1
|
Wang Y, Yu DH, Quan W, Lan T, Tang F, Ma C, Li ZQ, Hong K, Wang ZF. Marine-derived fungal metabolite MHO7 promotes glioblastoma cell apoptosis as a novel Akt inhibitor by targeting membrane phosphatidylethanolamine. Int Immunopharmacol 2025; 155:114656. [PMID: 40233448 DOI: 10.1016/j.intimp.2025.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Temozolomide (TMZ) chemoresistance is a major challenge in the management of glioblastoma (GBM). Marine-derived fungal metabolites are a significant source of potential chemotherapeutic candidates. This study aimed to investigate the cytotoxic effect of MHO7 (6-epi-ophiobolin G) on GBM cells. MHO7 inhibited GBM cell proliferation and promoted apoptosis, accompanied by a reduction in Akt activity and membrane phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-trisphosphate (PIP3) content. We verified that MHO7 could react with phosphatidylethanolamine (PE), the second most abundant phospholipid in the plasma membrane, to form a covalent adduct. Pre-incubation with exogenous PE significantly alleviated the pro-apoptotic effect of MHO7, with a concomitant increase in Akt activity and membrane PIP2 and PIP3 content. Since binding to PIP3 is a key step in Akt activation, our results indicate that MHO7 can function as a novel Akt inhibitor. Additionally, MHO7 has a synergistic pro-apoptotic effect with TMZ, and TMZ-resistant GBM cells remain sensitive to MHO7. MHO7 had little cytotoxicity against normal neuronal cells. The anti-growth effect of MHO7 was also observed in an orthotopic glioma mice model. Therefore, MHO7 is a promising chemotherapeutic agent for GBM. This study also indicated that membrane lipid-targeted therapy may be a novel and effective strategy for tumor treatment.
Collapse
Affiliation(s)
- Yi Wang
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China
| | - Dong-Hu Yu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Wei Quan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tian Lan
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Feng Tang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chao Ma
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhi-Qiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China.
| | - Ze-Fen Wang
- Department of Physiology, Wuhan University TaiKang Medical School (School of Basic Medical Sciences), Wuhan, China.
| |
Collapse
|
2
|
Moon DH, Park J, Kim S, Kim S, Oh DC, Lee SK. Methyl-oxazolomycin A: A novel oxazolomycin analog with potent selective estrogen receptor degrading activity in breast cancer cells. Biochem Pharmacol 2025; 238:116966. [PMID: 40315926 DOI: 10.1016/j.bcp.2025.116966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 04/03/2025] [Accepted: 04/29/2025] [Indexed: 05/04/2025]
Abstract
Breast cancer (BC), the most prevalent malignancy in women worldwide, is categorized according to the expression of estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) in tumor cells. Approximately 70% of all BCs are ER-positive and HER2-negative, and estrogen binding to the ER plays a vital role in BC development. We previously reported that methyl-oxazolomycin A, a natural compound isolated from Streptomyces sp. in soil, exhibited selective antiproliferative activity against ER-positive BC cells compared to triple-negative BC cells not expressing ER, PR, and HER2. The present study aimed to elucidate the molecular mechanisms underlying the antiproliferative activity of methyl-oxazolomycin A in two ER-positive BC lines, MCF-7 and T-47D. Methyl-oxazolomycin A effectively reduced the protein levels of ERα via proteasomal degradation while also reducing the protein levels of phosphorylated ERα. Notably, methyl-oxazolomycin A demonstrated potent antiproliferative activity in tamoxifen-resistant MCF-7 cells and downregulated the protein expression of phosphorylated ERα at Tyr537, which SERDs such as fulvestrant fail to target. The antiproliferative activity of methyl-oxazolomycin A was associated with the induction of the G0/G1 cell cycle arrest through the modulation of cell cycle checkpoint protein expression. Prolonged treatment with methyl-oxazolomycin A led to an increase in the production of reactive oxygen species and induced apoptosis. These findings, which detail the mechanisms underlying the antiproliferative activity of methyl-oxazolomycin A, support its potential as a novel agent targeting ER-positive BC cells.
Collapse
Affiliation(s)
- Dong Hyun Moon
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jiyoon Park
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Seonghun Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sanghee Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Kook Lee
- College of Pharmacy, Natural Products Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
3
|
Han C, Song A, He Y, Yang L, Chen L, Dai W, Wu Q, Yuan S. Genome mining and biosynthetic pathways of marine-derived fungal bioactive natural products. Front Microbiol 2024; 15:1520446. [PMID: 39726967 PMCID: PMC11669671 DOI: 10.3389/fmicb.2024.1520446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Marine fungal natural products (MFNPs) are a vital source of pharmaceuticals, primarily synthesized by relevant biosynthetic gene clusters (BGCs). However, many of these BGCs remain silent under standard laboratory culture conditions, delaying the development of novel drugs from MFNPs to some extent. This review highlights recent efforts in genome mining and biosynthetic pathways of bioactive natural products from marine fungi, focusing on methods such as bioinformatics analysis, gene knockout, and heterologous expression to identify relevant BGCs and elucidate the biosynthetic pathways and enzyme functions of MFNPs. The research efforts presented in this review provide essential insights for future gene-guided mining and biosynthetic pathway analysis in MFNPs.
