1
|
Zheng X, Chen D, Wu J, Gao Z, Huang M, Fan C, Chang J, Liu Y, Zeng X, Wang W. Apelin-13 inhibits ischemia-reperfusion mediated podocyte apoptosis by reducing m-TOR phosphorylation to enhance autophagy. FASEB J 2025; 39:e70319. [PMID: 39812591 DOI: 10.1096/fj.202402850r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/24/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Podocytes are essential to maintain the normal filtration function of glomerular basement membrane, which could be injured by ischemia-reperfusion. As complicated function of autophagy in terminal differentiated podocytes, autophagy dysfunction might contribute to I/R induced renal dysfunction following glomerular filtration membrane (GFM) injuries. Meanwhile, apelin-13, an endogenous polypeptide, has been proved to be effective in regulating autophagy and apoptosis in podocytes. Therefore, it is hypothesized that apelin-13 may protect podocytes from IRI by inhibiting podocyte apoptosis through regulation of podocyte autophagy. Our study demonstrates for that podocytes are also involved in renal ischemia-reperfusion (I/R) injury and shows in detail the morphological and functional changes in podocytes during renal I/R. Because podocytes are terminally differentiated cells whose homeostasis require high levels of autophagy, we investigate the cellular mechanisms underlying the effects of apelin-13 on I/R-mediated podocyte injury in terms of autophagy. In addition, our study demonstrates that apelin-13 ameliorates renal I/R injury in podocyte injury, by increasing podocyte autophagy through inhibition of m-TOR phosphorylation, which in turn inhibits apoptosis.
Collapse
Affiliation(s)
- Xiang Zheng
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Dongshan Chen
- Department of Urology, Qilu Hospital of Shandong University, Jinan, China
| | - Jiyue Wu
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Zihao Gao
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| | - Mingcong Huang
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Chunmeng Fan
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Jing Chang
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, Beijing, China
| | - Yu Liu
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Urology, Capital Medical University Beijing Chaoyang Hospital, Beijing, China
| |
Collapse
|
2
|
Zhu J, Xiang X, Shi L, Song Z, Dong Z. Identification of Differentially Expressed Genes in Cold Storage-associated Kidney Transplantation. Transplantation 2024; 108:2057-2071. [PMID: 38632678 PMCID: PMC11424274 DOI: 10.1097/tp.0000000000005016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
BACKGROUND Although it is acknowledged that ischemia-reperfusion injury is the primary pathology of cold storage-associated kidney transplantation, its underlying mechanism is not well elucidated. METHODS To extend the understanding of molecular events and mine hub genes posttransplantation, we performed bulk RNA sequencing at different time points (24 h, day 7, and day 14) on a murine kidney transplantation model with prolonged cold storage (10 h). RESULTS In the present study, we showed that genes related to the regulation of apoptotic process, DNA damage response, cell cycle/proliferation, and inflammatory response were steadily elevated at 24 h and day 7. The upregulated gene profiling delicately transformed to extracellular matrix organization and fibrosis at day 14. It is prominent that metabolism-associated genes persistently took the first place among downregulated genes. The gene ontology terms of particular note to enrich are fatty acid oxidation and mitochondria energy metabolism. Correspondingly, the key enzymes of the above processes were the products of hub genes as recognized. Moreover, we highlighted the proximal tubular cell-specific increased genes at 24 h by combining the data with public RNA-Seq performed on proximal tubules. We also focused on ferroptosis-related genes and fatty acid oxidation genes to show profound gene dysregulation in kidney transplantation. CONCLUSIONS The comprehensive characterization of transcriptomic analysis may help provide diagnostic biomarkers and therapeutic targets in kidney transplantation.
Collapse
Affiliation(s)
- Jiefu Zhu
- Department of Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs Medical Center, Augusta, GA
| | - Xiaohong Xiang
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lang Shi
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhixia Song
- Department of Nephrology, The First Clinical Medical College of Three Gorges University, Center People's Hospital of Yichang, Yichang, Hubei, China
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood Veteran Affairs Medical Center, Augusta, GA
| |
Collapse
|
3
|
Zou XF, Wu SH, Ma JG, Yin ZQ, Hu ZD, Wang YW, Yang J, Guo RD. 3-O-Methyl-D-Glucose Blunts Cold Ischemia Damage in Kidney via Inhibiting Ferroptosis. Biomed Pharmacother 2024; 173:116262. [PMID: 38394845 DOI: 10.1016/j.biopha.2024.116262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/20/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND The glucose derivative 3-O-methyl-D-glucose (OMG) is used as a cryoprotectant in freezing cells. However, its protective role and the related mechanism in static cold storage (CS) of organs are unknown. The present study aimed to investigate the effect of OMG on cod ischemia damage in cold preservation of donor kidney. METHODS Pretreatment of OMG on kidney was performed in an isolated renal cold storage model in rats. LDH activity in renal efflux was used to evaluate the cellular damage. Indicators including iron levels, mitochondrial damage, MDA level, and cellular apoptosis were measured. Kidney quality was assessed via a kidney transplantation (KTx) model in rats. The grafted animals were followed up for 7 days. Ischemia reperfusion (I/R) injury and inflammatory response were assessed by biochemical and histological analyses. RESULTS OMG pretreatment alleviated prolonged CS-induced renal damage as evidenced by reduced LDH activities and tubular apoptosis. Kidney with pCS has significantly increased iron, MDA, and TUNEL+ cells, implying the increased ferroptosis, which has been partly inhibited by OMG. OMG pretreatment has improved the renal function (p <0.05) and prolonged the 7-day survival of the grafting recipients after KTx, as compared to the control group. OMG has significantly decreased inflammation and tubular damage after KTx, as evidenced by CD3-positive cells and TUNEL-positive cells. CONCLUSION Our study demonstrated that OMG protected kidney against the prolonged cold ischemia-caused injuries through inhibiting ferroptosis. Our results suggested that OMG might have potential clinical application in cold preservation of donor kidney.
