1
|
Yin T, Sun S, Peng L, Yang M, Li M, Yang X, Yuan F, Zhu H, Wang S. Targeting microglial NAAA-regulated PEA signaling counters inflammatory damage and symptom progression of post-stroke anxiety. Cell Commun Signal 2025; 23:211. [PMID: 40312408 PMCID: PMC12046839 DOI: 10.1186/s12964-025-02202-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 04/12/2025] [Indexed: 05/03/2025] Open
Abstract
Post-stroke anxiety (PSA) manifests as anxiety symptoms after stroke, with unclear mechanisms and limited treatment strategies. Endocannabinoids, reported to mitigate fear, anxiety, and stress, undergo dynamic alterations after stroke linked to prognosis intricately. However, endocannabinoid metabolism in ischemic microenvironment and their associations with post-stroke anxiety-like behavior remain largely uncovered. Our findings indicated that endocannabinoid metabolism was dysregulated after stroke, characterized by elevated N-palmitoylethanolamide (PEA) hydrolase N-acylethanolamine-acid amidase (NAAA) in activated microglia from ischemic area, accompanied by rapid PEA exhaustion. Microglial PEA metabolite exhaustion is directly associated with more severe pathological damage, anxiety symptoms and pain sensitivity. Naaa knockout or pharmacological supplementation to boost PEA pool content can effectively promote stroke recovery and alleviate anxiety-like behaviors. In addition, maintaining PEA pool content in ischemic area reduces overactivated microglia by confronting against mitochondria dysfunction and inflammasome cascade triggered IL-18 release and diffusion to contralateral hemisphere. Meanwhile, maintenance of microglial PEA pool content in ischemic-damaged lesion can preserve contralateral vCA1 synaptic integrity, enhancing anxiolytic pBLA-vCA1Calb1+ circuit activity by alleviating microglial phagocytosis-mediated synaptic loss. Thus, we conclude that microglial NAAA-regulated lipid signaling in the ischemic focus remodels contralateral anxiolytic circuit to participate in post-stroke anxiety progression. Blocking PEA signaling breakdown promotes stroke recovery and mitigates anxiety-like symptoms.
Collapse
Affiliation(s)
- Tianyue Yin
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Shuaijie Sun
- Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Li Peng
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Mengmeng Yang
- Department of Anesthesiology, Anhui Provincial Hospital, Wannan Medical College, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Mengyu Li
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Xinlu Yang
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Fengyun Yuan
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, 230001, Anhui, China
| | - Hongrui Zhu
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Sheng Wang
- Department of Anesthesiology, Division of Life Sciences and Medicine, First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
2
|
Fotio Y, Mabou Tagne A, Squire E, Lee HL, Phillips CM, Chang K, Ahmed F, Greenberg AS, Villalta SA, Scarfone VM, Spadoni G, Mor M, Piomelli D. NAAA-regulated lipid signaling in monocytes controls the induction of hyperalgesic priming in mice. Nat Commun 2024; 15:1705. [PMID: 38402219 PMCID: PMC10894261 DOI: 10.1038/s41467-024-46139-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/15/2024] [Indexed: 02/26/2024] Open
Abstract
Circulating monocytes participate in pain chronification but the molecular events that cause their deployment are unclear. Using a mouse model of hyperalgesic priming (HP), we show that monocytes enable progression to pain chronicity through a mechanism that requires transient activation of the hydrolase, N-acylethanolamine acid amidase (NAAA), and the consequent suppression of NAAA-regulated lipid signaling at peroxisome proliferator-activated receptor-α (PPAR-α). Inhibiting NAAA in the 72 hours following administration of a priming stimulus prevented HP. This effect was phenocopied by NAAA deletion and depended on PPAR-α recruitment. Mice lacking NAAA in CD11b+ cells - monocytes, macrophages, and neutrophils - were resistant to HP induction. Conversely, mice overexpressing NAAA or lacking PPAR-α in the same cells were constitutively primed. Depletion of monocytes, but not resident macrophages, generated mice that were refractory to HP. The results identify NAAA-regulated signaling in monocytes as a control node in the induction of HP and, potentially, the transition to pain chronicity.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Erica Squire
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Hye-Lim Lee
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Connor M Phillips
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
| | - Kayla Chang
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA
| | | | - S Armando Villalta
- Department of Physiology and Biophysics, University of California Irvine, Irvine, CA, USA
- Department of Neurology, University of California Irvine, Irvine, CA, USA
| | - Vanessa M Scarfone
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA, USA
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università di Urbino "Carlo Bo,", Urbino, Italy
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, Parma, Italy
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA, USA.
