1
|
Jing Y, Bai Y, Liang C, Liu Y, Zhou J, Guo J, Cai X, Hu X, Fang Y, Ding X, Wu J, Hu D. Ingenol ameliorates silicosis via targeting the PTGS2/PI3K/AKT signaling axis: Implications for therapeutic intervention. Cell Signal 2025; 131:111780. [PMID: 40158708 DOI: 10.1016/j.cellsig.2025.111780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/02/2025]
Abstract
Silicosis, formerly known as silico, is an irreversible disease caused by prolonged inhalation of substantial amounts of free crystalline silica dust, characterized by pulmonary inflammation and extensive nodular fibrosis. The etiology of the disease remains unclear, which currently hinders the development of effective therapeutic drugs and interventions. Ingenol (Ing), a terpenoid active ingredient found in plants of the Euphorbiaceae family, including the entire herb of Euphorbia helioscopia, Euphorbia kansui, or Euphorbia lathyris, demonstrates significant anti-inflammatory and antiviral activities. In this study, we identified and confirmed that Ingenol can significantly ameliorate silicosis induced by silica dioxide by inhibiting the PTGS2/PI3K/AKT signaling pathway. In vivo, Ingenol improves pulmonary respiratory function and reduces inflammation and fibrosis in a murine model of CS-induced silicosis. In vitro, Ingenol inhibits the expression of cellular factors associated with inflammation and fibrosis, as well as macrophage apoptosis and fibroblast migration. Furthermore, it can modulate the expression of fibrosis-related proteins, thereby inhibiting CS-induced fibrotic responses. Mechanistically, a combination of bioinformatics, network pharmacology, and experimental validation indicates that Ingenol mitigates the progression of silicosis by modulating the PTGS2/PI3K/AKT signaling pathway. In summary, these findings suggest that Ingenol is a potential candidate for the treatment of silicosis.
Collapse
Affiliation(s)
- Yifan Jing
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Ying Bai
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Huainan Xinhua Medical Group Xinhua Hospital, China.
| | - Chao Liang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yafeng Liu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jiawei Zhou
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jianqiang Guo
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Xiaolong Cai
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Xiaofei Hu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Yujing Fang
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Xuansheng Ding
- Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, School of Medicine, Anhui University of Science and Technology, Huainan City, China
| | - Jing Wu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), School of Medicine, Huainan City, China.
| | - Dong Hu
- Department of Immunology, School of Medicine, Anhui University of Science and Technology, Huainan City, China; Anhui Province Engineering Laboratory of Occupational Health and Safety, School of Medicine, Anhui University of Science and Technology, Huainan City, China; The First Affiliated Hospital of Anhui University of Science and Technology (Huainan First People's Hospital), School of Medicine, Huainan City, China; Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei City, China.
| |
Collapse
|
2
|
Yu H, Chen K, Li X, Liang J, Jin Y, Bao Y, Chen H, Gou Y, Lu K, Wu L, Lin Z. Palmatine activation of TFEB enhances autophagy and alleviates endoplasmic reticulum stress in intervertebral disc degeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156431. [PMID: 39933468 DOI: 10.1016/j.phymed.2025.156431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 01/13/2025] [Accepted: 01/25/2025] [Indexed: 02/13/2025]
Abstract
