1
|
Jhang JF, Yu WR, Jiang YH, Kuo HC. Pathophysiology and potential multimodal therapeutic strategies for IC/BPS. Nat Rev Urol 2025:10.1038/s41585-025-01044-4. [PMID: 40374927 DOI: 10.1038/s41585-025-01044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2025] [Indexed: 05/18/2025]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a bladder disorder with no definite aetiology and currently no effective treatment. Its clinical symptoms vary widely, and the bladder condition and extra-bladder dysfunction also show different clinical presentations. This condition is considered to have multiple factors affecting the bladder and clinical symptoms, including urothelial dysfunction, mast cell activation, autoimmune response, neurogenic inflammation, viral or bacterial infection, autonomic nervous dysfunction and central nervous sensitization. Several non-pharmacological, medical, intravesical and novel bladder therapies have been advocated, but the efficacy and durability of these treatments have not been well elucidated. Multimodal therapy has been suggested based on possible pathological mechanisms; however, the most appropriate therapeutic strategy for this disorder has not been well defined. Thus, a rational algorithm for concomitant multimodal therapy for IC/BPS has been proposed.
Collapse
Affiliation(s)
- Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Wan-Ru Yu
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, and Tzu Chi University, Hualien, Taiwan.
| |
Collapse
|
2
|
Yesilbas Aksel Y, Barut EN, Engin S. Fosaprepitant improves cyclophosphamide-induced bladder damage by alleviating inflammatory response in mice. Toxicol Appl Pharmacol 2024; 492:117120. [PMID: 39378958 DOI: 10.1016/j.taap.2024.117120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/10/2024]
Abstract
Inhibition of inflammatory process is a key therapeutic target for the treatment of interstitial cystitis (IC). Recent reports indicate that neurokinin 1 receptor (NK1R) antagonists have beneficial roles in inflammatory-based diseases. Herein, we investigate the protective effects of fosaprepitant (FOS), a NK1R antagonist, in cyclophosphamide (CP)-induced cystitis. The cystitis model was established multiple CP (80 mg/kg; i.p.) injection one day apart, and mice were treated with FOS (20 and 60 mg/kg/day; i.p.) for seven consecutive days. Detrusor contractility, vesical vascular permeability, myeloperoxidase (MPO) activity and protein expression levels of the TLR4 pathway were evaluated in mice bladder. Carbachol and electric field stimulation-evoked contractions of detrusor strips were significantly increased in CP-treated mice, which was significantly attenuated by FOS (60 mg/kg/day) treatment (p<0.001, p<0.05). Notably, vesical vascular permeability was markedly impaired in CP-induced cystitis, that was restored by FOS (60 mg/kg/day) treatment (p<0.01). MPO activity was significantly increased in cystitis group whereas FOS (20 and 60 mg/kg/day) treatment remarkably suppressed MPO activity in bladder tissue (p<0.001). Although TLR4 expression increased with cystitis, MyD88 and p-NFκBSer536/total NFκB did not change, FOS (20 and 60 mg/kg/day) treatment caused a dramatic decrease in TLR4 expression (p<0.001), indicating the anti-inflammatory effect of FOS. In conclusion, FOS improved detrusor overactivity and inflammatory response by inhibiting MPO activity and TLR4 expression, resulting in functional and histological recovery in CP-induced cystitis.
Collapse
Affiliation(s)
- Yaren Yesilbas Aksel
- Karadeniz Technical University, Graduate School of Health Sciences, Department of Pharmacology, Türkiye
| | - Elif Nur Barut
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye.
| | - Seckin Engin
- Karadeniz Technical University, Faculty of Pharmacy, Department of Pharmacology, Trabzon, Türkiye
| |
Collapse
|
3
|
Yu WR, Kuo HC. Multimodal therapies and strategies for the treatment of interstitial cystitis/bladder pain syndrome in Taiwan. Low Urin Tract Symptoms 2024; 16:e12508. [PMID: 37987028 DOI: 10.1111/luts.12508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/22/2023]
Abstract
Interstitial cystitis/bladder pain syndrome (IC/BPS) is a chronic disease characterized by bladder pain, frequency, and nocturia. The most common pathologies include chronic inflammation and bladder urothelium dysfunction. According to the bladder condition with or without Hunner's lesions, IC/BPS can be divided into "IC" in patients with Hunner's lesion (HIC) and "BPS" in those without Hunner's lesion (NHIC). Previous studies have reported greater central sensitization and interorgan cross-talk in patients with NHIC. Multimodal treatments have been recommended in clinical guidelines under the biopsychosocial model. The bladder-gut-brain axis has also been speculated, and multimodal therapies are necessary. Unfortunately, currently, no treatment has been reported durable for IC/BPS. Patients with IC/BPS usually experience anxiety, depression, holistic physical responses, and even threats to social support systems. The lack of durable treatment outcomes might result from inadequate diagnostic accuracy and differentiation of clinical phenotypes based on the underlying pathophysiology. Precision assessment and treatment are essential for optimal therapy under definite IC/BPS phenotype. This article reviewed currently available literature and proposed a diagnosis and treatment algorithm. Based on bladder therapy combined with suitable physical and psychological therapies, a well-grounded multimodal therapy and treatment algorithm for IC/BPS following a diagnostic protocol are indispensable.