Collapse
Affiliation(s)
- Caihua Han
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Anjing Song
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Yueying He
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Liu Yang
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Litong Chen
- Center of Ocean Expedition, School of Atmospheric Science, Sun Yat-sen University, Zhuhai, China
| | - Wei Dai
- Teaching and Experimental Center, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qilin Wu
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| | - Siwen Yuan
- School of Bioengineering, Zunyi Medical University, Zhuhai, China
| |
Collapse
|
4
|
Chen C, Feng Y, Zhou C, Liu Z, Tang Z, Zhang Y, Li T, Gu C, Chen J. Development of natural product-based targeted protein degraders as anticancer agents. Bioorg Chem 2024; 153:107772. [PMID: 39243739 DOI: 10.1016/j.bioorg.2024.107772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/14/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Targeted protein degradation (TPD) has emerged as a powerful approach for eliminating cancer-causing proteins through an "event-driven" pharmacological mode. Proteolysis-targeting chimeras (PROTACs), molecular glues (MGs), and hydrophobic tagging (HyTing) have evolved into three major classes of TPD technologies. Natural products (NPs) are a primary source of anticancer drugs and have played important roles in the development of TPD technology. NPs potentially expand the toolbox of TPD by providing a variety of E3 ligase ligands, protein of interest (POI) warheads, and hydrophobic tags (HyTs). As a promising direction in the TPD field, NP-based degraders have shown great potential for anticancer therapy. In this review, we summarize recent advances in the development of NP-based degraders (PROTACs, MGs and HyTing) with anticancer applications. Moreover, we put forward the challenges while presenting potential opportunities for the advancement of future targeted protein degraders derived from NPs.
Collapse
Affiliation(s)
- Cheng Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yanyan Feng
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chen Zhou
- Department of Medicinal Chemistry, College of Pharmacy, University of Florida, Gainesville, FL 32610, United States
| | - Zhouyan Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ziwei Tang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ye Zhang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Tong Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Chenglei Gu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jichao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
5
|
Ding M, He M, Li D, Ding S, Dong C, Zhao H, Song H, Hong K, Zhu H. A Marine-Derived Small Molecule Inhibits Prostate Cancer Growth by Promoting Endoplasmic Reticulum Stress Induced Apoptosis and Autophagy. Phytother Res 2024; 38:6004-6022. [PMID: 39474779 DOI: 10.1002/ptr.8354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 12/13/2024]
Abstract
MHO7 (6-epi-ophiobolin G), a novel component extracted from a mangrove fungus, exhibits significant anticancer effects against breast cancer. However, the precise mechanism underlying the anticancer effects of MHO7 in prostate cancer (PCa) is yet to be fully elucidated. Therefore, this study was undertaken to assess the effect of MHO7 on PCa cells and elucidate its underlying mechanism. A series of in vitro experiments were conducted, including Cell Counting Kit-8, and plate clone formation assays, flow cytometry analysis, electron microscopy, immunofluorescence staining, western blotting, and molecular dynamics simulation. Additionally, in vivo tumor xenograft models were employed. Our findings revealed that MHO7 could induce cellular autophagy at low concentration (2 μM) and apoptosis at relatively high concentration (4 and 8 μM), leading to significant PCa cell growth inhibition. Furthermore, MHO7 triggered endoplasmic reticulum (ER) stress, which subsequently stimulated autophagy and apoptosis via IRE1α/XBP-1s signaling pathway activation. Notably, IRE1α knockdown markedly reduced MHO7-induced autophagy and apoptosis. Moreover, MHO7 targeted the IRE1α protein, thereby enhancing its stability. MHO7 also exhibited substantial anticancer activity in tumor xenograft models. Our study revealed that MHO7 holds considerable potential as an anticancer agent against PCa, attributable to its activation of ER stress-induced autophagy and apoptosis at different concentrations, facilitated by the upregulation of IRE1α expression.