BACKGROUND Intervertebral disc degeneration (IDD) is integral in lower back pain and involves complex pathophysiological processes, including nucleus pulposus (NP) cell apoptosis and extracellular matrix (ECM) breakdown. Palmatine (PLT), an isoquinoline alkaloid extracted from Fibraurea recisa Pierre of the family Menispermaceae, is recognised for its anti-inflammatory, antioxidant, and neuroprotective effects. Nevertheless, researches have not well explored the impact of PLT on IDD. OBJECTIVE This investigation aimed at determining the impact of PLT on oxidative stress caused by tert‑butyl hydroperoxide (TBHP) and exploring its potential as a therapeutic agent and its mechanisms in IDD. METHODS Potential anti-IDD targets of PLT were identified using network pharmacology and bioinformatics methods and evaluated using Gene Ontology analysis. The method of molecular docking helped elucidate the interaction mode and connections between PLT and transcription factor EB (TFEB). Cellular thermal shift assays and cycloheximide chase experiments confirmed direct interactions between PLT and TFEB. NP cell apoptosis, ECM levels, endoplasmic reticulum stress (ERS), autophagy, and TFEB expression were evaluated using western blotting, TUNEL staining, EdU staining, flow cytometry, immunofluorescence, and alcian blue staining. Functional IDD recovery was evaluated using MRI and X-ray, haematoxylin-eosin (HE) staining, safranin O/fast green staining, and immunohistochemical (IHC) staining. Moreover, needle puncture was used to establish an in vivo rat model of IDD to examine the therapeutic efficacy of PLT. RESULTS PLT markedly mitigated ERS and inhibited TBHP-induced ECM degradation and NP cell apoptosis by activating TFEB and upregulating autophagy. In the IDD rat model, PLT improved annulus fibrosus (AF) and NP morphology and structure. CONCLUSION These findings demonstrate that PLT alleviates IDD progression by upregulating TFEB; therefore, TFEB represents a potential novel therapeutic target. Moreover, this study reveals for the first time that PLT inhibits ERS by enhancing TFEB-mediated autophagy, thereby reducing NP cell apoptosis and ECM degradation, thus providing valuable insights into the key pharmacological mechanisms of PLT.
Collapse
Affiliation(s)
- Heng Yu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kaiye Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiang Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinghao Liang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yangcan Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yingying Bao
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yong Gou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Keyu Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Long Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Zhongke Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
3
|
Liu Z, Wang Y, Jiao Q, Liu Y, Shen S, Zhao H, Gao Z, Yao GD, Gu L, Liu Q, Song SJ. 20-Deoxyingenol ester and ether derivatives: Synthesis, properties and cytotoxicity. Bioorg Chem 2025; 156:108207. [PMID: 39864376 DOI: 10.1016/j.bioorg.2025.108207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/28/2025]
Abstract
The C-3 and C-5 substituted 20-deoxyingenol monoesters are important active components in Euphorbiaceae plants. Nonetheless, their similar physical properties make them difficult to distinguish. The present study developed fast and efficient rules for identifying the esterification sites of 20-deoxyingenol based on a series of chemical syntheses of monoesters and literature research, utilizing NMR spectroscopy, optical rotation analysis, and chromatographic retention behavior. In addition, a series of 20-deoxyingenol ether derivatives, including 1,3,4-oxadiazole derivatives, were synthesized. The cytotoxic activities of 20-deoxyingenol derivatives were evaluated on A549 and HepG2 cell lines. Notably, 20-deoxyingenol 1,3,4-oxadiazole derivative 22 (IC50 = 8.8 μM) exhibited significant anticancer activity against HepG2 cells with low toxicity to normal cells (IC50 > 50 μM), making it a promising compound. We investigated the potential anticancer mechanism of compound 22 by examining protein expression changes in HepG2 cells using quantitative proteomics. Our findings indicated that 22 induced G1/S phase cell cycle arrest and, In a dose-dependent manner, inhibited CDK4 and CyclinD1 expression while upregulating P21. Moreover, 22 promoted the accumulation of autophagosomes and the proteins LC3 and PINK1, enhancing autophagy and mitophagy in HepG2 cells. Collectively, compound 22 might serve as a novel autophagy agonist with anticancer properties.