Collapse
Affiliation(s)
- Wan-Ru Yu
- Department of Nursing, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation and Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
López-Estévez S, Aguilera M, Gris G, de la Puente B, Carceller A, Martínez V. Genetic and Pharmacological Blockade of Sigma-1 Receptors Attenuates Inflammation-Associated Hypersensitivity during Acute Colitis in CD1 Mice. Biomedicines 2023; 11:2758. [PMID: 37893131 PMCID: PMC10604167 DOI: 10.3390/biomedicines11102758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/03/2023] [Accepted: 10/05/2023] [Indexed: 10/29/2023] Open
Abstract
Sigma-1 receptors (σ1Rs) are implicated in nociception, including pain sensitization, and inflammation. We assessed the role of σ1Rs on acute colitis-associated hypersensitivity using both genetic (constitutive knockout) and pharmacological blockade of the receptor. Colitis was induced in CD1 wild-type (WT) and σ1R KO mice (exposure to dextran sodium sulfate, 3%). A von Frey test was used to assess referred mechanosensitivity (abdominal and plantar withdrawal responses). The effects of the selective σ1R antagonists BD1063 and E-52862 were also assessed in WT animals. The expression of immune and sensory-related markers (RT-qPCR, Western blot) was assessed in the colon and lumbosacral spinal cord. The genetic ablation or pharmacological blockade of σ1Rs attenuated acute colonic inflammation in a similar manner. Mechanosensitivity was similar in WT and σ1R KO mice before colitis. In WT mice, but not in σ1R KO, colitis was associated with the development of referred mechanical hypersensitivity, manifested as a reduction in the withdrawal thresholds to mechanical probing (paw and abdominal wall). In WT mice, BD1063 and E-52862 blocked colitis-associated hypersensitivity. A genotype- and treatment-related differential regulation of sensory-related markers was detected locally (colon) and within the spinal cord. σ1Rs are involved in the development of acute intestinal inflammation and its associated referred mechanical hypersensitivity. The selective modulation of sensory-related pathways within the colon and spinal cord might be part of the underlying mechanisms. These observations support the pharmacological use of σ1R antagonists for the treatment of intestinal inflammation-induced hypersensitivity.
Collapse
Affiliation(s)
- Sergio López-Estévez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (S.L.-E.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Mònica Aguilera
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (S.L.-E.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Georgia Gris
- Department of Pharmacology, Welab Barcelona, 08028 Barcelona, Spain; (G.G.); (B.d.l.P.); (A.C.)
| | - Beatriz de la Puente
- Department of Pharmacology, Welab Barcelona, 08028 Barcelona, Spain; (G.G.); (B.d.l.P.); (A.C.)
| | - Alicia Carceller
- Department of Pharmacology, Welab Barcelona, 08028 Barcelona, Spain; (G.G.); (B.d.l.P.); (A.C.)
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; (S.L.-E.)