Collapse
Affiliation(s)
- Mao Ding
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Mu He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Dan Li
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Shuaishuai Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chenjia Dong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hongchao Zhao
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Huajie Song
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Hengcheng Zhu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Zhang LL, Zhang DJ, Shi JX, Huang MY, Yu JM, Chen XJ, Wei X, Zou L, Lu JJ. Immunogenic cell death inducers for cancer therapy: An emerging focus on natural products. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155828. [PMID: 38905847 DOI: 10.1016/j.phymed.2024.155828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
BACKGROUND Immunogenic cell death (ICD) is a specific form of regulated cell death induced by a variety of stressors. During ICD, the dying cancer cells release damage-associated molecular patterns (DAMPs), which promote dendritic cell maturation and tumor antigen presentation, subsequently triggering a T-cell-mediated anti-tumor immune response. In recent years, a growing number of studies have demonstrated the potential of natural products to induce ICD and enhance tumor cell immunogenicity. Moreover, there is an increasing interest in identifying new ICD inducers from natural products. PURPOSE This study aimed to emphasize the potential of natural products and their derivatives as ICD inducers to promote research on using natural products in cancer therapy and provide ideas for future novel immunotherapies based on ICD induction. METHOD This review included a thorough search of the PubMed, Web of Science, Scopus, and Google Scholar databases to identify natural products with ICD-inducing capabilities. A comprehensive search for clinical trials on natural ICD inducers was also conducted using ClinicalTrials.gov, as well as the approved patents using the Espacenet and CNKI Patent Database. RESULTS Natural compounds that induce ICD can be categorized into several groups, such as polyphenols, flavonoids, terpenoids, and alkaloids. Natural products can induce the release of DAMPs by triggering endoplasmic reticulum stress, activation of autophagy-related pathways, and reactive oxygen species generation, etc. Ultimately, they activate anti-tumor immune response and improve the efficacy of cancer treatments. CONCLUSION A growing number of ICD inducers from natural products with promising anti-cancer potential have been identified. The detailed information presented in this review will contribute to the further development of natural ICD inducers and cancer treatment strategies based on ICD-induced responses.
Collapse
Affiliation(s)
- Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan 442000, China
| | - Du-Juan Zhang
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jia-Xin Shi
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Mu-Yang Huang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Jia-Mei Yu
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xu-Jia Chen
- College of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Xiao Wei
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, Chengdu University, Chengdu 610106, China.
| | - Jin-Jian Lu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Macao 999078, China.
| |
Collapse
|
7
|
Zhou Y, Zhou F, Xu S, Shi D, Ding D, Wang S, Poongavanam V, Tang K, Liu X, Zhan P. Hydrophobic tagging of small molecules: an overview of the literature and future outlook. Expert Opin Drug Discov 2024; 19:799-813. [PMID: 38825802 DOI: 10.1080/17460441.2024.2360416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/23/2024] [Indexed: 06/04/2024]
Abstract
INTRODUCTION Hydrophobic tagging (HyT) technology presents a distinct therapeutic strategy diverging from conventional small molecule drugs, providing an innovative approach to drug design. This review aims to provide an overview of the HyT literature and future outlook to offer guidance for drug design. AREAS COVERED In this review, the authors introduce the composition, mechanisms and advantages of HyT technology, as well as summarize the detailed applications of HyT technology in anti-cancer, neurodegenerative diseases (NDs), autoimmune disorders, cardiovascular diseases (CVDs), and other fields. Furthermore, this review discusses key aspects of the future development of HyT molecules. EXPERT OPINION HyT emerges as a highly promising targeted protein degradation (TPD) strategy, following the successful development of proteolysis targeting chimeras (PROTAC) and molecular glue. Based on exploring new avenues, modification of the HyT molecule itself potentially enhances the technology. Improved synthetic pathways and emphasis on pharmacokinetic (PK) properties will facilitate the development of HyT. Furthermore, elucidating the biochemical basis by which the compound's hydrophobic moiety recruits the protein homeostasis network will enable the development of more precise assays that can guide the optimization of the linker and hydrophobic moiety.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Fan Zhou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shujing Xu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Dazhou Shi
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Dang Ding
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shuo Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | | | - Kai Tang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
8
|
Gowans FA, Thach DQ, Zhu Z, Wang Y, Altamirano Poblano BE, Dovala D, Tallarico JA, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Ophiobolin A Covalently Targets Mitochondrial Complex IV Leading to Metabolic Collapse in Cancer Cells. ACS Chem Biol 2024; 19:1260-1270. [PMID: 38739449 DOI: 10.1021/acschembio.4c00064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anticancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of the OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets: lysine-72 of cytochrome c oxidase subunit 5A (COX5A) and cysteine-53 of mitochondrial hypoxia induced gene 1 domain family member 2A (HIGD2A). These two subunit proteins are part of complex IV (cytochrome C oxidase) within the electron transport chain and contributed significantly to the antiproliferative activity of OPA. OPA activated mitochondrial respiration in a COX5A- and HIGD2A-dependent manner, leading to an initial spike in mitochondrial ATP and heightened mitochondrial oxidative stress. OPA compromised mitochondrial membrane potential, ultimately leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anticancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.