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA.
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, USA.
| |
Collapse
|
3
|
Gadhave DG, Sugandhi VV, Kokare CR. Potential biomaterials and experimental animal models for inventing new drug delivery approaches in the neurodegenerative disorder: Multiple sclerosis. Brain Res 2024; 1822:148674. [PMID: 37952871 DOI: 10.1016/j.brainres.2023.148674] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/14/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
The tight junction of endothelial cells in the central nervous system (CNS) has an ideal characteristic, acting as a biological barrier that can securely regulate the movement of molecules in the brain. Tightly closed astrocyte cell junctions on blood capillaries are the blood-brain barrier (BBB). This biological barrier prohibits the entry of polar drugs, cells, and ions, which protect the brain from harmful toxins. However, delivering any therapeutic agent to the brain in neurodegenerative disorders (i.e., schizophrenia, multiple sclerosis, etc.) is extremely difficult. Active immune responses such as microglia, astrocytes, and lymphocytes cross the BBB and attack the nerve cells, which causes the demyelination of neurons. Therefore, there is a hindrance in transmitting electrical signals properly, resulting in blindness, paralysis, and neuropsychiatric problems. The main objective of this article is to shed light on the performance of biomaterials, which will help researchers to create nanocarriers that can cross the blood-brain barrier and achieve a therapeutic concentration of drugs in the CNS of patients with multiple sclerosis (MS). The present review focuses on the importance of biomaterials with diagnostic and therapeutic efficacy that can help enhance multiple sclerosis therapeutic potential. Currently, the development of MS in animal models is limited by immune responses, which prevent MS induction in healthy animals. Therefore, this article also showcases animal models currently used for treating MS. A future advance in developing a novel effective strategy for treating MS is now a potential area of research.
Collapse
Affiliation(s)
- Dnyandev G Gadhave
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India; Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA; Department of Pharmaceutics, Dattakala Shikshan Sanstha's, Dattakala College of Pharmacy (Affiliated to Savitribai Phule Pune University), Swami Chincholi, Daund, Pune 413130, Maharashtra, India.
| | - Vrashabh V Sugandhi
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Chandrakant R Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| |
Collapse
|
4
|
Capuz A, Osien S, Cardon T, Karnoub MA, Aboulouard S, Raffo-Romero A, Duhamel M, Cizkova D, Trerotola M, Devos D, Kobeissy F, Vanden Abeele F, Bonnefond A, Fournier I, Rodet F, Salzet M. Heimdall, an alternative protein issued from a ncRNA related to kappa light chain variable region of immunoglobulins from astrocytes: a new player in neural proteome. Cell Death Dis 2023; 14:526. [PMID: 37587118 PMCID: PMC10432539 DOI: 10.1038/s41419-023-06037-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/18/2023]
Abstract
The dogma "One gene, one protein" is clearly obsolete since cells use alternative splicing and generate multiple transcripts which are translated into protein isoforms, but also use alternative translation initiation sites (TISs) and termination sites on a given transcript. Alternative open reading frames for individual transcripts give proteins originate from the 5'- and 3'-UTR mRNA regions, frameshifts of mRNA ORFs or from non-coding RNAs. Longtime considered as non-coding, recent in-silico translation prediction methods enriched the protein databases allowing the identification of new target structures that have not been identified previously. To gain insight into the role of these newly identified alternative proteins in the regulation of cellular functions, it is crucial to assess their dynamic modulation within a framework of altered physiological modifications such as experimental spinal cord injury (SCI). Here, we carried out a longitudinal proteomic study on rat SCI from 12 h to 10 days. Based on the alternative protein predictions, it was possible to identify a plethora of newly predicted protein hits. Among these proteins, some presented a special interest due to high homology with variable chain regions of immunoglobulins. We focus our interest on the one related to Kappa variable light chains which is similarly highly produced by B cells in the Bence jones disease, but here expressed in astrocytes. This protein, name Heimdall is an Intrinsically disordered protein which is secreted under inflammatory conditions. Immunoprecipitation experiments showed that the Heimdall interactome contained proteins related to astrocyte fate keepers such as "NOTCH1, EPHA3, IPO13" as well as membrane receptor protein including "CHRNA9; TGFBR, EPHB6, and TRAM". However, when Heimdall protein was neutralized utilizing a specific antibody or its gene knocked out by CRISPR-Cas9, sprouting elongations were observed in the corresponding astrocytes. Interestingly, depolarization assays and intracellular calcium measurements in Heimdall KO, established a depolarization effect on astrocyte membranes KO cells were more likely that the one found in neuroprogenitors. Proteomic analyses performed under injury conditions or under lipopolysaccharides (LPS) stimulation, revealed the expression of neuronal factors, stem cell proteins, proliferation, and neurogenesis of astrocyte convertor factors such as EPHA4, NOTCH2, SLIT3, SEMA3F, suggesting a role of Heimdall could regulate astrocytic fate. Taken together, Heimdall could be a novel member of the gatekeeping astrocyte-to-neuroprogenitor conversion factors.