- Neuroscience Institute, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, 28049 Madrid, Spain
| |
Collapse
|
5
|
Michel MC, Cardozo L, Chermansky CJ, Cruz F, Igawa Y, Lee KS, Sahai A, Wein AJ, Andersson KE. Current and Emerging Pharmacological Targets and Treatments of Urinary Incontinence and Related Disorders. Pharmacol Rev 2023; 75:554-674. [PMID: 36918261 DOI: 10.1124/pharmrev.121.000523] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 03/16/2023] Open
Abstract
Overactive bladder syndrome with and without urinary incontinence and related conditions, signs, and disorders such as detrusor overactivity, neurogenic lower urinary tract dysfunction, underactive bladder, stress urinary incontinence, and nocturia are common in the general population and have a major impact on the quality of life of the affected patients and their partners. Based on the deliberations of the subcommittee on pharmacological treatments of the 7th International Consultation on Incontinence, we present a comprehensive review of established drug targets in the treatment of overactive bladder syndrome and the aforementioned related conditions and the approved drugs used in its treatment. Investigational drug targets and compounds are also reviewed. We conclude that, despite a range of available medical treatment options, a considerable medical need continues to exist. This is largely because the existing treatments are symptomatic and have limited efficacy and/or tolerability, which leads to poor long-term adherence. SIGNIFICANCE STATEMENT: Urinary incontinence and related disorders are prevalent in the general population. While many treatments have been approved, few patients stay on long-term treatment despite none of them being curative. This paper provides a comprehensive discussion of existing and emerging treatment options for various types of incontinence and related disorders.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Linda Cardozo
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Christopher J Chermansky
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Francisco Cruz
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Yasuhiko Igawa
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Kyu-Sung Lee
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Arun Sahai
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Alan J Wein
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| | - Karl-Erik Andersson
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Urogynaecology, King's College Hospital, London, UK (L.C.); Department of Urology, Magee Women's Hospital, University of Pittsburgh, School of Medicine, Pittsburgh, Pennsylvania (C.J.C.); Department of Urology, Faculty of Medicine of University of Porto, Hospital São João and i3S Institute for Innovation and Investigation in Health, Porto, Portugal (F.C.); Department of Urology, Nagano Prefectural Shinshu Medical Center, Suzaka, Japan (Y.I.); Department of Urology Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea (K-S.L.); Guy's Hospital and King's College London, London, UK (A.S.); Dept. of Urology, Perlman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania (A.J.W.); Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina (A.J.W.); and Institute for Laboratory Medicine, Lund University, Lund, Sweden (K-E.A.)
| |
Collapse
|
6
|
Vezza T, Molina-Tijeras JA, González-Cano R, Rodríguez-Nogales A, García F, Gálvez J, Cobos EJ. Minocycline Prevents the Development of Key Features of Inflammation and Pain in DSS-induced Colitis in Mice. THE JOURNAL OF PAIN 2023; 24:304-319. [PMID: 36183969 DOI: 10.1016/j.jpain.2022.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 08/30/2022] [Accepted: 09/23/2022] [Indexed: 02/07/2023]
Abstract
Abdominal pain is a common feature in inflammatory bowel disease (IBD) patients, and greatly compromises their quality of life. Therefore, the identification of new therapeutic tools to reduce visceral pain is one of the main goals for IBD therapy. Minocycline, a broad-spectrum tetracycline antibiotic, has gained attention in the scientific community because of its immunomodulatory and anti-inflammatory properties. The aim of this study was to evaluate the potential of this antibiotic as a therapy for the management of visceral pain in dextran sodium sulfate (DSS)-induced colitis in mice. Preemptive treatment with minocycline markedly reduced histological features of intestinal inflammation and the expression of inflammatory markers (Tlr4, Tnfα, Il1ß, Ptgs2, Inos, Cxcl2, and Icam1), and attenuated the decrease of markers of epithelial integrity (Tjp1, Ocln, Muc2, and Muc3). In fact, minocycline restored normal epithelial permeability in colitic mice. Treatment with the antibiotic also reversed the changes in the gut microbiota profile induced by colitis. All these ameliorative effects of minocycline on both inflammation and dysbiosis correlated with a decrease in ongoing pain and referred hyperalgesia, and with the improvement of physical activity induced by the antibiotic in colitic mice. Minocycline might constitute a new therapeutic approach for the treatment of IBD-induced pain. PERSPECTIVE: This study found that the intestinal anti-inflammatory effects of minocycline ameliorate DSS-associated pain in mice. Therefore, minocycline might constitute a novel therapeutic strategy for the treatment of IBD-induced pain.