Collapse
Affiliation(s)
- Flor A Gowans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720 United States
| | - Danny Q Thach
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
| | - Zhouyang Zhu
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
| | - Yangzhi Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Belen E Altamirano Poblano
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Dustin Dovala
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis Institutes for BioMedical Research, Emeryville, California 94608, United States
| | - John A Tallarico
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Jeffrey M McKenna
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis Institutes for BioMedical Research, Basel CH-4056, Switzerland
| | - Markus Schirle
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Novartis Institutes for BioMedical Research, Cambridge, Massachusetts 02139, United States
| | - Thomas J Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
| | - Daniel K Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, California 94720, United States
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, California 94720, United States
- Innovative Genomics Institute, Berkeley, California 94704, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720 United States
| |
Collapse
|
9
|
He Q, Zhao X, Wu D, Jia S, Liu C, Cheng Z, Huang F, Chen Y, Lu T, Lu S. Hydrophobic tag-based protein degradation: Development, opportunity and challenge. Eur J Med Chem 2023; 260:115741. [PMID: 37607438 DOI: 10.1016/j.ejmech.2023.115741] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/07/2023] [Accepted: 08/16/2023] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) has emerged as a promising approach for drug development, particularly for undruggable targets. TPD technology has also been instrumental in overcoming drug resistance. While some TPD molecules utilizing proteolysis-targeting chimera (PROTACs) or molecular glue strategies have been approved or evaluated in clinical trials, hydrophobic tag-based protein degradation (HyT-PD) has also gained significant attention as a tool for medicinal chemists. The increasing number of reported HyT-PD molecules possessing high efficiency in degrading protein and good pharmacokinetic (PK) properties, has further fueled interest in this approach. This review aims to present the design rationale, hydrophobic tags in use, and diverse mechanisms of action of HyT-PD. Additionally, the advantages and disadvantages of HyT-PD in protein degradation are discussed. This review may help inspire the development of more HyT-PDs with superior drug-like properties for clinical evaluation.
Collapse
Affiliation(s)
- Qindi He
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Xiaofei Zhao
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Donglin Wu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Siming Jia
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Canlin Liu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Zitian Cheng
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Fei Huang
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China
| | - Yadong Chen
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing, 211198, PR China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Shuai Lu
- School of Science, China Pharmaceutical University, Nanjing, 211198, PR China.
| |
Collapse
|
10
|
Yao J, Tao Y, Hu Z, Li J, Xue Z, Zhang Y, Lei Y. Optimization of small molecule degraders and antagonists for targeting estrogen receptor based on breast cancer: current status and future. Front Pharmacol 2023; 14:1225951. [PMID: 37808197 PMCID: PMC10551544 DOI: 10.3389/fphar.2023.1225951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
The estrogen receptor (ER) is a classical receptor protein that plays a crucial role in mediating multiple signaling pathways in various target organs. It has been shown that ER-targeting therapies inhibit breast cancer cell proliferation, enhance neuronal protection, and promote osteoclast formation. Several drugs have been designed to specifically target ER in ER-positive (ER+) breast cancer, including selective estrogen receptor modulators (SERM) such as Tamoxifen. However, the emergence of drug resistance in ER+ breast cancer and the potential side effects on the endometrium which has high ER expression has posed significant challenges in clinical practice. Recently, novel ER-targeted drugs, namely, selective estrogen receptor degrader (SERD) and selective estrogen receptor covalent antagonist (SERCA) have shown promise in addressing these concerns. This paper provides a comprehensive review of the structural functions of ER and highlights recent advancements in SERD and SERCA-related small molecule drugs, especially focusing on their structural optimization strategies and future optimization directions. Additionally, the therapeutic potential and challenges of novel SERDs and SERCAs in breast cancer and other ER-related diseases have been discussed.
Collapse
Affiliation(s)
- Jiaqi Yao
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiran Tao
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zelin Hu
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Junjie Li
- Precision Medicine Key Laboratory of Sichuan Province and Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ziyi Xue
- Department of Statistics, College of Liberal Arts and Sciences, University of Illinois Urbana-Champaign, Champaign, IL, United States
| | - Ya Zhang
- West China-California Research Center for Predictive Intervention Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yi Lei
- General Practice Ward/International Medical Center, General Practice Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Hegde M, Girisa S, Naliyadhara N, Kumar A, Alqahtani MS, Abbas M, Mohan CD, Warrier S, Hui KM, Rangappa KS, Sethi G, Kunnumakkara AB. Natural compounds targeting nuclear receptors for effective cancer therapy. Cancer Metastasis Rev 2023; 42:765-822. [PMID: 36482154 DOI: 10.1007/s10555-022-10068-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/03/2022] [Indexed: 12/13/2022]
Abstract
Human nuclear receptors (NRs) are a family of forty-eight transcription factors that modulate gene expression both spatially and temporally. Numerous biochemical, physiological, and pathological processes including cell survival, proliferation, differentiation, metabolism, immune modulation, development, reproduction, and aging are extensively orchestrated by different NRs. The involvement of dysregulated NRs and NR-mediated signaling pathways in driving cancer cell hallmarks has been thoroughly investigated. Targeting NRs has been one of the major focuses of drug development strategies for cancer interventions. Interestingly, rapid progress in molecular biology and drug screening reveals that the naturally occurring compounds are promising modern oncology drugs which are free of potentially inevitable repercussions that are associated with synthetic compounds. Therefore, the purpose of this review is to draw our attention to the potential therapeutic effects of various classes of natural compounds that target NRs such as phytochemicals, dietary components, venom constituents, royal jelly-derived compounds, and microbial derivatives in the establishment of novel and safe medications for cancer treatment. This review also emphasizes molecular mechanisms and signaling pathways that are leveraged to promote the anti-cancer effects of these natural compounds. We have also critically reviewed and assessed the advantages and limitations of current preclinical and clinical studies on this subject for cancer prophylaxis. This might subsequently pave the way for new paradigms in the discovery of drugs that target specific cancer types.