Collapse
Affiliation(s)
- Xun-Feng Zou
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Shao-Hua Wu
- Clinical Laboratory, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jian-Gong Ma
- Department of Chemistry and Key Laboratory of Advanced Energy Materials Chemistry (MOE), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi-Qi Yin
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Zhan-Dong Hu
- Department of Pathology, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Yi-Wei Wang
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China
| | - Jie Yang
- University hospital, Tianjin Normal University, Tianjin 300192, China
| | - Ren-De Guo
- Department of General Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Tianjin 300192, China.
| |
Collapse
|
4
|
Faucher Q, Chadet S, Humeau A, Sauvage FL, Arnion H, Gatault P, Buchler M, Roger S, Lawson R, Marquet P, Barin-Le Guellec C. Impact of hypoxia and reoxygenation on the extra/intracellular metabolome and on transporter expression in a human kidney proximal tubular cell line. Metabolomics 2023; 19:83. [PMID: 37704888 DOI: 10.1007/s11306-023-02044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 08/21/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION Ischemia-reperfusion injury (IRI) induces several perturbations that alter immediate kidney graft function after transplantation and may affect long-term graft outcomes. Given the IRI-dependent metabolic disturbances previously reported, we hypothesized that proximal transporters handling endo/exogenous substrates may be victims of such lesions. OBJECTIVES This study aimed to determine the impact of hypoxia/reoxygenation on the human proximal transport system through two semi-targeted omics analyses. METHODS Human proximal tubular cells were cultured in hypoxia (6 or 24 h), each followed by 2, 24 or 48-h reoxygenation. We investigated the transcriptomic modulation of transporters. Using semi-targeted LC-MS/MS profiling, we characterized the extra/intracellular metabolome. Statistical modelling was used to identify significant metabolic variations. RESULTS The expression profile of transporters was impacted during hypoxia (y + LAT1 and OCTN2), reoxygenation (MRP2, PEPT1/2, rBAT, and OATP4C1), or in both conditions (P-gp and GLUT1). The P-gp and GLUT1 transcripts increased (FC (fold change) = 2.93 and 4.11, respectively) after 2-h reoxygenation preceded by 24-h hypoxia. We observed a downregulation (FC = 0.42) of y+LAT1 after 24-h hypoxia, and of PEPT2 after 24-h hypoxia followed by 2-h reoxygenation (FC = 0.40). Metabolomics showed that hypoxia altered the energetic pathways. However, intracellular metabolic homeostasis and cellular exchanges were promptly restored after reoxygenation. CONCLUSION This study provides insight into the transcriptomic response of the tubular transporters to hypoxia/reoxygenation. No correlation was found between the expression of transporters and the metabolic variations observed. Given the complexity of studying the global tubular transport systems, we propose that further studies focus on targeted transporters.
Collapse
Affiliation(s)
- Quentin Faucher
- U1248 Pharmacology & Transplantation, INSERM and Univ. Limoges, 87000, Limoges, France
| | - Stéphanie Chadet
- EA4245, Transplantation, Immunologie, Inflammation, Univ. Tours, 37000, Tours, France
| | - Antoine Humeau
- U1248 Pharmacology & Transplantation, INSERM and Univ. Limoges, 87000, Limoges, France
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, 87000, Limoges, France
| | | | - Hélène Arnion
- U1248 Pharmacology & Transplantation, INSERM and Univ. Limoges, 87000, Limoges, France
| | - Philippe Gatault
- EA4245, Transplantation, Immunologie, Inflammation, Univ. Tours, 37000, Tours, France
- Nephrology and Immunology Department, Bretonneau Hospital, 37000, Tours, France
| | - Matthias Buchler
- EA4245, Transplantation, Immunologie, Inflammation, Univ. Tours, 37000, Tours, France
- Nephrology and Immunology Department, Bretonneau Hospital, 37000, Tours, France
| | - Sébastien Roger
- EA4245, Transplantation, Immunologie, Inflammation, Univ. Tours, 37000, Tours, France
| | - Roland Lawson
- U1248 Pharmacology & Transplantation, INSERM and Univ. Limoges, 87000, Limoges, France
| | - Pierre Marquet
- U1248 Pharmacology & Transplantation, INSERM and Univ. Limoges, 87000, Limoges, France.
- Department of Pharmacology, Toxicology and Pharmacovigilance, University Hospital of Limoges, 87000, Limoges, France.
| | - Chantal Barin-Le Guellec
- U1248 Pharmacology & Transplantation, INSERM and Univ. Limoges, 87000, Limoges, France
- Department of Biochemistry and Molecular Biology, CHRU de Tours, 37000, Tours, France
| |
Collapse
|
5
|
Qi Y, Hu M, Qiu Y, Zhang L, Yan Y, Feng Y, Feng C, Hou X, Wang Z, Zhang D, Zhao J. Mitoglitazone ameliorates renal ischemia/reperfusion injury by inhibiting ferroptosis via targeting mitoNEET. Toxicol Appl Pharmacol 2023; 465:116440. [PMID: 36870574 DOI: 10.1016/j.taap.2023.116440] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Ischemia/reperfusion- (I/R-) induced injury is unavoidable and a major risk factor for graft failure and acute rejection following kidney transplantation. However, few effective interventions are available to improve the outcome due to the complicated mechanisms and lack of appropriate therapeutic targets. Hence, this research aimed to explore the effect of the thiazolidinedione (TZD) compounds on I/R-induced kidney damage. One of the main causes of renal I/R injury is the ferroptosis of renal tubular cells. In this study, compared with the antidiabetic TZD pioglitazone (PGZ), we found its derivative mitoglitazone (MGZ) exerted significantly inhibitory effects on erastin-induced ferroptosis by suppressing mitochondrial membrane potential hyperpolarization and lipid ROS production in HEK293 cells. Moreover, MGZ pretreatment remarkably alleviated I/R-induced renal damages by inhibiting cell death and inflammation, upregulating the expression of glutathione peroxidase 4 (GPX4), and reducing iron-related lipid peroxidation in C57BL/6 N mice. Additionally, MGZ exhibited excellent protection against I/R-induced mitochondrial dysfunction by restoring ATP production, mitochondrial DNA copy numbers, and mitochondrial morphology in kidney tissues. Mechanistically, molecular docking and surface plasmon resonance experiments demonstrated that MGZ exhibited a high binding affinity with the mitochondrial outer membrane protein mitoNEET. Collectively, our findings indicated the renal protective effect of MGZ was closely linked to regulating the mitoNEET-mediated ferroptosis pathway, thus offering potential therapeutic strategies for ameliorating I/R injuries.