Collapse
Affiliation(s)
- Teresa Vezza
- Department of Pharmacology, University of Granada, Granada, Spain
| | - Jose Alberto Molina-Tijeras
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Rafael González-Cano
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain.
| | - Alba Rodríguez-Nogales
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Julio Gálvez
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Centro de Investigación Biomédica en Red - Enfermedades Hepáticas y Digestivas (CIBER-EHD)
| | - Enrique J Cobos
- Department of Pharmacology, University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Biomedical Research Center, Institute of Neuroscience, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Rodent Animal Models of Endometriosis-Associated Pain: Unmet Needs and Resources Available for Improving Translational Research in Endometriosis. Int J Mol Sci 2023; 24:ijms24032422. [PMID: 36768741 PMCID: PMC9917069 DOI: 10.3390/ijms24032422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Chronic pain induced by endometriosis is a maladaptive pain experienced by half of women with this disease. The lack of pharmacological treatments suitable for the long-term relief of endometriosis-associated pain, without an impact on fertility, remains an urgent unmet need. Progress has been slowed by the absence of a reproducible rodent endometriosis model that fully replicates human physiopathological characteristics, including pain symptoms. Although pain assessment in rodents is a complicated task requiring qualified researchers, the choice of the behavioral test is no less important, since selecting inappropriate tests can cause erroneous data. Pain is usually measured with reflex tests in which hypersensitivity is evaluated by applying a noxious stimulus, yet this ignores the associated emotional component that could be evaluated via non-reflex tests. We conducted a systematic review of endometriosis models used in rodents and the number of them that studied pain. The type of behavioral test used was also analyzed and classified according to reflex and non-reflex tests. Finally, we determined the most used reflex tests for the study of endometriosis-induced pain and the main non-reflex behavioral tests utilized in visceral pain that can be extrapolated to the study of endometriosis and complement traditional reflex tests.
Collapse
|
8
|
Sensory Receptor, Inflammatory, and Apoptotic Protein Expression in the Bladder Urothelium of Patients with Different Subtypes of Interstitial Cystitis/Bladder Pain Syndrome. Int J Mol Sci 2023; 24:ijms24010820. [PMID: 36614264 PMCID: PMC9821243 DOI: 10.3390/ijms24010820] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/05/2023] Open
Abstract
The aim of this study was to investigate the expression levels of sensory receptors, inflammatory proteins, and pro-apoptotic proteins in the urothelium of non-Hunner's interstitial cystitis (NHIC) bladders of patients with different clinical and cystoscopic phenotypes. The urothelia from the bladders of 52 NHIC patients were harvested. The expression of sensory receptors, including TRPV1, TRPV4, TRPA1, H1-receptors, and sigma-1 receptors; the inflammatory proteins p38 and tryptase; and the pro-apoptotic proteins, such as caspase-3, BAD, and BAX in the urothelium, were investigated using immunohistochemistry and Western blotting. We compared the expression levels of these proteins in NHIC subtypes according to IC symptom scores, visual analog scores of bladder pain, maximal bladder capacity, glomerulation grades, and combined maximal bladder capacity and glomerulations after cystoscopic hydrodistention. The expression levels of TRPV1, TRPV4, sigma-1, P38, tryptase, caspase-3, and BAD were significantly increased in the urothelium of IC/BPS patients compared with the expression levels in the controls. TRPV1 was significantly associated with IC symptom severity. However, no significant differences in sensory receptor expression in the IC/BPS bladders with different bladder conditions were detected. Inflammatory and pro-apoptotic protein expression levels in the urothelium were similar among the IC/BPS subgroups. This study concluded that IC/BPS patients with frequency and bladder pain complaints have higher levels of urothelial sensory receptors, and inflammatory and pro-apoptotic proteins. The expression levels of these sensory receptors, inflammatory proteins, and pro-apoptotic proteins are not significantly different among IC/BPS bladders with different conditions.
Collapse
|
9
|
Codony S, Entrena JM, Calvó-Tusell C, Jora B, González-Cano R, Osuna S, Corpas R, Morisseau C, Pérez B, Barniol-Xicota M, Griñán-Ferré C, Pérez C, Rodríguez-Franco MI, Martínez AL, Loza MI, Pallàs M, Verhelst SHL, Sanfeliu C, Feixas F, Hammock BD, Brea J, Cobos EJ, Vázquez S. Synthesis, In Vitro Profiling, and In Vivo Evaluation of Benzohomoadamantane-Based Ureas for Visceral Pain: A New Indication for Soluble Epoxide Hydrolase Inhibitors. J Med Chem 2022; 65:13660-13680. [PMID: 36222708 PMCID: PMC9620236 DOI: 10.1021/acs.jmedchem.2c00515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The soluble epoxide hydrolase (sEH) has been suggested as a pharmacological target for the treatment of several diseases, including pain-related disorders. Herein, we report further medicinal chemistry around new benzohomoadamantane-based sEH inhibitors (sEHI) in order to improve the drug metabolism and pharmacokinetics properties of a previous hit. After an extensive in vitro screening cascade, molecular modeling, and in vivo pharmacokinetics studies, two candidates were evaluated in vivo in a murine model of capsaicin-induced allodynia. The two compounds showed an anti-allodynic effect in a dose-dependent manner. Moreover, the most potent compound presented robust analgesic efficacy in the cyclophosphamide-induced murine model of cystitis, a well-established model of visceral pain. Overall, these results suggest painful bladder syndrome as a new possible indication for sEHI, opening a new range of applications for them in the visceral pain field.
