognized to be a syndrome with a complex and multifaceted pathophysiology. Its progression is modulated by diverse evolutionary conserved pathways, such as Notch-1 pathway. Emerging evidence is also highlighting the key role of TLR4 signaling pathway in the aortic valve pathologies and their related complications, such as sporadic ascending aorta aneurysms (AAA). Consistent with these observations, we aimed to evaluate the role of TLR4 pathway in both BAV disease and its common complication, such as AAA. To this aim, 70 subjects with BAV (M/F 50/20; mean age: 58.8 ± 14.8 years) and 70 subjects with tricuspid aortic valve (TAV) (M/F 35/35; mean age: 69.1 ± 12.8 years), with and without AAA were enrolled. Plasma assessment, tissue and gene expression evaluations were performed. Consistent with data obtained in the previous study on immune clonotypic T and B altered responses, we found reduced levels of systemic TNF-α, IL-1, IL-6, IL-17 cytokines in BAV cases, either in the presence or absence of AAA, than TAV cases (p < 0.0001 by ANOVA test). Interestingly, we also detected reduced levels of s-TLR4 in BAV cases with or without AAA in comparison to the two groups of TAV subjects (p < 0.0001 by ANOVA test). These results may suggest a deregulation in the activity or in the expression of TLR4 signaling pathway in all BAV cases. Portrait of these data is, indeed, the significantly decreased gene expression of inflammatory cytokines and TLR4, in both normal and aneurysmatic tissue samples, from BAV with AAA than TAV with AAA. In conclusion, our study demonstrates that subjects with BAV display a significant deregulation of TLR4 signaling pathway paralleled by a deregulation of Notch-1 pathway, as previously showed. This data suggests that the crosstalk between the Notch-1 and TLR4 signaling pathways may play a crucial role in both physiological embryological development, and homeostasis and functionality of aortic valve in adult life.
Collapse
|
14
|
c-kit Haploinsufficiency impairs adult cardiac stem cell growth, myogenicity and myocardial regeneration. Cell Death Dis 2019; 10:436. [PMID: 31164633 PMCID: PMC6547756 DOI: 10.1038/s41419-019-1655-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 12/11/2022]
Abstract
An overdose of Isoproterenol (ISO) causes acute cardiomyocyte (CM) dropout and activates the resident cardiac c-kitpos stem/progenitor cells (CSCs) generating a burst of new CM formation that replaces those lost to ISO. Recently, unsuccessful attempts to reproduce these findings using c-kitCre knock-in (KI) mouse models were reported. We tested whether c-kit haploinsufficiency in c-kitCreKI mice was the cause of the discrepant results in response to ISO. Male C57BL/6J wild-type (wt) mice and c-kitCreKI mice were given a single dose of ISO (200 and/or 400 mg/Kg s.c.). CM formation was measured with different doses and duration of BrdU or EdU. We compared the myogenic and regenerative potential of the c-kitCreCSCs with wtCSCs. Acute ISO overdose causes LV dysfunction with dose-dependent CM death by necrosis and apoptosis, whose intensity follows a basal-apical and epicardium to sub-endocardium gradient, with the most severe damage confined to the apical sub-endocardium. The damage triggers significant new CM formation mainly in the apical sub-endocardial layer. c-kit haploinsufficiency caused by c-kitCreKIs severely affects CSCs myogenic potential. c-kitCreKI mice post-ISO fail to respond with CSC activation and show reduced CM formation and suffer chronic cardiac dysfunction. Transplantation of wtCSCs rescued the defective regenerative cardiac phenotype of c-kitCreKI mice. Furthermore, BAC-mediated transgenesis of a single c-kit gene copy normalized the functional diploid c-kit content of c-kitCreKI CSCs and fully restored their regenerative competence. Overall, these data show that c-kit haploinsufficiency impairs the endogenous cardioregenerative response after injury affecting CSC activation and CM replacement. Repopulation of c-kit haploinsufficient myocardial tissue with wtCSCs as well c-kit gene deficit correction of haploinsufficient CSCs restores CM replacement and functional cardiac repair. Thus, adult neo-cardiomyogenesis depends on and requires a diploid level of c-kit.