Collapse
Affiliation(s)
- Yuanbo Qi
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China.
| | - Mingyao Hu
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yang Qiu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Luyu Zhang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yongchuang Yan
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Yi Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Chenghao Feng
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Xinyue Hou
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Zhigang Wang
- Department of Kidney Transplantation, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou 450052, China
| | - Di Zhang
- Department of Physiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450052, China.
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
6
|
Baciu C, Shin J, Hsin M, Cypel M, Keshavjee S, Liu M. Altered purine metabolism at reperfusion affects clinical outcome in lung transplantation. Thorax 2023; 78:249-257. [PMID: 35450941 DOI: 10.1136/thoraxjnl-2021-217498] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/22/2022] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Lung transplantation is an established treatment for patients with end-stage lung disease. However, ischaemia reperfusion injury remains a barrier to achieving better survival outcomes. Here, we aim to investigate the metabolomic and transcriptomic profiles in human lungs before and after reperfusion, to identify mechanisms relevant to clinical outcome. METHODS We analysed 67 paired human lung tissue samples collected from 2008 to 2011, at the end of cold preservation and 2 hours after reperfusion. Gene expression analysis was performed with R. Pathway analysis was conducted with Ingenuity Pathway Analysis. MetaboAnalyst and OmicsNet were used for metabolomics analysis and omics data integration, respectively. Association of identified metabolites with transplant outcome was investigated with Kaplan-Meier estimate and Cox proportional hazard models. RESULTS Activation of energy metabolism and reduced antioxidative biochemicals were found by metabolomics. Upregulation of genes related to cytokines and inflammatory mediators, together with major signalling pathways were revealed by transcriptomics. Purine metabolism was identified as the most significantly enriched pathway at reperfusion, based on integrative analysis of the two omics data sets. Elevated expression of purine nucleoside phosphorylase (PNP) could be attributed to activation of multiple transcriptional pathways. PNP catabolised reactions were evidenced by changes in related metabolites, especially decreased levels of inosine and increased levels of uric acid. Multivariable analyses showed significant association of inosine and uric acid levels with intensive care unit length of stay and ventilation time. CONCLUSION Oxidative stress, especially through purine metabolism pathway, is a major metabolic event during reperfusion and may contribute to the ischaemia reperfusion injury of lung grafts.
Collapse
Affiliation(s)
- Cristina Baciu
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Jason Shin
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael Hsin
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Marcelo Cypel
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shaf Keshavjee
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada.,Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Latner Thoracic Surgical Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada .,Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
7
|
PIM1 attenuates renal ischemia-reperfusion injury by inhibiting ASK1-JNK/P38. Int Immunopharmacol 2023; 114:109563. [PMID: 36513021 DOI: 10.1016/j.intimp.2022.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Renal ischemia-reperfusion injury (IRI) is the main cause of acute kidney injury (AKI), yet therapeutic approaches to alleviate IRI remain limited. PIM1 (provirus integration site for Moloney murine leukemia virus 1) is a constitutive serine threonine kinase that phosphorylates various substrates to regulate cell death and survival. However, the role of PIM1 in renal IRI remains unclear. This study aims to investigate the effect of PIM1 on renal IRI and explore its downstream regulatory mechanism. In this study, we inhibited or overexpressed PIM1 in mice and cultured proximal tubular cells, and then induced renal IRI model in vivo and hypoxia reoxygenation (HR) model in vitro. Renal function, renal structure injuries and cellular death were assessed to reflect the extent of IRI. The expression of PIM1 and the levels of ASK1, MAPK and their phosphorylated forms were detected by immunoblot. RNA sequencing of kidney cortex was performed to analyze downstream pathway of PIM1 in renal IRI. The results showed that PIM1 expression was significantly upregulated in renal IRI mouse model and in renal tubular cell HR model. AZD1208 (a PIM1 inhibitor) aggravated renal IRI, while PIM1 overexpression ameliorated renal IRI. This was involved in the regulation of the ASK1-MAPK pathway. Moreover, results demonstrated that ASK1 was a downstream target of PIM1 by administering Selonsertib (an inhibitor of ASK1 activity), and inhibiting ASK1 alleviated cell death after HR in PIM1 knockdown cells by reducing JNK/P38 activation. In conclusion, this study elucidated the protective effect of PIM1 on renal IRI, and the underlying mechanism may be related to ASK1-JNK/P38 signaling pathway. Taken together, PIM1 may be a potential therapeutic target for renal IRI.
Collapse
|
8
|
Ponticelli C, Reggiani F, Moroni G. Delayed Graft Function in Kidney Transplant: Risk Factors, Consequences and Prevention Strategies. J Pers Med 2022; 12:jpm12101557. [PMID: 36294695 PMCID: PMC9605016 DOI: 10.3390/jpm12101557] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/24/2022] Open
Abstract
Background. Delayed graft function is a frequent complication of kidney transplantation that requires dialysis in the first week posttransplant. Materials and Methods. We searched for the most relevant articles in the National Institutes of Health library of medicine, as well as in transplantation, pharmacologic, and nephrological journals. Results. The main factors that may influence the development of delayed graft function (DGF) are ischemia–reperfusion injury, the source and the quality of the donated kidney, and the clinical management of the recipient. The pathophysiology of ischemia–reperfusion injury is complex and involves kidney hypoxia related to the duration of warm and cold ischemia, as well as the harmful effects of blood reperfusion on tubular epithelial cells and endothelial cells. Ischemia–reperfusion injury is more frequent and severe in kidneys from deceased donors than in those from living donors. Of great importance is the quality and function of the donated kidney. Kidneys from living donors and those with normal function can provide better results. In the peri-operative management of the recipient, great attention should be paid to hemodynamic stability and blood pressure; nephrotoxic medicaments should be avoided. Over time, patients with DGF may present lower graft function and survival compared to transplant recipients without DGF. Maladaptation repair, mitochondrial dysfunction, and acute rejection may explain the worse long-term outcome in patients with DGF. Many different strategies meant to prevent DGF have been evaluated, but only prolonged perfusion of dopamine and hypothermic machine perfusion have proven to be of some benefit. Whenever possible, a preemptive transplant from living donor should be preferred.