Collapse
Affiliation(s)
- Zijian Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yaxu Wang
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Qingning Jiao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China
| | - Yan Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Shuai Shen
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Hongwei Zhao
- Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China
| | - Ziang Gao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Guo-Dong Yao
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Qingbo Liu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Jilin Yizheng Pharmaceutical Group Co., Ltd., Jilin Province, Siping 136001, China.
| | - Shao-Jiang Song
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning Province, Engineering Research Center of Natural Medicine Active Molecule Research & Development, Liaoning Province Key Laboratory of Natural Bioactive Compounds Discovery & Modification, Shenyang, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
4
|
Zhao W, Wang F, Li P, Li L, Ernst L, Huang L, Tian M, Lv W, Xu S, Liu F, Lin G, Lyu H, Paetz C, Feng X, Chen Y. Two O-acyltransferases from the diterpene biosynthetic gene cluster of Euphorbia lathyris contribute to the structural diversity of medicinal macrocyclic diterpenoid esters biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70003. [PMID: 39968625 DOI: 10.1111/tpj.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/31/2024] [Accepted: 01/07/2025] [Indexed: 02/20/2025]
Abstract
Macrocyclic diterpenoid esters from Euphorbiaceae plants hold significant medicinal value owing to their structural diversity and for attributing structural uniqueness and biological efficacy. However, the responsible enzymes for the acylation of macrocyclic diterpenoids remain unknown. We identified two macrocyclic diterpenoid O-acyltransferases, ElBAHD16 and ElBAHD35, from the diterpene biosynthetic gene cluster of Euphorbia lathyris. ElBAHD16 and ElBAHD35 were characterized both in vitro (using Escherichia coli) and in vivo (using Nicotiana benthamiana and E. lathyris) and exhibited mono-acylation activities toward the hydroxy groups of their substrates, 7-hydroxylathyrol and lathyrol. ElBAHD16 showed not only regioselectivity toward the 7-OH group of 7-hydroxylathyrol but also donor promiscuity, thereby producing three different mono-acylation products. Conversely, ElBAHD35 demonstrated specific recognition for the 5-OH group of 7-hydroxylathyrol and lathyrol, thereby mediating mono-acetylation reactions with acetyl-CoA, showing donor specificity. Site-directed mutagenesis revealed that residues H154 and T363 in ElBAHD16 are critical for its catalytic activity. Notably, the Q35 residue enhanced the efficiency of ElBAHD16, while the M296, N292, and F394 residues were crucial for its donor promiscuity. These findings elucidate the last step in the biosynthesis of macrocyclic diterpenoid esters and highlight the contribution of acyltransferases to the structural diversity of diterpenoids.
Collapse
Affiliation(s)
- Wanli Zhao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Fan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Pirui Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Linwei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Lukas Ernst
- Institute of Pharmaceutical Biology, Technische Universität Braunschweig, Braunschweig, 38106, Germany
| | - Long Huang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Mei Tian
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Wei Lv
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Shu Xu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Fei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Guyin Lin
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Hui Lyu
- NMR/Biosynthesis Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Christian Paetz
- NMR/Biosynthesis Group, Max-Planck-Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745, Jena, Germany
| | - Xu Feng
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| | - Yu Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Jiangsu Province Engineering Research Center of Eco-cultivation and High-value Utilization of Chinese Medicinal Materials, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), 210014, Nanjing, Jiangsu, China
| |
Collapse
|
5
|
Wu C, Chen Y, Chen X, Zhang Y, Zhao X, Deng Y, Li C, Zhang D, Zhang X, Wang S. 20-Deoxyingenol Activates Mitophagy Through TFEB and Promotes Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2025; 62:445-460. [PMID: 38865079 DOI: 10.1007/s12035-024-04283-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Spinal cord injury (SCI) can lead to permanent paralysis and various motor, sensory and autonomic nervous system dysfunction. The complex pathophysiological processes limit the effectiveness of many clinical treatments. Mitochondria has been reported to play a key role in the pathogenesis of SCI; while mitophagy is a protective mechanism against mitochondrial dysfunction. However, there is recently little drugs that may targeted activate mitophagy to treat SCI. In this study, we evaluated the role of 20-Deoxyingenol (20-DOI) in SCI and explored its potential mechanisms. We used a SCI rat model and evaluated the functional outcomes after the injury. Western blotting and immunofluorescence techniques were used to analyze the levels of mitophagy, apoptosis, and TFEB-related signaling pathways. Our research results show that 20-DOI significantly improves the apoptosis of neural cells after TBHP stimulation and functional recovery after spinal cord injury. In addition, mitophagy, TFEB levels, and apoptosis are related to the mechanism of 20-DOI treatment for spinal cord injury. Specifically, our research results indicate that 20-DOI restored the autophagic flux after injury, thereby inducing mitophagy, eliminating the accumulation of Cyto C, and inhibiting apoptosis. Further mechanism research suggests that 20-DOI may regulate mitophagy by promoting TFEB nuclear translocation. These results indicate that 20-DOI can significantly promote recovery after spinal cord injury, which may be a promising treatment method for spinal cord injury.