Collapse
Affiliation(s)
- Alice Capuz
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Sylvain Osien
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Tristan Cardon
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Mélodie Anne Karnoub
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Soulaimane Aboulouard
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Antonella Raffo-Romero
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Marie Duhamel
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
| | - Dasa Cizkova
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10, Bratislava, Slovakia
- Centre for Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Marco Trerotola
- Laboratory of Cancer Pathology, Center for Advanced Studies and Technology (CAST), University 'G. d'Annunzio', Chieti, Italy
- Department of Medical, Oral and Biotechnological Sciences, University 'G. d'Annunzio', Chieti, Italy
| | - David Devos
- Université de Lille, INSERM, U1172, CHU-Lille, Lille Neuroscience Cognition Research Centre, 1 place de Verdun, 59000, Lille, France
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Fabien Vanden Abeele
- Université de Lille, INSERM U1003, Laboratory of Cell Physiology, 59650, Villeneuve d'Ascq, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, 59000, Lille, France
| | - Isabelle Fournier
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France
- Institut Universitaire de France, 75005, Paris, France
| | - Franck Rodet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
| | - Michel Salzet
- Univ. Lille, Inserm, U-1192 - Laboratoire Protéomique, Réponse Inflammatoire et Spectrométrie de Masse-PRISM, F-59000, Lille, France.
- Institut Universitaire de France, 75005, Paris, France.
| |
Collapse
|
5
|
Abstract
N-acylethanolamine-hydrolyzing acid amidase (NAAA) is a lysosomal hydrolase degrading various N-acylethanolamines at acidic pH. NAAA prefers anti-inflammatory and analgesic palmitoylethanolamide to other N-acylethanolamines as a substrate, and its specific inhibitors are shown to exert anti-inflammatory and analgesic actions in animal models. Therefore, these inhibitors are expected as a new class of therapeutic agents. Here, we introduce an NAAA assay system, using [14C]palmitoylethanolamide and thin-layer chromatography. The preparation of NAAA enzyme from native and recombinant sources as well as the chemical synthesis of N-[1'-14C]palmitoyl-ethanolamine is also described.
Collapse
Affiliation(s)
- Kazuhito Tsuboi
- Department of Pharmacology, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Natsuo Ueda
- Department of Biochemistry, Kagawa University School of Medicine, Miki, Kagawa, Japan.