Collapse
Affiliation(s)
| | - Francesco Reggiani
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
- Department of Biomedical Sciences, Humanitas University, 20090 Milan, Italy
- Correspondence:
| | - Gabriella Moroni
- Nephrology and Dialysis Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Milan, Italy
| |
Collapse
|
9
|
Inhibition of PLK3 Attenuates Tubular Epithelial Cell Apoptosis after Renal Ischemia–Reperfusion Injury by Blocking the ATM/P53-Mediated DNA Damage Response. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4201287. [PMID: 35783188 PMCID: PMC9249506 DOI: 10.1155/2022/4201287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/18/2022] [Accepted: 05/03/2022] [Indexed: 11/17/2022]
Abstract
Objective Renal ischemia–reperfusion (I/R) injury is a major cause of acute kidney injury (AKI) in transplanted kidneys. This study was aimed at exploring the role of PLK3 (polo-like kinase 3) in renal I/R injury, focusing on its relationship with oxidative stress-induced DNA damage and renal tubular epithelial cell (TEC) apoptosis. Methods TRAP-seq data from the development dataset GSE52004 and the validation dataset GSE121191 were analyzed using GEO2R. PLK3 overexpression plasmids and targeted silencing siRNAs were used in a model of hypoxia/reoxygenation (H/R) injury, and rAAV-9-PLK3-KD were administered to C57BL/6J mice exposed to I/R injury. The ATM-specific inhibitor KU-60019 was used to block the DNA damage response (DDR). Western blotting was performed to measure DDR- and apoptosis-associated protein expression. Cell viability was measured by CCK-8 reagent, and apoptosis was examined by flow cytometry and TUNEL assay. Furthermore, the fluorescent probes H2DCFH-DA and DHE were used to measure ROS production in vitro. The MDA level and SOD activity were measured to assess oxidative stress in vivo. KIM-1 staining and Scr and BUN were used to evaluate kidney injury. Results The mRNA and protein levels of PLK3 were markedly increased in the H/R injury and I/R injury models. GO terms showed that PLK3 was mainly involved in oxidative stress and DNA damage after renal I/R injury. Overexpression of PLK3 decreased cell viability and increased apoptosis. In contrast, targeted silencing of PLK3 expression decreased the Bax/Bcl-2 ratio by decreasing P53 phosphorylation, thereby reducing TEC apoptosis. Furthermore, KU-60019 reduced PLK3 activation and DDR-induced apoptosis, while overexpression of PLK3 reversed the mitigating effect of KU-60019 on TEC apoptosis. Similarly, rAAV-9-PLK3 KD mice exhibited a lower rate of TEC apoptosis and milder renal damage after I/R injury. Conclusion We demonstrate for the first time that PLK3 is involved in oxidative stress-induced DNA damage and TEC apoptosis in renal I/R injury. Inhibition of PLK3 attenuates TEC apoptosis after I/R injury by blocking the ATM/P53-mediated DDR. Therefore, PLK3 may serve as a potential therapeutic target for ischemic AKI.
Collapse
|
10
|
Perfusate Metabolomics Content and Expression of Tubular Transporters During Human Kidney Graft Preservation by Hypothermic Machine Perfusion. Transplantation 2022; 106:1831-1843. [PMID: 35442245 DOI: 10.1097/tp.0000000000004129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Ischemia-related injury during the preimplantation period impacts kidney graft outcome. Evaluating these lesions by a noninvasive approach before transplantation could help us to understand graft injury mechanisms and identify potential biomarkers predictive of graft outcomes. This study aims to determine the metabolomic content of graft perfusion fluids and its dependence on preservation time and to explore whether tubular transporters are possibly involved in metabolomics variations. METHODS Kidneys were stored on hypothermic perfusion machines. We evaluated the metabolomic profiles of perfusion fluids (n = 35) using liquid chromatography coupled with tandem mass spectrometry and studied the transcriptional expression of tubular transporters on preimplantation biopsies (n = 26), both collected at the end of graft perfusion. We used univariate and multivariate analyses to assess the impact of perfusion time on these parameters and their relationship with graft outcome. RESULTS Seventy-two metabolites were found in preservation fluids at the end of perfusion, of which 40% were already present in the native conservation solution. We observed an increase of 23 metabolites with a longer perfusion time and a decrease of 8. The predictive model for time-dependent variation of metabolomics content showed good performance (R2 = 76%, Q2 = 54%, accuracy = 41%, and permutation test significant). Perfusion time did not affect the mRNA expression of transporters. We found no correlation between metabolomics and transporters expression. Neither the metabolomics content nor transporter expression was predictive of graft outcome. CONCLUSIONS Our results call for further studies, focusing on both intra- and extratissue metabolome, to investigate whether transporter alterations can explain the variations observed in the preimplantation period.