Collapse
|
15
|
Marino F, Scalise M, Cianflone E, Mancuso T, Aquila I, Agosti V, Torella M, Paolino D, Mollace V, Nadal-Ginard B, Torella D. Role of c-Kit in Myocardial Regeneration and Aging. Front Endocrinol (Lausanne) 2019; 10:371. [PMID: 31275242 PMCID: PMC6593054 DOI: 10.3389/fendo.2019.00371] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/24/2019] [Indexed: 12/15/2022] Open
Abstract
c-Kit, a type III receptor tyrosine kinase (RTK), is involved in multiple intracellular signaling whereby it is mainly considered a stem cell factor receptor, which participates in vital functions of the mammalian body, including the human. Furthermore, c-kit is a necessary yet not sufficient marker to detect and isolate several types of tissue-specific adult stem cells. Accordingly, c-kit was initially used as a marker to identify and enrich for adult cardiac stem/progenitor cells (CSCs) that were proven to be clonogenic, self-renewing and multipotent, being able to differentiate into cardiomyocytes, endothelial cells and smooth muscle cells in vitro as well as in vivo after myocardial injury. Afterwards it was demonstrated that c-kit expression labels a heterogenous cardiac cell population, which is mainly composed by endothelial cells while only a very small fraction represents CSCs. Furthermore, c-kit as a signaling molecule is expressed at different levels in this heterogenous c-kit labeled cardiac cell pool, whereby c-kit low expressers are enriched for CSCs while c-kit high expressers are endothelial and mast cells. This heterogeneity in cell composition and expression levels has been neglected in recent genetic fate map studies focusing on c-kit, which have claimed that c-kit identifies cells with robust endothelial differentiation potential but with minimal if not negligible myogenic commitment potential. However, modification of c-kit gene for Cre Recombinase expression in these Cre/Lox genetic fate map mouse models produced a detrimental c-kit haploinsufficiency that prevents efficient labeling of true CSCs on one hand while affecting the regenerative potential of these cells on the other. Interestingly, c-kit haploinsufficiency in c-kit-deficient mice causes a worsening myocardial repair after injury and accelerates cardiac aging. Therefore, these studies have further demonstrated that adult c-kit-labeled CSCs are robustly myogenic and that the adult myocardium relies on c-kit expression to regenerate after injury and to counteract aging effects on cardiac structure and function.
Collapse
Affiliation(s)
- Fabiola Marino
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Valter Agosti
- Interdepartmental Center of Services (CIS) of Genomics, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
| | - Vincenzo Mollace
- Department of Health Sciences, Interregional Research Center on Food Safety and Health (IRC-FSH), University Magna Graecia of Catanzaro, Catanzaro, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- StemCell OpCo, Madrid, Spain
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Experimental and Clinical Medicine, University Magna Graecia, Catanzaro, Italy
- *Correspondence: Daniele Torella
| |
Collapse
|
16
|
Scalise M, Marino F, Cianflone E, Mancuso T, Marotta P, Aquila I, Torella M, Nadal-Ginard B, Torella D. Heterogeneity of Adult Cardiac Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1169:141-178. [PMID: 31487023 DOI: 10.1007/978-3-030-24108-7_8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Cardiac biology and heart regeneration have been intensively investigated and debated in the last 15 years. Nowadays, the well-established and old dogma that the adult heart lacks of any myocyte-regenerative capacity has been firmly overturned by the evidence of cardiomyocyte renewal throughout the mammalian life as part of normal organ cell homeostasis, which is increased in response to injury. Concurrently, reproducible evidences from independent laboratories have convincingly shown that the adult heart possesses a pool of multipotent cardiac stem/progenitor cells (CSCs or CPCs) capable of sustaining cardiomyocyte and vascular tissue refreshment after injury. CSC transplantation in animal models displays an effective regenerative potential and may be helpful to treat chronic heart failure (CHF), obviating at the poor/modest results using non-cardiac cells in clinical trials. Nevertheless, the degree/significance of cardiomyocyte turnover in the adult heart, which is insufficient to regenerate extensive damage from ischemic and non-ischemic origin, remains strongly disputed. Concurrently, different methodologies used to detect CSCs in situ have created the paradox of the adult heart harboring more than seven different cardiac progenitor populations. The latter was likely secondary to the intrinsic heterogeneity of any regenerative cell agent in an adult tissue but also to the confusion created by the heterogeneity of the cell population identified by a single cell marker used to detect the CSCs in situ. On the other hand, some recent studies using genetic fate mapping strategies claimed that CSCs are an irrelevant endogenous source of new cardiomyocytes in the adult. On the basis of these contradictory findings, here we critically reviewed the available data on adult CSC biology and their role in myocardial cell homeostasis and repair.
Collapse
Affiliation(s)
- Mariangela Scalise
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Fabiola Marino
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Eleonora Cianflone
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Teresa Mancuso
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Surgery, University of Campania "L.Vanvitelli", Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology Laboratory, Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy.
| |
Collapse
|
17
|
Nadal-Ginard B, Torella D, De Angelis A, Rossi F. Monographic issue of pharmacological research on adult myocardial repair/regeneration. Pharmacol Res 2018; 127:1-3. [PMID: 29279193 DOI: 10.1016/j.phrs.2017.12.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Bernardo Nadal-Ginard
- Molecular Cellular Cardiology, Department of Medical, Surgical Sciences, Magna Graecia University, Catanzaro, 88100, Italy, Italy.
| | - Daniele Torella
- Molecular Cellular Cardiology, Department of Medical, Surgical Sciences, Magna Graecia University, Catanzaro, 88100, Italy, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L.Vanvitelli", Naples, 80121, Italy, Italy
| | - Francesco Rossi
- Department of Experimental Medicine, Section of Pharmacology, University of Campania "L.Vanvitelli", Naples, 80121, Italy, Italy.