| |
Collapse
|
6
|
Mock ED, Gagestein B, van der Stelt M. Anandamide and other N-acylethanolamines: A class of signaling lipids with therapeutic opportunities. Prog Lipid Res 2023; 89:101194. [PMID: 36150527 DOI: 10.1016/j.plipres.2022.101194] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 01/18/2023]
Abstract
N-acylethanolamines (NAEs), including N-palmitoylethanolamine (PEA), N-oleoylethanolamine (OEA), N-arachidonoylethanolamine (AEA, anandamide), N-docosahexaenoylethanolamine (DHEA, synaptamide) and their oxygenated metabolites are a lipid messenger family with numerous functions in health and disease, including inflammation, anxiety and energy metabolism. The NAEs exert their signaling role through activation of various G protein-coupled receptors (cannabinoid CB1 and CB2 receptors, GPR55, GPR110, GPR119), ion channels (TRPV1) and nuclear receptors (PPAR-α and PPAR-γ) in the brain and periphery. The biological role of the oxygenated NAEs, such as prostamides, hydroxylated anandamide and DHEA derivatives, are less studied. Evidence is accumulating that NAEs and their oxidative metabolites may be aberrantly regulated or are associated with disease severity in obesity, metabolic syndrome, cancer, neuroinflammation and liver cirrhosis. Here, we comprehensively review NAE biosynthesis and degradation, their metabolism by lipoxygenases, cyclooxygenases and cytochrome P450s and the biological functions of these signaling lipids. We discuss the latest findings and therapeutic potential of modulating endogenous NAE levels by inhibition of their degradation, which is currently under clinical evaluation for neuropsychiatric disorders. We also highlight NAE biosynthesis inhibition as an emerging topic with therapeutic opportunities in endocannabinoid and NAE signaling.
Collapse
Affiliation(s)
- Elliot D Mock
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Berend Gagestein
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands
| | - Mario van der Stelt
- Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University and Oncode Institute, Einsteinweg 55, Leiden 2333 CC, The Netherlands.
| |
Collapse
|
7
|
Palese F, Pontis S, Realini N, Torrens A, Ahmed F, Assogna F, Pellicano C, Bossù P, Spalletta G, Green K, Piomelli D. Targeting NAAA counters dopamine neuron loss and symptom progression in mouse models of parkinsonism. Pharmacol Res 2022; 182:106338. [PMID: 35781057 PMCID: PMC9733952 DOI: 10.1016/j.phrs.2022.106338] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/19/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022]
Abstract
The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention.
Collapse
Affiliation(s)
- Francesca Palese
- Department of Anatomy and Neurobiology University of California Irvine, 92697-1275 CA, USA
| | - Silvia Pontis
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Natalia Realini
- Drug Discovery and Development, Fondazione Istituto Italiano di Tecnologia, 16163 Genoa, Italy
| | - Alexa Torrens
- Department of Anatomy and Neurobiology University of California Irvine, 92697-1275 CA, USA
| | - Faizy Ahmed
- Department of Anatomy and Neurobiology University of California Irvine, 92697-1275 CA, USA
| | - Francesca Assogna
- Laboratorio di Neuropsichiatria, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Clelia Pellicano
- Laboratorio di Neuropsichiatria, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Paola Bossù
- Laboratorio di Neuropsichiatria, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Gianfranco Spalletta
- Laboratorio di Neuropsichiatria, IRCCS Santa Lucia Foundation, 00179 Rome, Italy
| | - Kim Green
- Department of Neurobiology and Behavior, University of California Irvine, 92697-1275 CA, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology University of California Irvine, 92697-1275 CA, USA,Department of Pharmaceutical Sciences, University of California Irvine, 92697-1275 CA, USA,Department of Biological Chemistry, University of California Irvine, 92697-1275 CA, USA
| |
Collapse
|
8
|
Zorrilla Veloz RI, McKenzie T, Palacios BE, Hu J. Nuclear hormone receptors in demyelinating diseases. J Neuroendocrinol 2022; 34:e13171. [PMID: 35734821 PMCID: PMC9339486 DOI: 10.1111/jne.13171] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/20/2022] [Accepted: 05/27/2022] [Indexed: 11/28/2022]
Abstract
Demyelination results from the pathological loss of myelin and is a hallmark of many neurodegenerative diseases. Despite the prevalence of demyelinating diseases, there are no disease modifying therapies that prevent the loss of myelin or promote remyelination. This review aims to summarize studies in the field that highlight the importance of nuclear hormone receptors in the promotion and maintenance of myelination and the relevance of nuclear hormone receptors as potential therapeutic targets for demyelinating diseases. These nuclear hormone receptors include the estrogen receptor, progesterone receptor, androgen receptor, vitamin D receptor, thyroid hormone receptor, peroxisome proliferator-activated receptor, liver X receptor, and retinoid X receptor. Pre-clinical studies in well-established animal models of demyelination have shown a prominent role of these nuclear hormone receptors in myelination through their promotion of oligodendrocyte maturation and development. The activation of the nuclear hormone receptors by their ligands also promotes the synthesis of myelin proteins and lipids in mouse models of demyelination. There are limited clinical studies that focus on how the activation of these nuclear hormone receptors could alleviate demyelination in patients with diseases such as multiple sclerosis (MS). However, the completed clinical trials have reported improved clinical outcome in MS patients treated with the ligands of some of these nuclear hormone receptors. Together, the positive results from both clinical and pre-clinical studies point to nuclear hormone receptors as promising therapeutic targets to counter demyelination.