Collapse
|
11
|
Chen T, Niu L, Wang L, Zhou Q, Zhao X, Lai S, He X, He H, He M. Ferulic acid protects renal tubular epithelial cells against anoxia/reoxygenation injury mediated by AMPKα1. Free Radic Res 2022; 56:173-184. [PMID: 35382666 DOI: 10.1080/10715762.2022.2062339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Anoxia/reoxygenation (A/R) injury causes dysfunction of rat renal tubular epithelial cells (NRK-52E), which is associated with excess reactive oxygen species (ROS) generation and eventually leads to apoptosis. Ferulic acid (FA), a phenolic acid, which is abundant in fruits and vegetables. FA possesses the properties of scavenging free radicals and cytoprotection against oxygen stress. In the study, the protective effects of FA against NRK-52E cells damage induced by A/R were explored and confirmed the role of AMP-activated protein kinaseα1 (AMPKα1). We found that after NRK-52E cells suffered A/R damage, FA pretreatment increased the cell viability and decreased LDH activity in culture medium in a concentration-dependent manner, the activities of endogenous antioxidant enzymes such as glutathione peroxidase, superoxide dismutase and catalase improved, intracellular ROS generation and malondialdehyde contents mitigated. In addition, pretreatment of 75 μM FA ameliorated mitochondrial dysfunction by A/R-injury and ultimately decreased apoptosis (25.3 ± 0.61 vs 12.1 ± 0.60), which was evidenced by preventing the release of cytochrome c from mitochondria to the cytoplasm. 75 μM FA pretreatment also significantly upregulated AMPKα1 expression (3.16 ± 0.18 folds) and phosphorylation (2.56 ± 0.13 folds). However, compound C, a specific AMPK inhibitor, significantly attenuated FA pretreatment's effects, as mentionedabove. These results firstly clarified that FA pretreatment attenuated NRK-52E cell damage induced by A/R via upregulating AMPKα1 expression and phosphorylation.
Collapse
Affiliation(s)
- Tianpeng Chen
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Li Niu
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Liang Wang
- Department of rehabilitation, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Qing Zhou
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Xiaoyu Zhao
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Songqing Lai
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Xinlan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Huan He
- Jiangxi Provincial Key Laboratory of Basic Pharmacology, Nanchang University School of Pharmaceutical Science, Nanchang 330006, China
| | - Ming He
- Institute of Cardiovascular Diseases, Jiangxi Academy of Clinical Medical Sciences, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| |
Collapse
|
12
|
Zhang J, Li KY, Liu XY, Tu YY. Up-regulation of VSIG4 alleviates kidney transplantation-associated acute kidney injury through suppressing inflammation and ROS via regulation of AKT signaling. Free Radic Biol Med 2021:S0891-5849(21)00843-1. [PMID: 34856328 DOI: 10.1016/j.freeradbiomed.2021.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 02/07/2023]
Abstract
Prolonged cold ischemia (CI) is a risk factor for acute kidney injury (AKI) after kidney transplantation (KT). AKI is an abrupt and rapid reduction in renal function due to multi-factors, including inflammation, oxidative stress and apoptosis. V-set immunoglobulin-domain-containing 4 (VSIG4) is a B7 family-related protein and specifically expressed in resting tissue-resident macrophages to mediate various cellular events. In the study, we attempted to explore the effects of VSIG4 on CI/KT-induced AKI in a mouse model. Our results showed that VSIG4 expression was markedly down-regulated in serum of kidney transplant recipients with acute rejection, and in renal tissues of cold ischemia-reperfusion (IR)-operated mice with AKI, which was confirmed in murine macrophages stimulated by oxygen glucose deprivation/reoxygenation (OGD/R). We then found that exogenous VSIG4 markedly ameliorated histological changes in kidney of CI/KT mice by suppressing inflammation and apoptosis through restraining nuclear factor-κB (NF-κB) and Caspase-3 activation, respectively. Oxidative stress and reactive oxygen species (ROS) accumulation in renal tissues were also mitigated by exogenous VSIG4 in CI/KT mice through improving nuclear factor-erythroid 2 related factor 2 (Nrf2) nuclear expression. The inhibitory effects of VSIG4 on inflammation, ROS generation and cell death were confirmed in OGD/R-treated macrophages, which further ameliorated oxidative damage and apoptosis in podocytes. More in vivo and in vitro studies showed that CI/KT- and OGD/R-induced AKI was further accelerated by VSIG4 knockdown. Mechanistically, VSIG4 directly interacted with AKT, and AKT activation was necessary for VSIG4 to govern all these above mentioned cellular processes. Collectively, our findings demonstrated that VSIG4 could mitigate AKI in a CI/KT mouse model, and we identified VSIG4/AKT axis as a promising therapeutic target for the treatment of the disease.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Kun-Yuan Li
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xiao-You Liu
- Department of Organ Transplantation, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China.
| | - Yan-Yang Tu
- Department of Experimental Surgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, 710000, China
| |
Collapse
|
13
|
Xu Z, Huang X, Lin Q, Xiang W. Long non-coding RNA TUG1 knockdown promotes autophagy and improves acute renal injury in ischemia-reperfusion-treated rats by binding to microRNA-29 to silence PTEN. BMC Nephrol 2021; 22:288. [PMID: 34429073 PMCID: PMC8385981 DOI: 10.1186/s12882-021-02473-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 07/02/2021] [Indexed: 11/10/2022] Open
Abstract
Objective Long noncoding RNA (lncRNA) taurine upregulated gene 1 (TUG1) is increased under the condition of ischemia. This study intended to identify the mechanism of TUG1 in renal ischemia-reperfusion (I/R). Methods First, a rat model of acute renal injury induced by I/R was established, followed by the measurement of blood urea nitrogen (BUN), serum creatine (SCr), methylenedioxyphetamine (MDA) and superoxide dismutase (SOD) in the serum of rats. TUG1 was knocked down in I/R rats (ko-TUG1 group). Next, histological staining was used to evaluate the pathological damage and apoptosis of rat kidney. Western blot analysis was used to detect the levels of apoptosis- and autophagy-related proteins and transmission electron microscope was used to observe autophagosomes. Autophagy and apoptosis were evaluated after inhibition of the autophagy pathway using the inhibitor 3-MA. The targeting relation among TUG1, microRNA (miR)-29 and phosphatase and tensin homolog (PTEN) were validated. Lastly, the effects of TUG1 on biological behaviors of renal tubular cells were evaluated in vitro. Results In vivo, the levels of BUN, SCr and MDA in the serum of I/R-treated rats were increased while SOD level and autophagosomes were reduced, tubule epithelial cells were necrotic, and TUG1 was upregulated in renal tissues of I/R-treated rats, which were all reversed in rats in the ko-TUG1 group. Autophagy inhibition (ko-TUG1 + 3-MA group) averted the protective effect of TUG1 knockdown on I/R-treated rats. TUG1 could competitively bind to miR-29 to promote PTEN expression. In vitro, silencing TUG1 (sh-TUG1 group) promoted viability and autophagy of renal tubular cells and inhibited apoptosis. Conclusions LncRNA TUG can promote PTEN expression by competitively binding to miR-29 to promote autophagy and inhibited apoptosis, thus aggravating acute renal injury in I/R-treated rats. Supplementary Information The online version contains supplementary material available at 10.1186/s12882-021-02473-0.