| |
Collapse
|
18
|
Cianflone E, Aquila I, Scalise M, Marotta P, Torella M, Nadal-Ginard B, Torella D. Molecular basis of functional myogenic specification of Bona Fide multipotent adult cardiac stem cells. Cell Cycle 2018; 17:927-946. [PMID: 29862928 PMCID: PMC6103696 DOI: 10.1080/15384101.2018.1464852] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/01/2018] [Accepted: 04/08/2018] [Indexed: 01/14/2023] Open
Abstract
Ischemic Heart Disease (IHD) remains the developed world's number one killer. The improved survival from Acute Myocardial Infarction (AMI) and the progressive aging of western population brought to an increased incidence of chronic Heart Failure (HF), which assumed epidemic proportions nowadays. Except for heart transplantation, all treatments for HF should be considered palliative because none of the current therapies can reverse myocardial degeneration responsible for HF syndrome. To stop the HF epidemic will ultimately require protocols to reduce the progressive cardiomyocyte (CM) loss and to foster their regeneration. It is now generally accepted that mammalian CMs renew throughout life. However, this endogenous regenerative reservoir is insufficient to repair the extensive damage produced by AMI/IHD while the source and degree of CM turnover remains strongly disputed. Independent groups have convincingly shown that the adult myocardium harbors bona-fide tissue specific cardiac stem cells (CSCs). Unfortunately, recent reports have challenged the identity and the endogenous myogenic capacity of the c-kit expressing CSCs. This has hampered progress and unless this conflict is settled, clinical tests of repair/regenerative protocols are unlikely to provide convincing answers about their clinical potential. Here we review recent data that have eventually clarified the specific phenotypic identity of true multipotent CSCs. These cells when coaxed by embryonic cardiac morphogens undergo a precisely orchestrated myogenic commitment process robustly generating bona-fide functional cardiomyocytes. These data should set the path for the revival of further investigation untangling the regenerative biology of adult CSCs to harness their potential for HF prevention and treatment.
Collapse
Affiliation(s)
- Eleonora Cianflone
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Iolanda Aquila
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Mariangela Scalise
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Pina Marotta
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Michele Torella
- Department of Cardiothoracic Sciences, University of Campania Campus “Salvatore Venuta” Viale Europa- Loc. Germaneto “L. Vanvitelli”, Naples, Italy
| | - Bernardo Nadal-Ginard
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| | - Daniele Torella
- Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences, Magna Graecia University, Catanzaro, Italy
| |
Collapse
|
19
|
Kit cre knock-in mice fail to fate-map cardiac stem cells. Nature 2018; 555:E1-E5. [PMID: 29565363 DOI: 10.1038/nature25771] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 11/15/2017] [Indexed: 12/19/2022]
|
20
|
Marotta P, Cianflone E, Aquila I, Vicinanza C, Scalise M, Marino F, Mancuso T, Torella M, Indolfi C, Torella D. Combining cell and gene therapy to advance cardiac regeneration. Expert Opin Biol Ther 2018; 18:409-423. [PMID: 29347847 DOI: 10.1080/14712598.2018.1430762] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION The characterization of multipotent endogenous cardiac stem cells (eCSCs) and the breakthroughs of somatic cell reprogramming to boost cardiomyocyte replacement have fostered the prospect of achieving functional heart repair/regeneration. AREAS COVERED Allogeneic CSC therapy through its paracrine stimulation of the endogenous resident reparative/regenerative process produces functional meaningful myocardial regeneration in pre-clinical porcine myocardial infarction models and is currently tested in the first-in-man human trial. The in vivo test of somatic reprogramming and cardioregenerative non-coding RNAs revived the interest in gene therapy for myocardial regeneration. The latter, together with the advent of genome editing, has prompted most recent efforts to produce genetically-modified allogeneic CSCs that secrete cardioregenerative factors to optimize effective myocardial repair. EXPERT OPINION The current war against heart failure epidemics in western countries seeks to find effective treatments to set back the failing hearts prolonging human lifespan. Off-the-shelf allogeneic-genetically-modified CSCs producing regenerative agents are a novel and evolving therapy set to be affordable, safe, effective and available at all times for myocardial regeneration to either prevent or treat heart failure.
Collapse
Affiliation(s)
- Pina Marotta
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Eleonora Cianflone
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Iolanda Aquila
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Carla Vicinanza
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Mariangela Scalise
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Fabiola Marino
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Teresa Mancuso
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Michele Torella
- b Department of Cardiothoracic Sciences , University of Campania "L. Vanvitelli" , Naples , Italy
| | - Ciro Indolfi
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| | - Daniele Torella
- a Molecular and Cellular Cardiology, Department of Medical and Surgical Sciences , Magna Graecia University , Catanzaro , Italy
| |
Collapse
|