Collapse
Affiliation(s)
- Sandra Codony
- Laboratori
de Química Farmacèutica (Unitat Associada al CSIC),
Facultat de Farmàcia i Ciències de l’Alimentació,
and Institute of Biomedicine (IBUB), Universitat
de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - José M. Entrena
- Animal
Behavior Research Unit, Scientific Instrumentation Center, Parque
Tecnológico de Ciencias de la Salud, University of Granada, Armilla, Granada 18100, Spain
| | - Carla Calvó-Tusell
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, Girona 17003, Spain
| | - Beatrice Jora
- Laboratori
de Química Farmacèutica (Unitat Associada al CSIC),
Facultat de Farmàcia i Ciències de l’Alimentació,
and Institute of Biomedicine (IBUB), Universitat
de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain
| | - Rafael González-Cano
- Department
of Pharmacology, Faculty of Medicine and Biomedical Research Center
(Neurosciences Institute), Biosanitary Research Institute ibs.GRANADA, University of Granada, Avenida de la Investigación 11, Granada 18016, Spain
| | - Sílvia Osuna
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, Girona 17003, Spain,Institució
Catalana de Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain
| | - Rubén Corpas
- Institute
of Biomedical Research of Barcelona (IIBB), CSIC and IDIBAPS, Barcelona 08036, Spain
| | - Christophe Morisseau
- Department
of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - Belén Pérez
- Department
of Pharmacology, Therapeutics and Toxicology, Institute of Neurosciences, Autonomous University of Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marta Barniol-Xicota
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven—University of Leuven, Herestraat 49 box B901, Leuven 3000, Belgium
| | - Christian Griñán-Ferré
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, Barcelona 08028, Spain
| | - Concepción Pérez
- Institute of Medicinal Chemistry, Spanish
National Research Council (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - María Isabel Rodríguez-Franco
- Institute of Medicinal Chemistry, Spanish
National Research Council (CSIC), C/Juan de la Cierva 3, Madrid 28006, Spain
| | - Antón L. Martínez
- Drug Screening
Platform/Biofarma Research Group, CIMUS Research Center, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - M. Isabel Loza
- Drug Screening
Platform/Biofarma Research Group, CIMUS Research Center, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Mercè Pallàs
- Pharmacology
Section, Department of Pharmacology, Toxicology and Therapeutic Chemistry,
Faculty of Pharmacy and Food Sciences, Institute of Neuroscience, University of Barcelona (NeuroUB), Av. Joan XXIII 27-31, Barcelona 08028, Spain
| | - Steven H. L. Verhelst
- Laboratory
of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven—University of Leuven, Herestraat 49 box B901, Leuven 3000, Belgium,Leibniz Institute
for Analytical Sciences ISAS, AG Chemical
Proteomics, Otto-Hahn-Str.