Collapse
Affiliation(s)
- Zhiquan Xu
- Department of Nephrology, Rheumatology and Immunology, Hainan Women and Children's Medical Center, 570300, Haikou, Hainan, P.R. China
| | - Xiaoyan Huang
- Department of Genetics, Metabolism and Endocrinology, Hainan Women and Children's Medical Center, 570206, Haikou, Hainan, P.R. China
| | - Qiuyu Lin
- Department of Respiratory, Hainan Maternal and Children's Medical Center, 570000, Haikou, Hainan, P.R. China
| | - Wei Xiang
- Department of Pediatrics, Hainan Maternal and Children's Medical Center, Changbin Road, Xiuying District, Hainan, 571199, Haikou, P.R. China.
| |
Collapse
|
14
|
Novel Insights into the Molecular Mechanisms of Ischemia/Reperfusion Injury in Kidney Transplantation. TRANSPLANTOLOGY 2021. [DOI: 10.3390/transplantology2020018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ischemia reperfusion injury (IRI) is one of the most important mechanisms involved in delayed or reduced graft function after kidney transplantation. It is a complex pathophysiological process, followed by a pro-inflammatory response that enhances the immunogenicity of the graft and the risk of acute rejection. Many biologic processes are involved in its development, such as transcriptional reprogramming, the activation of apoptosis and cell death, endothelial dysfunction and the activation of the innate and adaptive immune response. Recent evidence has highlighted the importance of complement activation in IRI cascade, which expresses a pleiotropic action on tubular cells, on vascular cells (pericytes and endothelial cells) and on immune system cells. The effects of IRI in the long term lead to interstitial fibrosis and tubular atrophy, which contribute to chronic graft dysfunction and subsequently graft failure. Furthermore, several metabolic alterations occur upon IRI. Metabolomic analyses of IRI detected a “metabolic profile” of this process, in order to identify novel biomarkers that may potentially be useful for both early diagnosis and monitoring the therapeutic response. The aim of this review is to update the most relevant molecular mechanisms underlying IRI, and also to discuss potential therapeutic targets in future clinical practice.
Collapse
|
15
|
Effects of Ischemia-Reperfusion on Tubular Cell Membrane Transporters and Consequences in Kidney Transplantation. J Clin Med 2020; 9:jcm9082610. [PMID: 32806541 PMCID: PMC7464608 DOI: 10.3390/jcm9082610] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/12/2022] Open
Abstract
Ischemia-reperfusion (IR)-induced acute kidney injury (IRI) is an inevitable event in kidney transplantation. It is a complex pathophysiological process associated with numerous structural and metabolic changes that have a profound influence on the early and the late function of the transplanted kidney. Proximal tubular cells are particularly sensitive to IRI. These cells are involved in renal and whole-body homeostasis, detoxification processes and drugs elimination by a transporter-dependent, transcellular transport system involving Solute Carriers (SLCs) and ATP Binding Cassettes (ABCs) transporters. Numerous studies conducted mainly in animal models suggested that IRI causes decreased expression and activity of some major tubular transporters. This could favor uremic toxins accumulation and renal metabolic alterations or impact the pharmacokinetic/toxicity of drugs used in transplantation. It is of particular importance to understand the underlying mechanisms and effects of IR on tubular transporters in order to improve the mechanistic understanding of IRI pathophysiology, identify biomarkers of graft function or promote the design and development of novel and effective therapies. Modulation of transporters’ activity could thus be a new therapeutic opportunity to attenuate kidney injury during IR.
Collapse
|
16
|
Dufour L, Ferhat M, Robin A, Inal S, Favreau F, Goujon JM, Hauet T, Gombert JM, Herbelin A, Thierry A. [Ischemia-reperfusion injury after kidney transplantation]. Nephrol Ther 2020; 16:388-399. [PMID: 32571740 DOI: 10.1016/j.nephro.2020.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Ischemia-reperfusion injury is an inescapable phenomenon in kidney transplantation. It combines lesional processes of biochemical origin associated with oxydative stress and of immunological origin in connection with the recruitment and activation of innate immunity cells. Histological lesions associate acute tubular necrosis and interstitial œdema, which can progress to interstitial fibrosis. The extent of these lesions depends on donor characteristics (age, expanded criteria donor, etc.) and cold ischemia time. In the short term, ischemia-reperfusion results in delayed recovery of graft function. Cold ischemia time also impacts long-term graft survival. Preclinical models, such as murine and porcine models, have furthered understanding of the pathophysiological mechanisms of ischemia-reperfusion injury. Due to its renal anatomical proximity to humans, the porcine model is relevant to assessment of the molecules administered to a donor or recipient, and also of additives to preservation solutions. Different donor resuscitation and graft perfusion strategies can be studied. In humans, prevention of ischemia-reperfusion injury is a research subject as concerns donor conditioning, additive molecules in preservation solutions, graft reperfusion modalities and choice of the molecules administered to the recipient. Pending significant advances in research, the goal is to achieve the shortest possible cold ischemia time.