Collapse
Affiliation(s)
- Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Yekai Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Xiaoying Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Yuxin Deng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China
| | - Di Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
| | - Sheng Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
- Zhejiang Provincial Key Laboratory of Orthopedics, Zhejiang Province, Wenzhou, China.
- The Second School of Medicine, Wenzhou Medical University, Zhejiang Province, Wenzhou, China.
| |
Collapse
|
6
|
He Y, Fan Y, Ahmadpoor X, Wang Y, Li ZA, Zhu W, Lin H. Targeting lysosomal quality control as a therapeutic strategy against aging and diseases. Med Res Rev 2024; 44:2472-2509. [PMID: 38711187 DOI: 10.1002/med.22047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
Previously, lysosomes were primarily referred to as the digestive organelles and recycling centers within cells. Recent discoveries have expanded the lysosomal functional scope and revealed their critical roles in nutrient sensing, epigenetic regulation, plasma membrane repair, lipid transport, ion homeostasis, and cellular stress response. Lysosomal dysfunction is also found to be associated with aging and several diseases. Therefore, function of macroautophagy, a lysosome-dependent intracellular degradation system, has been identified as one of the updated twelve hallmarks of aging. In this review, we begin by introducing the concept of lysosomal quality control (LQC), which is a cellular machinery that maintains the number, morphology, and function of lysosomes through different processes such as lysosomal biogenesis, reformation, fission, fusion, turnover, lysophagy, exocytosis, and membrane permeabilization and repair. Next, we summarize the results from studies reporting the association between LQC dysregulation and aging/various disorders. Subsequently, we explore the emerging therapeutic strategies that target distinct aspects of LQC for treating diseases and combatting aging. Lastly, we underscore the existing knowledge gap and propose potential avenues for future research.
Collapse
Affiliation(s)
- Yuchen He
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yishu Fan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xenab Ahmadpoor
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhong Alan Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Center for Neuromusculoskeletal Restorative Medicine, Hong Kong Science Park, Shatin, NT, Hong Kong SAR, China
| | - Weihong Zhu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Department of Orthopaedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Hang Lin
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, Pennsylvania, USA
- McGowan Institute for Regenerative Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Zhang Y, Zhou Y. Advances in targeted therapies for age-related osteoarthritis: A comprehensive review of current research. Biomed Pharmacother 2024; 179:117314. [PMID: 39167845 DOI: 10.1016/j.biopha.2024.117314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/10/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease that disproportionately impacts the elderly population on a global scale. As aging is a significant risk factor for OA, there is a growing urgency to develop specific therapies that target the underlying mechanisms of aging associated with this condition. This summary seeks to offer a thorough introduction of ongoing research efforts aimed at developing therapies to combat senescence in the context of OA. Cellular senescence plays a pivotal role in both the deterioration of cartilage integrity and the perpetuation of chronic inflammation and tissue remodeling. Consequently, targeting SnCs has emerged as a promising therapeutic approach to alleviate symptoms and hinder the progression of OA. This review examines a range of approaches, including senolytic drugs targeting SnCs, senomorphics that modulate the senescence-associated secretory phenotype (SASP), and interventions that enhance immune system clearance of SnCs. Novel methodologies, such as utilizing novel materials for exosome delivery and administering anti-aging medications with precision, offer promising avenues for the precise treatment of OA. Accumulating evidence underscores the potential of targeting senescence in OA management, potentially facilitating the development of more effective and personalized therapeutic interventions.