Collapse
Affiliation(s)
- Rocío I Zorrilla Veloz
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Takese McKenzie
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Bridgitte E Palacios
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Jian Hu
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Neuroscience Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
9
|
Xie X, Li Y, Xu S, Zhou P, Yang L, Xu Y, Qiu Y, Yang Y, Li Y. Genetic Blockade of NAAA Cell-specifically Regulates Fatty Acid Ethanolamides (FAEs) Metabolism and Inflammatory Responses. Front Pharmacol 2022; 12:817603. [PMID: 35069223 PMCID: PMC8777083 DOI: 10.3389/fphar.2021.817603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
N-Acylethanolamine acid amidase (NAAA) is a lysosomal enzyme responsible for the hydrolysis of fatty acid ethanolamides (FAEs). However, the role of NAAA in FAEs metabolism and regulation of pain and inflammation remains mostly unknown. Here, we generated NAAA-deficient (NAAA-/-) mice using CRISPR-Cas9 technique, and found that deletion of NAAA increased PEA and AEA levels in bone marrow (BM) and macrophages, and elevated AEA levels in lungs. Unexpectedly, genetic blockade of NAAA caused moderately effective anti-inflammatory effects in lipopolysaccharides (LPS)-induced acute lung injury (ALI), and poor analgesic effects in carrageenan-induced hyperalgesia and sciatic nerve injury (SNI)-induced mechanical allodynia. These data contrasted with acute (single dose) or chronic NAAA inhibition by F96, which produced marked anti-inflammation and analgesia in these models. BM chimera experiments indicated that these phenotypes were associated with the absence of NAAA in non-BM cells, whereas deletion of NAAA in BM or BM-derived cells in rodent models resulted in potent analgesic and anti-inflammatory phenotypes. When combined, current study suggested that genetic blockade of NAAA regulated FAEs metabolism and inflammatory responses in a cell-specifical manner.
Collapse
Affiliation(s)
- Xiaohua Xie
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Institute of Pediatrics, Xiamen University, Xiamen, China
| | - Yitian Li
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Sennan Xu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China
| | - Pan Zhou
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Pathology, Qilu Hospital, Shandong University, Jinan, China
| | - Longhe Yang
- Technical Innovation Center for Utilization of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| | - Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Xiamen Medical College, Fujian Province University, Xiamen, China
| | - Yan Qiu
- Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, School of Medicine, Eye Institute of Xiamen University, Xiamen University, Xiamen, China.,Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, China
| | - Yungang Yang
- Department of Pediatrics, The First Affiliated Hospital of Xiamen University, Xiamen, China.,School of Medicine, Institute of Pediatrics, Xiamen University, Xiamen, China
| | - Yuhang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, China.,Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, China
| |
Collapse
|
10
|
Li Y, Zhou P, Hu T, Ren J, Xu Y, Qiu Y, Lu C, Li Y. NAAA inhibitor F96 attenuates BBB disruption and secondary injury after traumatic brain injury (TBI). Eur J Pharmacol 2021; 912:174561. [PMID: 34655598 DOI: 10.1016/j.ejphar.2021.174561] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) is a leading cause of death worldwide, for which there is currently no comprehensive treatment available. Preventing blood-brain barrier (BBB) disruption is crucial for TBI treatment. N-acylethanolamine acid amidase (NAAA)-regulated palmitoylethanolamide (PEA) signaling play an important role in the control of inflammation. However, the role of NAAA in BBB dysfunction following TBI remains unclear. In the present study, we found that TBI induces the increase of PEA levels in the injured cortex, which prevent the disruption of BBB after TBI. TBI also induces the infiltration of NAAA-contained neutrophils, increasing the contribution of NAAA to the PEA degradation. Neutrophil-derived NAAA weakens PEA/PPARα-mediated BBB protective effects after TBI, facilitates the accumulation of immune cells, leading to secondary expansion of tissue injury. Inactivation of NAAA increased PEA levels in injured site, prevents early BBB damage and improves secondary injury, thereby eliciting long-term functional improvements after TBI. This study identified a new role of NAAA in TBI, suggesting that NAAA is a new important target for BBB dysfunction related CNS diseases.