Collapse
Affiliation(s)
- Léa Dufour
- Service de néphrologie-hémodialyse-transplantation rénale, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Maroua Ferhat
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Aurélie Robin
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Sofiane Inal
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service de biochimie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Frédéric Favreau
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Jean-Michel Goujon
- Service d'anatomopathologie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Thierry Hauet
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service de biochimie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Fédération hospitalo-universitaire de transplantation Survival Optimization in Organ Transplantation (Support) Tours Poitiers Limoges, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Plateforme Infrastructures en biologie, santé et agronomie (Ibisa) Modélisation préclinique - innovation chirurgicale et technologique (Mopict), 86000 Poitiers cedex, France
| | - Jean-Marc Gombert
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Service d'immunologie, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - André Herbelin
- Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France
| | - Antoine Thierry
- Service de néphrologie-hémodialyse-transplantation rénale, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Inserm, U1082 laboratoire Irtomit, 2, rue de la Milétrie, 86021 Poitiers cedex, France; Fédération hospitalo-universitaire de transplantation Survival Optimization in Organ Transplantation (Support) Tours Poitiers Limoges, CHU de Poitiers, 2, rue de la Milétrie, 86021 Poitiers cedex, France.
| |
Collapse
|
17
|
Gagnebin Y, Pezzatti J, Lescuyer P, Boccard J, Ponte B, Rudaz S. Combining the advantages of multilevel and orthogonal partial least squares data analysis for longitudinal metabolomics: Application to kidney transplantation. Anal Chim Acta 2019; 1099:26-38. [PMID: 31986274 DOI: 10.1016/j.aca.2019.11.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 11/15/2019] [Accepted: 11/21/2019] [Indexed: 11/29/2022]
Abstract
Kidney transplantation is one of the renal replacement options in patients suffering from end-stage renal disease (ESRD). After a transplant, patient follow-up is essential and is mostly based on immunosuppressive drug levels control, creatinine measurement and kidney biopsy in case of a rejection suspicion. The extensive analysis of metabolite levels offered by metabolomics might improve patient monitoring, help in the surveillance of the restoration of a "normal" renal function and possibly also predict rejection. The longitudinal follow-up of those patients with repeated measurements is useful to understand changes and decide whether an intervention is necessary. The time modality, therefore, constitutes a specific dimension in the data structure, requiring dedicated consideration for proper statistical analysis. The handling of specific data structures in metabolomics has received strong interest in recent years. In this work, we demonstrated the recently developed ANOVA multiblock OPLS (AMOPLS) to efficiently analyse longitudinal metabolomic data by considering the intrinsic experimental design. Indeed, AMOPLS combines the advantages of multilevel approaches and OPLS by separating between and within individual variations using dedicated predictive components, while removing most uncorrelated variations in the orthogonal component(s), thus facilitating interpretation. This modelling approach was applied to a clinical cohort study aiming to evaluate the impact of kidney transplantation over time on the plasma metabolic profile of graft patients and donor volunteers. A dataset of 266 plasma metabolites was identified using an LC-MS multiplatform analytical setup. Two separate AMOPLS models were computed: one for the recipient group and one for the donor group. The results highlighted the benefits of transplantation for recipients and the relatively low impacts on blood metabolites of donor volunteers.
Collapse
Affiliation(s)
- Yoric Gagnebin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Julian Pezzatti
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Pierre Lescuyer
- Department of Genetic and Laboratory Medicine, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Julien Boccard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Belen Ponte
- Service of Nephrology, Geneva University Hospitals (HUG), Geneva, Switzerland
| | - Serge Rudaz
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
18
|
Tardieu A, Chazelas P, Faye PA, Favreau F, Nadal-Desbarats L, Sallée C, Margueritte F, Couquet CY, Marquet P, Guellec CBL, Gauthier T. Changes in the metabolic composition of storage solution with prolonged cold ischemia of the uterus. J Assist Reprod Genet 2019; 36:1169-1178. [PMID: 31079269 DOI: 10.1007/s10815-019-01477-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/03/2019] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION The development of uterine transplantation (UTx) from deceased donors requires knowledge of the tolerance of the uterus to prolonged cold ischemia (CI). This can be evaluated through the use of biological parameters to assess degradation of the organ between its procurement and transplantation. The objective of this study was to analyze changes in the metabolic composition of the storage solution in cases of prolonged CI in uteri from ewes. METHODS Eighteen uterine auto-transplantations were performed in ewes. CI time was 1 h (T1) or 24 h (T24). Samples of Celsior® were taken when the explanted uterus was flushed (T0) and at the end of CI. A dual approach to metabolic analyses was followed: targeted biochemical analyses targeting several predefined metabolites and non-targeted metabolomics analyses based on nuclear magnetic resonance (NMR). RESULTS Metabolic analyses were performed on 16 explanted uteri. Metabolomic profiles differed significantly between T1 and T24 (p = 0.003). Hypoxia-associated degradation of the organ was demonstrated by the significantly higher lactate levels at T24 than at T1 (p < 0.05), accompanied by cell lysis, and significantly higher levels of creatine kinase activity in T24 than in T1 uteri (p < 0.05). Oxidative stress increased over time, with a significantly higher oxidized glutathione/glutathione ratio for T24 than for T1 uteri (p < 0.05). CONCLUSION The metabolic results indicate a significant degradation of the uterus during 24 h of CI. Metabolic analysis of the storage solution could be used as a non-invasive tool for evaluating uterine degradation during CI before transplantation.
Collapse
Affiliation(s)
- Antoine Tardieu
- INSERM, Inserm Unit U1248, 87000, Limoges, France. .,Department of Gynecologic and Obstetric, Hospital of Limoges, 87000, Limoges, France.