Collapse
Affiliation(s)
- Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Nikunj Naliyadhara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Michael Atiyah Building, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
- Electronics and Communications Department, College of Engineering, Delta University for Science and Technology, 35712, Gamasa, Egypt
| | | | - Sudha Warrier
- Division of Cancer Stem Cells and Cardiovascular Regeneration, School of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
- Cuor Stem Cellutions Pvt Ltd, Manipal Institute of Regenerative Medicine, Manipal Academy of Higher Education (MAHE), Bangalore, 560065, India
| | - Kam Man Hui
- Division of Cellular and Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre, Singapore, 169610, Singapore
| | | | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
12
|
Gowans FA, Thach DQ, Wang Y, Altamirano Poblano BE, Dovala D, Tallarico JA, McKenna JM, Schirle M, Maimone TJ, Nomura DK. Ophiobolin A Covalently Targets Complex IV Leading to Mitochondrial Metabolic Collapse in Cancer Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.09.531918. [PMID: 36945520 PMCID: PMC10029012 DOI: 10.1101/2023.03.09.531918] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Ophiobolin A (OPA) is a sesterterpenoid fungal natural product with broad anti-cancer activity. While OPA possesses multiple electrophilic moieties that can covalently react with nucleophilic amino acids on proteins, the proteome-wide targets and mechanism of OPA remain poorly understood in many contexts. In this study, we used covalent chemoproteomic platforms to map the proteome-wide reactivity of OPA in a highly sensitive lung cancer cell line. Among several proteins that OPA engaged, we focused on two targets-cysteine C53 of HIG2DA and lysine K72 of COX5A-that are part of complex IV of the electron transport chain and contributed significantly to the anti-proliferative activity. OPA activated mitochondrial respiration in a HIG2DA and COX5A-dependent manner, led to an initial spike in mitochondrial ATP, but then compromised mitochondrial membrane potential leading to ATP depletion. We have used chemoproteomic strategies to discover a unique anti-cancer mechanism of OPA through activation of complex IV leading to compromised mitochondrial energetics and rapid cell death.
Collapse
Affiliation(s)
- Flor A. Gowans
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94704 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Danny Q. Thach
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Yangzhi Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94704 USA
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Belen E. Altamirano Poblano
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94704 USA
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Dustin Dovala
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Institutes for BioMedical Research, Emeryville, CA 94608 USA
| | - John A. Tallarico
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139 USA
| | - Jeffrey M. McKenna
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | - Markus Schirle
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Novartis Institutes for BioMedical Research, Cambridge, MA 02139 USA
| | - Thomas J. Maimone
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
| | - Daniel K. Nomura
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA 94720 USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720 USA
- Novartis-Berkeley Translational Chemical Biology Institute, Berkeley, CA 94720 USA
- Innovative Genomics Institute, Berkeley, CA 94704 USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| |
Collapse
|
13
|
Li J, Cai Z, Li XW, Zhuang C. Natural Product-Inspired Targeted Protein Degraders: Advances and Perspectives. J Med Chem 2022; 65:13533-13560. [PMID: 36205223 DOI: 10.1021/acs.jmedchem.2c01223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeted protein degradation (TPD), a promising therapeutic strategy in drug discovery, has great potential to regulate the endogenous degradation of undruggable targets with small molecules. As vital resources that provide diverse structural templates for drug discovery, natural products (NPs) are a rising and robust arsenal for the development of therapeutic TPD. The first proof-of-concept study of proteolysis-targeting chimeras (PROTACs) was a natural polyketide ovalicin-derived degrader; since then, NPs have shown great potential to promote TPD technology. The use of NP-inspired targeted protein degraders has been confirmed to be a promising strategy to treat many human conditions, including cancer, inflammation, and nonalcoholic fatty liver disease. Nevertheless, the development of NP-inspired degraders is challenging, and the field is currently in its infancy. In this review, we summarize the bioactivities and mechanisms of NP-inspired degraders and discuss the associated challenges and future opportunities in this field.