6b, Dortmund 44227, Germany
| | - Coral Sanfeliu
- Institute
of Biomedical Research of Barcelona (IIBB), CSIC and IDIBAPS, Barcelona 08036, Spain
| | - Ferran Feixas
- CompBioLab
Group, Departament de Química and Institut de Química
Computacional i Catàlisi (IQCC), Universitat de Girona, C/ Maria Aurèlia Capmany 69, Girona 17003, Spain
| | - Bruce D. Hammock
- Department
of Entomology and Nematology and Comprehensive Cancer Center, University of California, Davis, California 95616, United States
| | - José Brea
- Drug Screening
Platform/Biofarma Research Group, CIMUS Research Center, University of Santiago de Compostela (USC), Santiago de Compostela 15782, Spain
| | - Enrique J. Cobos
- Department
of Pharmacology, Faculty of Medicine and Biomedical Research Center
(Neurosciences Institute), Biosanitary Research Institute ibs.GRANADA, University of Granada, Avenida de la Investigación 11, Granada 18016, Spain
| | - Santiago Vázquez
- Laboratori
de Química Farmacèutica (Unitat Associada al CSIC),
Facultat de Farmàcia i Ciències de l’Alimentació,
and Institute of Biomedicine (IBUB), Universitat
de Barcelona, Av. Joan XXIII, 27-31, Barcelona 08028, Spain,. Phone: +34 934024533
| |
Collapse
|
10
|
Couly S, Goguadze N, Yasui Y, Kimura Y, Wang SM, Sharikadze N, Wu HE, Su TP. Knocking Out Sigma-1 Receptors Reveals Diverse Health Problems. Cell Mol Neurobiol 2022; 42:597-620. [PMID: 33095392 PMCID: PMC8062587 DOI: 10.1007/s10571-020-00983-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/14/2020] [Indexed: 02/07/2023]
Abstract
Sigma-1 receptor (Sig-1R) is a protein present in several organs such as brain, lung, and heart. In a cell, Sig-1R is mainly located across the membranes of the endoplasmic reticulum and more specifically at the mitochondria-associated membranes. Despite numerous studies showing that Sig-1R could be targeted to rescue several cellular mechanisms in different pathological conditions, less is known about its fundamental relevance. In this review, we report results from various studies and focus on the importance of Sig-1R in physiological conditions by comparing Sig-1R KO mice to wild-type mice in order to investigate the fundamental functions of Sig-1R. We note that the Sig-1R deletion induces cognitive, psychiatric, and motor dysfunctions, but also alters metabolism of heart. Finally, taken together, observations from different experiments demonstrate that those dysfunctions are correlated to poor regulation of ER and mitochondria metabolism altered by stress, which could occur with aging.
Collapse
Affiliation(s)
- Simon Couly
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA.
| | - Nino Goguadze
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Yuko Yasui
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Yuriko Kimura
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Shao-Ming Wang
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Nino Sharikadze
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Hsiang-En Wu
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| | - Tsung-Ping Su
- Cellular Pathobiology Section, Integrative Neuroscience Branch, Intramural Research Program, National Institute on Drug Abuse, DHHS, IRP, NIH, Triad Technology Center 333 Cassell Drive, Baltimore, MD, 21224 NIH, USA
| |
Collapse
|
11
|
López-Estévez S, Gris G, de la Puente B, Carceller A, Martínez V. Intestinal inflammation-associated hypersensitivity is attenuated in a DSS model of colitis in Sigma-1 knockout C57BL/6 mice. Biomed Pharmacother 2021; 143:112126. [PMID: 34474349 DOI: 10.1016/j.biopha.2021.112126] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/20/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Sigma-1 receptors (σ1R) have been implicated in several pain pathways. We assessed the implication of σ1Rs in the development of intestinal inflammation and inflammation-associated referred hypersensitivity in a model of colitis in σ1R knockout (KO) mice. Colitis was induced with dextran sulfate sodium (DSS) in wild type (WT) and σ1R KO mice. The development of referred mechanical hypersensitivity (von Frey test) was assessed. Colonic and spinal changes in expression of immune- and sensory-related markers were also investigated (RT-qPCR/Western blot). Absence of σ1Rs had little impact in colitis generation and progression, although during the chronic phase a reduction in edema and a down-regulation of iNOS gene expression was observed. In σ1R KO mice, inflammation-associated hypersensitivity was significantly attenuated (paw) or completely prevented (abdomen). During colitis, in WT mice, changes in the colonic expression of nociceptive markers were observed during the acute and chronic phases of inflammation. Although σ1R KO mice showed similar regulation in the acute phase, an attenuated response was observed during the chronic phase of colitis. These differences were especially relevant for CB2 and TRPV1 receptors, which could play an important role in σ1-mediated regulation of sensitivity. No changes were detected on ERK phosphorylation at the level of the lumbosacral spinal cord. In summary, intestinal inflammation-associated referred hyperalgesia was reduced (paw) or absent (abdomen) in σ1R KO mice, thus confirming an important role for σ1R in the development of colitis-associated hypersensitivity. These results identify σ1Rs as a possible therapeutic target for the treatment of hypersensitivity associated to intestinal inflammation.
Collapse
Affiliation(s)
- Sergio López-Estévez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Georgia Gris
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, 08028 Barcelona, Spain
| | - Beatriz de la Puente
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, 08028 Barcelona, Spain
| | - Alicia Carceller
- Department of Pharmacology, Drug Discovery & Preclinical Development, ESTEVE, 08028 Barcelona, Spain
| | - Vicente Martínez
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Neuroscience Institute, Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|