Collapse
Affiliation(s)
- Yantao Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuan 430060, China
| | - Yan Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuan 430060, China.
| |
Collapse
|
8
|
Ji P, Zhou Z, Zhang J, Bai T, Li C, Zhou B, Wang M, Tan Y, Wang S. Non-apoptotic cell death in osteoarthritis: Recent advances and future. Biomed Pharmacother 2024; 179:117344. [PMID: 39191021 DOI: 10.1016/j.biopha.2024.117344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/23/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024] Open
Abstract
Osteoarthritis (OA) is the most common degenerative joint disease. Multiple tissues are altered during the development of OA, resulting in joint pain and permanent damage to the osteoarticular joints. Current research has demonstrated that non-apoptotic cell death plays a crucial role in OA. With the continuous development of targeted therapies, non-apoptotic cell death has shown great potential in the prevention and treatment of OA. We systematically reviewed research progress on the role of non-apoptotic cell death in the pathogenesis, development, and outcome of OA, including autophagy, pyroptosis, ferroptosis, necroptosis, immunogenic cell death, and parthanatos. This article reviews the mechanism of non-apoptotic cell death in OA and provides a theoretical basis for the identification of new targets for OA treatment.
Collapse
Affiliation(s)
- Pengfei Ji
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Ziyu Zhou
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Jinyuan Zhang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Tianding Bai
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China
| | - Chao Li
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Binghao Zhou
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Mengjie Wang
- The Second Clinical Medical College, Lanzhou University, No. 199 DongGang West Road, Lanzhou, Gansu 730000, China
| | - Yingdong Tan
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China.
| | - Shengwang Wang
- People's Hospital of Guazhou County, Guazhou, Gansu 736100, China.
| |
Collapse
|
9
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Ma J, Zou L, Lou Y, Lin Y, Zhou J, Ju N, Pan J, Zhang X, Qi D. 20- Deoxyingenol attenuate morphine-induced hippocampus neurotoxicity and memory impairments in rats. Heliyon 2024; 10:e31605. [PMID: 38882370 PMCID: PMC11180326 DOI: 10.1016/j.heliyon.2024.e31605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
Objective The present study aimed to see if 20-Deoxyingenol(20-DOI) could protect hippocampus neurons from the neurotoxic effects of morphine and reduce memory loss in rats. Method Male Wistar rats were given morphine hydrochloride (45 mg/kg, sc, four weeks) and 20-DOI (10, 20 mg/kg, ip., coadministered with morphine) for the Morris Water Maze (MWM) test to investigate the effects of 20-DOI on spatial learning and memory. Western blotting was used to evaluate the expression of the hippocampal CA1 region of the cleaved caspase-3, Bax, and Bcl2 proteins and so on. Moreover, these assays were used to evaluate the expression of superoxide dismutase (SOD)2, heme oxygenase 1(HO1) protein, and glutathione peroxidase (GPx) activity within the hippocampus CA1 area. Results The administration of 20-DOI (10 and 20 mg/kg) to morphine-treated mice enhanced spatial learning and reduced memory deficits. Additionally, 20-DOI treatment reduced apoptosis and oxidative stress in the hippocampal CA1 region of morphine-treated rats. Moreover, 20-DOI improved the autophagy level of the hippocampal CA1 area of morphine-treated rats using Transcription factor EB (TFEB), and 20-DOI prevented spatial learning and memory impairment in morphine-treated rats. The current observation could be partially due to the inhibition of neuronal apoptosis and oxidative stress in the hippocampal CA1 region of rats treated with morphine and the improved autophagy in this region. Conclusions 20-DOI attenuated morphine administration in rats with chronic disease caused spatial learning and memory dysfunction. These mechanistic effects could be partially related to 20-DOI protecting the CA1 region of rat hippocampal neurons from the morphine-induced oxidative stress, apoptosis, and autophagy through TFEB.