Collapse
Affiliation(s)
- Jiao Li
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zhenyu Cai
- Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Xu-Wen Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.,Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Chunlin Zhuang
- Clinical Medicine Scientific and Technical Innovation Center, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
14
|
Tecalco-Cruz AC, Macías-Silva M, Ramírez-Jarquín JO, Ramírez-Jarquín UN. Decoding the Therapeutic Implications of the ERα Stability and Subcellular Distribution in Breast Cancer. Front Endocrinol (Lausanne) 2022; 13:867448. [PMID: 35498431 PMCID: PMC9044904 DOI: 10.3389/fendo.2022.867448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 01/22/2023] Open
Abstract
Approximately 70% of all breast cancer cases are estrogen receptor-alpha positive (ERα+) and any ERα signaling pathways deregulation is critical for the progression of malignant mammary neoplasia. ERα acts as a transcription factor that promotes the expression of estrogen target genes associated with pro-tumor activity in breast cancer cells. Furthermore, ERα is also part of extranuclear signaling pathways related to endocrine resistance. The regulation of ERα subcellular distribution and protein stability is critical to regulate its functions and, consequently, influence the response to endocrine therapies and progression of this pathology. This minireview highlights studies that have deciphered the molecular mechanisms implicated in controlling ERα stability and nucleo-cytoplasmic transport. These mechanisms offer information about novel biomarkers, therapeutic targets, and promising strategies for breast cancer treatment.
Collapse
Affiliation(s)
- Angeles C. Tecalco-Cruz
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México (UACM), Mexico City, Mexico
| | - Marina Macías-Silva
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México (UNAM), Mexico City, Mexico
| | | | - Uri Nimrod Ramírez-Jarquín
- Neural Signal Transduction, Max Planck Florida Institute for Neuroscience, Jupiter, FL, United States
- Instituto Nacional de Cardiología “Ignacio Chávez”, Mexico City, Mexico
| |
Collapse
|
15
|
Liang JJ, Yu WL, Yang L, Qin KM, Yin YP, Li D, Ni YH, Yan JJ, Zhong YX, Deng ZX, Hong K. Synthesis and structure-activity relationship study of a potent MHO7 analogue as potential anti-triple negative breast cancer agent. Eur J Med Chem 2022; 236:114313. [DOI: 10.1016/j.ejmech.2022.114313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 11/26/2022]
|
16
|
Yan J, Pang J, Liang J, Yu W, Liao X, Aobulikasimu A, Yi X, Yin Y, Deng Z, Hong K. The Biosynthesis and Transport of Ophiobolins in Aspergillus ustus 094102. Int J Mol Sci 2022; 23:ijms23031903. [PMID: 35163826 PMCID: PMC8836403 DOI: 10.3390/ijms23031903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 12/04/2022] Open
Abstract
Ophiobolins are a group of sesterterpenoids with a 5-8-5 tricyclic skeleton. They exhibit a significant cytotoxicity and present potential medicinal prospects. However, the biosynthesis and transport mechanisms of these valuable compounds have not been fully resolved. Herein, based on a transcriptome analysis, gene inactivation, heterologous expression and feeding experiments, we fully explain the biosynthesis pathway of ophiobolin K in Aspergillus ustus 094102, especially proved to be an unclustered oxidase OblCAu that catalyzes dehydrogenation at the site of C16 and C17 of both ophiobolin F and ophiobolin C. We also find that the intermediate ophiobolin C and final product ophiobolin K could be transported into a space between the cell wall and membrane by OblDAu to avoid the inhibiting of cell growth, which is proved by a fluorescence observation of the subcellular localization and cytotoxicity tests. This study completely resolves the biosynthesis mechanism of ophiobolins in strain A. ustus 094102. At the same time, it is revealed that the burden of strain growth caused by the excessive accumulation and toxicity of secondary metabolites is closely related to compartmentalized biosynthesis.
Collapse
|
17
|
Liang JJ, Yu WL, Yang L, Xie BH, Qin KM, Yin YP, Yan JJ, Gong S, Liu TY, Zhou HB, Hong K. Design and synthesis of marine sesterterpene analogues as novel estrogen receptor α degraders for breast cancer treatment. Eur J Med Chem 2022; 229:114081. [PMID: 34992039 DOI: 10.1016/j.ejmech.2021.114081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/19/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022]
Abstract
Targeted protein degradation using small molecules is an intriguing strategy for drug development. The marine sesterterpene compound MHO7 had been reported to be a potential ERα degradation agent. In order to further improve its biological activity, two series of novel MHO7 derivatives with long side chains were designed and identified as novel selective estrogen receptor down-regulators (SERDs). The growth inhibition activity of the novel SERD compounds were significantly affected by the type and length of the side chain. Most of the derivatives were significantly more potent than MHO7 against both drug-sensitive and drug-resistant breast cancer cells. Among them, compound 16a, with IC50 values of 0.41 μM against MCF-7 cell lines and 9.6-fold stronger than MHO7, was the most potential molecule. A whole-genome transcriptomic analysis of MCF-7 cells revealed that the mechanism of 16a against MCF-7 cell was similar with that of MHO7. The estrogen signaling pathway was the most affected among the disturbed genes, but the ERα degradation activity of 16a was observed higher than that of MHO7. Other effects of 16a were confirmed similar with MHO7, which means that the basic mechanisms of the derivatives are the same with the ophiobolin backbone, i.e. the degradation of ERα is mediated via proteasome-mediated process, the induction of apoptosis and the cell cycle arrest at the G1 phase. Meanwhile, a decrease of mitochondrial membrane potential and an increase of cellular ROS were also detected. Based on these results, as a novel modified ophiobolin derived compound, 16a may warrant further exploitation as a promising SERD candidate agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Jian-Jia Liang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Wu-Lin Yu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Liang Yang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Bao-Hua Xie
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Kong-Ming Qin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Yu-Ping Yin
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Jing-Jing Yan
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Shuang Gong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Ten-Yue Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Hai-Bing Zhou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, PR China.