Collapse
Affiliation(s)
- Yitian Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, And Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China; Medical College, Xiamen University, Xiamen, Fujian, 361102, China; Department of Clinical Pharmacy, The Third Hospital of Mianyang/Sichuan Mental Health Center, Mianyang, 621000, Sichuan, China
| | - Pan Zhou
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, And Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China; Medical College, Xiamen University, Xiamen, Fujian, 361102, China; Department of Pathology, Qilu Hospital, Shandong University, Jinan, 250012 China
| | - Ting Hu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, And Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China; Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China
| | - Jie Ren
- Medical College, Xiamen University, Xiamen, Fujian, 361102, China; Eye Institute of Xiamen University, Xiamen, Fujian, 361102, China
| | - Yaping Xu
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, China
| | - Yan Qiu
- Medical College, Xiamen University, Xiamen, Fujian, 361102, China; Eye Institute of Xiamen University, Xiamen, Fujian, 361102, China
| | - Canzhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, And Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China; Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China
| | - Yuhang Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, And Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, China; Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Fujian, 361005, China; Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, China.
| |
Collapse
|
11
|
Fotio Y, Jung KM, Palese F, Obenaus A, Tagne AM, Lin L, Rashid TI, Pacheco R, Jullienne A, Ramirez J, Mor M, Spadoni G, Jang C, Hohmann AG, Piomelli D. NAAA-regulated lipid signaling governs the transition from acute to chronic pain. SCIENCE ADVANCES 2021; 7:eabi8834. [PMID: 34678057 PMCID: PMC8535814 DOI: 10.1126/sciadv.abi8834] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
Chronic pain affects 1.5 billion people worldwide but remains woefully undertreated. Understanding the molecular events leading to its emergence is necessary to discover disease-modifying therapies. Here we show that N-acylethanolamine acid amidase (NAAA) is a critical control point in the progression to pain chronicity, which can be effectively targeted by small-molecule therapeutics that inhibit this enzyme. NAAA catalyzes the deactivating hydrolysis of palmitoylethanolamide, a lipid-derived agonist of the transcriptional regulator of cellular metabolism, peroxisome proliferator-activated receptor-α (PPAR-α). Our results show that disabling NAAA in spinal cord during a 72-h time window following peripheral tissue injury halts chronic pain development in male and female mice by triggering a PPAR-α-dependent reprogramming of local core metabolism from aerobic glycolysis, which is transiently enhanced after end-organ damage, to mitochondrial respiration. The results identify NAAA as a crucial control node in the transition to chronic pain and a molecular target for disease-modifying medicines.