| | - P Chazelas
- Faculty of Medicine, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", University of Limoges, 87000, Limoges, France.,Laboratory of Biochemistry and Molecular genetics, Hospital of Limoges, 87000, Limoges, France
| | - P-A Faye
- Faculty of Medicine, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", University of Limoges, 87000, Limoges, France.,Laboratory of Biochemistry and Molecular genetics, Hospital of Limoges, 87000, Limoges, France
| | - F Favreau
- Faculty of Medicine, EA 6309 "Maintenance Myélinique et Neuropathies Périphériques", University of Limoges, 87000, Limoges, France.,Laboratory of Biochemistry and Molecular genetics, Hospital of Limoges, 87000, Limoges, France
| | | | - C Sallée
- Department of Gynecologic and Obstetric, Hospital of Limoges, 87000, Limoges, France
| | - F Margueritte
- Department of Gynecologic and Obstetric, Hospital of Limoges, 87000, Limoges, France
| | - C-Y Couquet
- Platform of Medicine, Imagery and experimental surgery (MICE), Hospital of Limoges, 87000, Limoges, France
| | - P Marquet
- INSERM, Inserm Unit U1248, 87000, Limoges, France
| | - C Barin-Le Guellec
- INSERM, Inserm Unit U1248, 87000, Limoges, France.,Faculty of Medicine, University of Tours, 37000, Tours, France
| | - T Gauthier
- INSERM, Inserm Unit U1248, 87000, Limoges, France.,Department of Gynecologic and Obstetric, Hospital of Limoges, 87000, Limoges, France
| |
Collapse
|
19
|
Deng X, Zeng T, Li J, Huang C, Yu M, Wang X, Tan L, Zhang M, Li A, Hu J. Kidney-targeted triptolide-encapsulated mesoscale nanoparticles for high-efficiency treatment of kidney injury. Biomater Sci 2019; 7:5312-5323. [PMID: 31617509 DOI: 10.1039/c9bm01290g] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Insolubility and toxicity of TP restrict clinical applications in renal diseases. Here, TP-encapsulated mesoscale nanoparticles offer a new therapeutic strategy for renal diseases due to good biocompability, kidney targeting and slow release.
Collapse
|
20
|
Cardiotrophin-1 Improves Kidney Preservation, Graft Function, and Survival in Transplanted Rats. Transplantation 2018; 102:e404-e412. [DOI: 10.1097/tp.0000000000002313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
21
|
Metabolomics in chronic kidney disease: Strategies for extended metabolome coverage. J Pharm Biomed Anal 2018; 161:313-325. [PMID: 30195171 DOI: 10.1016/j.jpba.2018.08.046] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/22/2018] [Accepted: 08/23/2018] [Indexed: 12/16/2022]
Abstract
Chronic kidney disease (CKD) is becoming a major public health issue as prevalence is increasing worldwide. It also represents a major challenge for the identification of new early biomarkers, understanding of biochemical mechanisms, patient monitoring and prognosis. Each metabolite contained in a biofluid or tissue may play a role as a signal or as a driver in the development or progression of the pathology. Therefore, metabolomics is a highly valuable approach in this clinical context. It aims to provide a representative picture of a biological system, making exhaustive metabolite coverage crucial. Two aspects can be considered: analytical and biological coverage. From an analytical point of view, monitoring all metabolites within one run is currently impossible. Multiple analytical techniques providing orthogonal information should be carried out in parallel for coverage improvement. The biological aspect of metabolome coverage can be enhanced by using multiple biofluids or tissues for in-depth biological investigation, as the analysis of a single sample type is generally insufficient for whole organism extrapolation. Hence, recording of signals from multiple sample types and different analytical platforms generates massive and complex datasets so that chemometric tools, including data fusion approaches and multi-block analysis, are key tools for extracting biological information and for discovery of relevant biomarkers. This review presents the recent developments in the field of metabolomic analysis, from sampling and analytical strategies to chemometric tools, dedicated to the generation and handling of multiple complementary metabolomic datasets enabling extended metabolite coverage to improve our biological knowledge of CKD.
Collapse
|
22
|
Proteo-metabolomics reveals compensation between ischemic and non-injured contralateral kidneys after reperfusion. Sci Rep 2018; 8:8539. [PMID: 29867102 PMCID: PMC5986744 DOI: 10.1038/s41598-018-26804-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 05/18/2018] [Indexed: 12/18/2022] Open
Abstract
Ischaemia and reperfusion injury (IRI) is the leading cause of acute kidney injury (AKI), which contributes to high morbidity and mortality rates in a wide range of injuries as well as the development of chronic kidney disease. The cellular and molecular responses of the kidney to IRI are complex and not fully understood. Here, we used an integrated proteomic and metabolomic approach to investigate the effects of IRI on protein abundance and metabolite levels. Rat kidneys were subjected to 45 min of warm ischaemia followed by 4 h and 24 h reperfusion, with contralateral and separate healthy kidneys serving as controls. Kidney tissue proteomics after IRI revealed elevated proteins belonging to the acute phase response, coagulation and complement pathways, and fatty acid (FA) signalling. Metabolic changes were already evident after 4 h reperfusion and showed increased level of glycolysis, lipids and FAs, whilst mitochondrial function and ATP production was impaired after 24 h. This deficit was partially compensated for by the contralateral kidney. Such a metabolic balance counteracts for the developing energy deficit due to reduced mitochondrial function in the injured kidney.
Collapse
|
23
|
Ansari J, Kaur G, Gavins FNE. Therapeutic Potential of Annexin A1 in Ischemia Reperfusion Injury. Int J Mol Sci 2018; 19:ijms19041211. [PMID: 29659553 PMCID: PMC5979321 DOI: 10.3390/ijms19041211] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 01/19/2023] Open
Abstract
Cardiovascular disease (CVD) continues to be the leading cause of death in the world. Increased inflammation and an enhanced thrombotic milieu represent two major complications of CVD, which can culminate into an ischemic event. Treatment for these life-threatening complications remains reperfusion and restoration of blood flow. However, reperfusion strategies may result in ischemia-reperfusion injury (I/RI) secondary to various cardiovascular pathologies, including myocardial infarction and stroke, by furthering the inflammatory and thrombotic responses and delivering inflammatory mediators to the affected tissue. Annexin A1 (AnxA1) and its mimetic peptides are endogenous anti-inflammatory and pro-resolving mediators, known to have significant effects in resolving inflammation in a variety of disease models. Mounting evidence suggests that AnxA1, which interacts with the formyl peptide receptor (FPR) family, may have a significant role in mitigating I/RI associated complications. In this review article, we focus on how AnxA1 plays a protective role in the I/R based vascular pathologies.
Collapse
Affiliation(s)
- Junaid Ansari
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Gaganpreet Kaur
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| | - Felicity N E Gavins
- Department of Molecular & Cellular Physiology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
- Department of Neurology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA 71130, USA.
| |
Collapse
|