Collapse
Affiliation(s)
- Jianfeng Ma
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Linfang Zou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Yani Lou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Yuanqu Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jiansong Zhou
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Nanbin Ju
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xutong Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
- Key Laboratory of Anesthesiology of Zhejiang Province, Wenzhou Medical University, Wenzhou, China
| | - Dansi Qi
- Department of Pathology, Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Zhang G, Huang C, Wang R, Guo J, Qin Y, Lv S. Chondroprotective effects of Apolipoprotein D in knee osteoarthritis mice through the PI3K/AKT/mTOR signaling pathway. Int Immunopharmacol 2024; 133:112005. [PMID: 38626543 DOI: 10.1016/j.intimp.2024.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
BACKGROUND Because the pathophysiology of osteoarthritis (OA) has not been fully elucidated, targeted treatments are lacking. In this study, we assessed the role and underlying mechanism apolipoprotein D (APOD) on the development of OA. METHODS To establish an in vitro OA model, we extracted primary chondrocytes from the cartilage of C57BL/6 mice and stimulated the chondrocytes with IL-1β. After APOD intervention or incubation with an overexpressing plasmid, we detected inflammatory-related markers using RT-qPCR, Western blotting, and ELISA. To detect apoptosis and autophagy-related markers, we used flow cytometry, immunofluorescence, and transmission electron microscopy (TEM). Finally, we measured the level of oxidative stress. We also used RNA-seq to identify the APOD-regulated downstream signaling pathways. We used an in vivo mice OA model of the anterior cruciate ligament transection (ACLT) and administered intra-articular adenovirus overexpressing APOD. To examine cartilage damage severity, we used immunohistochemical analysis (IHC), micro-CT, scanning electron microscopy (SEM), and Safranin O-fast green staining. RESULTS Our results showed that APOD inhibited chondrocyte inflammation, degeneration, and apoptosis induced by IL-1β. Additionally, APOD reversed autophagy inhibition and oxidative stress and also blocked activation of the PI3K/AKT/mTOR signaling pathway induced by IL-1β. Finally, overexpression of the APOD gene through adenovirus was sufficient to mitigate OA progression. CONCLUSIONS Our findings revealed that APOD had a chondroprotective role in OA progression by the PI3K/AKT/mTOR signaling pathway.
Collapse
Affiliation(s)
- Gang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China; Department of Orthopedics, Harbin First Hospital, Harbin, Heilongjiang Province, China; Future Medical Laboratory of the Second Affiliated Hospital of Harbin Medical University, China
| | - Chao Huang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Ren Wang
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Jiangrong Guo
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China
| | - Yong Qin
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| | - Songcen Lv
- Department of Orthopedics, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
12
|
Chen Y, Wu C, Zhao X, Tan H, Li C, Deng Y, Chen X, Wu Y, Tian N, Zhang X, Zhou Y, Sun L. 20-Deoxyingenol alleviates intervertebral disc degeneration by activating TFEB in nucleus pulposus cells. Biochem Pharmacol 2023; 218:115865. [PMID: 37863322 DOI: 10.1016/j.bcp.2023.115865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/16/2023] [Accepted: 10/17/2023] [Indexed: 10/22/2023]
Abstract
Intervertebral disc degeneration (IVDD) is a prevalent degenerative disease with significant adverse implications for patients' quality of life and socioeconomic status. Although the precise etiology of IVDD remains elusive, the senescence of nucleus pulposus cells is recognized as the primary pathogenic factor of IVDD; however, drugs that may targetedly inhibit senescence are still lacking. In the current study, we evaluated the small-molecule active drug 20-Deoxyingenol(20-DOI) for its effects on combating senescence and delaying the progression of IVDD. In vitro experiments revealed that the administration of 20-DOI displayed inhibitory effects on senescence and the senescence-related cGAS-STING pathway of nucleus pulposus cells. Additionally, it exhibited the ability to enhance lysosome activity and promote autophagy flux within nucleus pulposus cells. Subsequent investigations elucidated that the inhibitory impact of 20-DOI on nucleus pulposus cell senescence was mediated through the autophagy-lysosome pathway. This effect was diminished in the presence of transcription factor EB (TFEB) small hairpin RNA (shRNA), thereby confirming the regulatory role of 20-DOI on the autophagy-lysosome pathway and senescence through TFEB. In vivo experiments demonstrated that 20-DOI effectively impeded the progression ofIVDD in rats. These findings collectively illustrate that 20-DOI may facilitate the autophagy-lysosomal pathway by activating TFEB, thereby suppressing the senescence in nucleus pulposus cells, thus suggesting 20-DOI as a promising therapeutic approach for IVDD.