Collapse
Affiliation(s)
- Yannick Fotio
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Kwang-Mook Jung
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Francesca Palese
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Andre Obenaus
- Department of Pediatrics, University of California Irvine, Irvine, CA 92697, USA
| | - Alex Mabou Tagne
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Lin Lin
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Tarif Ibne Rashid
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Romario Pacheco
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47401, USA
| | - Amandine Jullienne
- Department of Pediatrics, University of California Irvine, Irvine, CA 92697, USA
| | - Jade Ramirez
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| | - Marco Mor
- Dipartimento di Scienze degli Alimenti e del Farmaco, Università di Parma, 43124 Parma, Italy
| | - Gilberto Spadoni
- Dipartimento di Scienze Biomolecolari, Università di Urbino “Carlo Bo,” 61029 Urbino, Italy
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA 92697, USA
| | - Andrea G. Hohmann
- Psychological and Brain Sciences, Program in Neuroscience, and Gill Center for Biomolecular Science, Indiana University, Bloomington, IN 47401, USA
| | - Daniele Piomelli
- Department of Anatomy and Neurobiology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
12
|
Sgroi S, Romeo E, Fruscia PD, Porceddu PF, Russo D, Realini N, Albanesi E, Bandiera T, Bertozzi F, Reggiani A. Inhibition of N-acylethanolamine-hydrolyzing acid amidase reduces T cell infiltration in a mouse model of multiple sclerosis. Pharmacol Res 2021; 172:105816. [PMID: 34391933 DOI: 10.1016/j.phrs.2021.105816] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/30/2021] [Accepted: 08/11/2021] [Indexed: 11/27/2022]
Abstract
Experimental autoimmune encephalomyelitis (EAE) is an animal model of multiple sclerosis (MS), in which myeloid cells sustain inflammation, take part in priming, differentiation, and reactivation of myelin-specific T cells, and cause direct myelin damage. N-Acylethanolamine-hydrolyzing acid amidase (NAAA) is a proinflammatory enzyme induced by phlogosis and overexpressed in macrophages and microglia of EAE mice. Targeting these cell populations by inhibiting NAAA may be a promising pharmacological strategy to modulate the inflammatory aspect of MS and manage disease progression. To address this goal, we used ARN16186, a small molecule specifically designed and synthesized as a pharmacological tool to inhibit NAAA. We assessed whether enzyme inhibition affected the severity of neurological symptoms and modulated immune cell infiltration into the central nervous system of EAE mice. We found that preventive chronic treatment with ARN16186 was efficacious in slowing disease progression and preserving locomotor activity in EAE mice. Furthermore, NAAA inhibition reduced the number of immune cells infiltrating the spinal cord and modulated the overactivation of NF-kB and STAT3 transcription factors, leading to less expansion of Th17 cells over the course of the disease.
Collapse
Affiliation(s)
- Stefania Sgroi
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Elisa Romeo
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Paolo Di Fruscia
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | | | - Debora Russo
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Natalia Realini
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy
| | - Angelo Reggiani
- D3-Validation, Fondazione Istituto Italiano di Tecnologia, Genoa 16163, Italy.
| |
Collapse
|
13
|
Congiu M, Micheli L, Santoni M, Sagheddu C, Muntoni AL, Makriyannis A, Malamas MS, Ghelardini C, Di Cesare Mannelli L, Pistis M. N-Acylethanolamine Acid Amidase Inhibition Potentiates Morphine Analgesia and Delays the Development of Tolerance. Neurotherapeutics 2021; 18:2722-2736. [PMID: 34553321 PMCID: PMC8804012 DOI: 10.1007/s13311-021-01116-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2021] [Indexed: 11/26/2022] Open
Abstract
Opioids are essential drugs for pain management, although long-term use is accompanied by tolerance, necessitating dose escalation, and dependence. Pharmacological treatments that enhance opioid analgesic effects and/or attenuate the development of tolerance (with a desirable opioid-sparing effect in treating pain) are actively sought. Among them, N-palmitoylethanolamide (PEA), an endogenous lipid neuromodulator with anti-inflammatory and neuroprotective properties, was shown to exert anti-hyperalgesic effects and to delay the emergence of morphine tolerance. A selective augmentation in endogenous PEA levels can be achieved by inhibiting N-acylethanolamine acid amidase (NAAA), one of its primary hydrolyzing enzymes. This study aimed to test the hypothesis that NAAA inhibition, with the novel brain permeable NAAA inhibitor AM11095, modulates morphine's antinociceptive effects and attenuates the development of morphine tolerance in rats. We tested this hypothesis by measuring the pain threshold to noxious mechanical stimuli and, as a neural correlate, we conducted in vivo electrophysiological recordings from pain-sensitive locus coeruleus (LC) noradrenergic neurons in anesthetized rats. AM11095 dose-dependently (3-30 mg/kg) enhanced the antinociceptive effects of morphine and delayed the development of tolerance to chronic morphine in behaving rats. Consistently, AM11095 enhanced morphine-induced attenuation of the response of LC neurons to foot-shocks and prevented the attenuation of morphine effects following chronic treatment. Behavioral and electrophysiological effects of AM11095 on chronic morphine were paralleled by a decrease in glial activation in the spinal cord, an index of opioid-induced neuroinflammation. NAAA inhibition might represent a potential novel therapeutic approach to increase the analgesic effects of opioids and delay the development of tolerance.