| |
Collapse
|
18
|
Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected Reactions of α,β‐Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Zhong Li
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Shandong Provincial Key Laboratory of Synthetic Biology CAS Key Laboratory of Biofuels Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences No. 189 Songling Road Qingdao Shandong 266101 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Cai You
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
| | - Yue Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery Ministry of Education School of Pharmaceutical Sciences Wuhan University Wuhan 430071 China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Shengying Li
- State Key Laboratory of Microbial Technology Shandong University No. 72 Binhai Road Qingdao Shandong 266237 China
- Laboratory for Marine Biology and Biotechnology Qingdao National Laboratory for Marine Science and Technology Qingdao Shandong 266237 China
| |
Collapse
|
19
|
Jiang Y, Peng W, Li Z, You C, Zhao Y, Tang D, Wang B, Li S. Unexpected Reactions of α,β-Unsaturated Fatty Acids Provide Insight into the Mechanisms of CYP152 Peroxygenases. Angew Chem Int Ed Engl 2021; 60:24694-24701. [PMID: 34523786 DOI: 10.1002/anie.202111163] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/06/2021] [Indexed: 11/08/2022]
Abstract
CYP152 peroxygenases catalyze decarboxylation and hydroxylation of fatty acids using H2 O2 as cofactor. To understand the molecular basis for the chemo- and regioselectivity of these unique P450 enzymes, we analyze the activities of three CYP152 peroxygenases (OleTJE , P450SPα , P450BSβ ) towards cis- and trans-dodecenoic acids as substrate probes. The unexpected 6S-hydroxylation of the trans-isomer and 4R-hydroxylation of the cis-isomer by OleTJE , and molecular docking results suggest that the unprecedented selectivity is due to OleTJE 's preference of C2-C3 cis-configuration. In addition to the common epoxide products, undecanal is the unexpected major product of P450SPα and P450BSβ regardless of the cis/trans-configuration of substrates. The combined H2 18 O2 tracing experiments, MD simulations, and QM/MM calculations unravel an unusual mechanism for Compound I-mediated aldehyde formation in which the active site water derived from H2 O2 activation is involved in the generation of a four-membered ring lactone intermediate. These findings provide new insights into the unusual mechanisms of CYP152 peroxygenases.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhong Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Shandong Provincial Key Laboratory of Synthetic Biology, CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, Shandong, 266101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cai You
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Yue Zhao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Dandan Tang
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72 Binhai Road, Qingdao, Shandong, 266237, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong, 266237, China
| |
Collapse
|
20
|
Ding W, Uvarani C, Wang F, Xue Y, Wu N, He L, Tian D, Chen M, Zhang Y, Hong K, Tang J. New Ophiobolins from the Deep-Sea Derived Fungus Aspergillus sp. WHU0154 and Their Anti-Inflammatory Effects. Mar Drugs 2020; 18:md18110575. [PMID: 33233743 PMCID: PMC7699878 DOI: 10.3390/md18110575] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/16/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Deep-sea fungi have become a new arsenal for the discovery of leading compounds. Here five new ophiobolins 1–5, together with six known analogues 6–11, obtained from a deep-sea derived fungus WHU0154. Their structures were determined by analyses of IR, HR-ESI-MS, and NMR spectra, along with experimental and calculated electronic circular dichroism (ECD) analysis. Pharmacological studies showed that compounds 4 and 6 exhibited obvious inhibitory effects on nitric oxide (NO) production induced by lipopolysaccharide (LPS) in murine macrophage RAW264.7 cells. Mechanical study revealed that compound 6 could inhibit the inducible nitric oxide synthase (iNOS) level in LPS-stimulated RAW264.7 cells. In addition, compounds 6, 9, and 10 could significantly inhibit the expression of cyclooxygenase 2 (COX 2) in LPS-induced RAW264.7 cells. Preliminary structure-activity relationship (SAR) analyses revealed that the aldehyde group at C-21 and the α, β-unsaturated ketone functionality at A ring in ophiobolins were vital for their anti-inflammatory effects. Together, the results demonstrated that ophiobolins, especially for compound 6, exhibited strong anti-inflammatory effects and shed light on the discovery of ophiobolins as new anti-inflammatory agents.
Collapse
Affiliation(s)
- Wenjuan Ding
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.D.); (C.U.); (F.W.); (D.T.); (M.C.)
| | - Chokkalingam Uvarani
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.D.); (C.U.); (F.W.); (D.T.); (M.C.)
| | - Fangfang Wang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.D.); (C.U.); (F.W.); (D.T.); (M.C.)
| | - Yaxin Xue
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.X.); (N.W.); (L.H.)
| | - Ning Wu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.X.); (N.W.); (L.H.)
| | - Liming He
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.X.); (N.W.); (L.H.)
| | - Danmei Tian
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.D.); (C.U.); (F.W.); (D.T.); (M.C.)
| | - Mei Chen
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.D.); (C.U.); (F.W.); (D.T.); (M.C.)
| | - Youwei Zhang
- Case Comprehensive Cancer Center, Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Kui Hong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; (Y.X.); (N.W.); (L.H.)