Collapse
Affiliation(s)
- Mauro Congiu
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Laura Micheli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Università Degli Studi Di Firenze, Florence, Italy
| | - Michele Santoni
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Claudia Sagheddu
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy
| | - Alexandros Makriyannis
- Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Michael S Malamas
- Department of Pharmaceutical Sciences, Department of Chemistry and Chemical Biology, Center for Drug Discovery, Northeastern University, Boston, MA, USA
| | - Carla Ghelardini
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Università Degli Studi Di Firenze, Florence, Italy
| | - Lorenzo Di Cesare Mannelli
- Section of Pharmacology and Toxicology, Department of Neuroscience, Psychology, Drug Research and Child Health - Neurofarba, Università Degli Studi Di Firenze, Florence, Italy
| | - Marco Pistis
- Division of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
- Neuroscience Institute, National Research Council of Italy (CNR), Cagliari, Italy.
| |
Collapse
|
14
|
Di Fruscia P, Carbone A, Bottegoni G, Berti F, Giacomina F, Ponzano S, Pagliuca C, Fiasella A, Pizzirani D, Ortega JA, Nuzzi A, Tarozzo G, Mengatto L, Giampà R, Penna I, Russo D, Romeo E, Summa M, Bertorelli R, Armirotti A, Bertozzi SM, Reggiani A, Bandiera T, Bertozzi F. Discovery and SAR Evolution of Pyrazole Azabicyclo[3.2.1]octane Sulfonamides as a Novel Class of Non-Covalent N-Acylethanolamine-Hydrolyzing Acid Amidase (NAAA) Inhibitors for Oral Administration. J Med Chem 2021; 64:13327-13355. [PMID: 34469137 PMCID: PMC8474119 DOI: 10.1021/acs.jmedchem.1c00575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 12/30/2022]
Abstract
Inhibition of intracellular N-acylethanolamine-hydrolyzing acid amidase (NAAA) activity is a promising approach to manage the inflammatory response under disabling conditions. In fact, NAAA inhibition preserves endogenous palmitoylethanolamide (PEA) from degradation, thus increasing and prolonging its anti-inflammatory and analgesic efficacy at the inflamed site. In the present work, we report the identification of a potent, systemically available, novel class of NAAA inhibitors, featuring a pyrazole azabicyclo[3.2.1]octane structural core. After an initial screening campaign, a careful structure-activity relationship study led to the discovery of endo-ethoxymethyl-pyrazinyloxy-8-azabicyclo[3.2.1]octane-pyrazole sulfonamide 50 (ARN19689), which was found to inhibit human NAAA in the low nanomolar range (IC50 = 0.042 μM) with a non-covalent mechanism of action. In light of its favorable biochemical, in vitro and in vivo drug-like profile, sulfonamide 50 could be regarded as a promising pharmacological tool to be further investigated in the field of inflammatory conditions.
Collapse
Affiliation(s)
- Paolo Di Fruscia
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Anna Carbone
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
- Department
of Biological, Chemical and Pharmaceutical Sciences and Technologies
(STEBICEF), University of Palermo, 90123Palermo, Italy
| | - Giovanni Bottegoni
- Computational
and Chemical Biology, Istituto Italiano
di Tecnologia (IIT), 16163Genova, Italy
| | - Francesco Berti
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Francesca Giacomina
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Stefano Ponzano
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Chiara Pagliuca
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Annalisa Fiasella
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Daniela Pizzirani
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Jose Antonio Ortega
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Andrea Nuzzi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Glauco Tarozzo
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Luisa Mengatto
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Roberta Giampà
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Ilaria Penna
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Debora Russo
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Elisa Romeo
- D3-Validation, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Maria Summa
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Rosalia Bertorelli
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Andrea Armirotti
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Sine Mandrup Bertozzi
- Analytical
Chemistry and Translational Pharmacology, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Angelo Reggiani
- D3-Validation, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Tiziano Bandiera
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| | - Fabio Bertozzi
- D3-PharmaChemistry, Istituto Italiano di Tecnologia (IIT), 16163Genova, Italy
| |
Collapse
|