- Correspondence: (K.H.); (J.T.); Tel.: +86-27-6875-2442 (K.H.); +86-20-8522-1559 (J.T.)
| | - Jinshan Tang
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE), Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy, Jinan University, Guangzhou 510632, China; (W.D.); (C.U.); (F.W.); (D.T.); (M.C.)
- Correspondence: (K.H.); (J.T.); Tel.: +86-27-6875-2442 (K.H.); +86-20-8522-1559 (J.T.)
| |
Collapse
|
21
|
Jiang M, Wu Z, Guo H, Liu L, Chen S. A Review of Terpenes from Marine-Derived Fungi: 2015-2019. Mar Drugs 2020; 18:E321. [PMID: 32570903 PMCID: PMC7345631 DOI: 10.3390/md18060321] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/16/2022] Open
Abstract
Marine-derived fungi are a significant source of pharmacologically active metabolites with interesting structural properties, especially terpenoids with biological and chemical diversity. In the past five years, there has been a tremendous increase in the rate of new terpenoids from marine-derived fungi being discovered. In this updated review, we examine the chemical structures and bioactive properties of new terpenes from marine-derived fungi, and the biodiversity of these fungi from 2015 to 2019. A total of 140 research papers describing 471 new terpenoids of six groups (monoterpenes, sesquiterpenes, diterpenes, sesterterpenes, triterpenes, and meroterpenes) from 133 marine fungal strains belonging to 34 genera were included. Among them, sesquiterpenes, meroterpenes, and diterpenes comprise the largest proportions of terpenes, and the fungi genera of Penicillium, Aspergillus, and Trichoderma are the dominant producers of terpenoids. The majority of the marine-derived fungi are isolated from live marine matter: marine animals and aquatic plants (including mangrove plants and algae). Moreover, many terpenoids display various bioactivities, including cytotoxicity, antibacterial activity, lethal toxicity, anti-inflammatory activity, enzyme inhibitor activity, etc. In our opinion, the chemical diversity and biological activities of these novel terpenoids will provide medical and chemical researchers with a plenty variety of promising lead compounds for the development of marine drugs.
Collapse
Affiliation(s)
- Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
| | - Zhenger Wu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Heng Guo
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| | - Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China; (M.J.); (Z.W.); (H.G.); (L.L.)
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangzhou 510006, China
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
| |
Collapse
|
22
|
Toxicity, Pharmacokinetics, and Gut Microbiome of Oral Administration of Sesterterpene MHO7 Derived from a Marine Fungus. Mar Drugs 2019; 17:md17120667. [PMID: 31779201 PMCID: PMC6950057 DOI: 10.3390/md17120667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022] Open
Abstract
Sesterterpene MHO7 derived from mangrove fungus is a novel estrogen receptor degrader for the treatment of breast cancer. To explore its safety and pharmacokinetics in vivo, Log P/D values, stability in simulated gastric/intestinal (SGF/SIF), toxicity, and pharmacokinetics studies were carried mainly by liquid chromatography technique coupled with tandem mass spectrometry (LC–MS/MS) method in mice, and the effect of MHO7 on mice gut microbiota at different time points was revealed by 16S rRNA sequencing. Log P/D values ranged 0.93–2.48, and the compound in SGF and SIF is stable under the concentration of 5 mM·L−1. The maximum tolerance dose (MTD) of oral administration in mice was 2400 mg·kg−1. The main pharmacokinetics parameters were as following: Cmax of 1.38 μg·mL−1, Tmax of 8 h, a half-life (t1/2) of 6.97 h, an apparent volume of mean residual time (MRT) of 8.76 h, and an area under the curve (AUC) of 10.50 h·μg·mL−1. MHO7 displayed a wide tissue distribution in mice, with most of the compound in liver (3.01 ± 1.53 μg·g−1) at 1 h, then in fat (5.20 ± 3.47 μg·g−1) at 4 h, and followed by reproductive organs with the concentrations of 23.90 ± 11.33 μg·g−1,13.69 ± 10.29 μg·g−1, 1.46 ± 1.23 μg·g−1, and 0.36 ± 0.46 μg·g−1 at 8, 12, 20 and 30 h, respectively. The most influenced genera of gut microbiome belonged to phylum Firmicutes (21 of 28), among which 18 genera originated from the order Clostridiales, class Clostridia, and families of Ruminococcaceae (11 of 18) and Lachnospiraceae (4 of 18). These results provide that MHO7 is suitable for oral administration in the treatment of breast cancer with the target organs of reproductive organs and regulation on Ruminococcaceae and Lachnospiraceae.
Collapse
|