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaoying Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hongye Tan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yuxin Deng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yaosen Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Naifeng Tian
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiaolei Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Yifei Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Liaojun Sun
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China; Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
13
|
Wang Y, Li Z, Wang B, Li K, Zheng J. Naringenin attenuates inflammation and apoptosis of osteoarthritic chondrocytes via the TLR4/TRAF6/NF-κB pathway. PeerJ 2023; 11:e16307. [PMID: 37953787 PMCID: PMC10638912 DOI: 10.7717/peerj.16307] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/26/2023] [Indexed: 11/14/2023] Open
Abstract
Naringenin is a flavonoid extracted from the seed coat of Anacardiaceae plants. Increasing evidence indicates that it has several properties of biological significance, such as anti-infection, sterilization, anti-allergy, antioxidant free radical, and anti-tumor. However, its effect on osteoarthritis has not been elucidated properly. In this study, the treatment of primary chondrocytes with interleukin (IL)-1β was found to increase the secretions of IL-6, tumor necrosis factor (TNF)-α, and cyclooxygenase-2 (COX-2). Further, the mRNA expression of matrix metalloproteinase ((MMP)3, MMP9, and MMP13), the protein expression of Recombinant A Disintegrin And Metalloproteinase With Thrombospondin 5 (ADAMTS5), and cell apoptosis increased; the protein expression of Collagen II decreased. The injury of primary chondrocytes induced by IL-1β was reversed under the intervention of naringenin; this reversal was dose-dependent. The mechanistic study showed that naringenin inhibited the toll-like receptor 4 (TLR4)/TNF receptor-associated factor 6 (TRAF6)/NF-κB pathway in IL-1β-stimulated primary cells, and LPS, a TLR4 activator, reversed this inhibitory effect. In addition, a mouse model of osteoarthritis was established and treated with naringenin. The results revealed that naringenin alleviated the pathological symptoms of osteoarthritis in mice, reduced the expression of TLR4 and TRAF6, and the phosphorylation of NF-κB in knee cartilage tissue. It also inhibited the secretion of inflammatory factors, reduced extracellular matrix degradation, and decreased the protein expression of cleaved caspase3. In conclusion, the findings of this study suggest that naringenin may be a potential option for the treatment of osteoarthritis.
Collapse
Affiliation(s)
- Yan Wang
- Department of Hand Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Zhengzhao Li
- Department of Emergency Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Bo Wang
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Ke Li
- Department of Sports Medicine, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| | - Jiaxuan Zheng
- Department of Pathology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China
| |
Collapse
|
14
|
Wu J, Yu H, Jin Y, Wang J, Zhou L, Cheng T, Zhang Z, Lin B, Miao J, Lin Z. Ajugol's upregulation of TFEB-mediated autophagy alleviates endoplasmic reticulum stress in chondrocytes and retards osteoarthritis progression in a mouse model. Chin Med 2023; 18:113. [PMID: 37679844 PMCID: PMC10483732 DOI: 10.1186/s13020-023-00824-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Osteoarthritis (OA), a degenerative disease with a high global prevalence, is characterized by the degradation of the extracellular matrix (ECM) and the apoptosis of chondrocytes. Ajugol, a extract derived from the herb Rehmannia glutinosa, has not yet been investigated for its potential in modulating the development of OA. METHODS We employed techniques such as western blotting, immunofluorescence, immunohistochemistry, X-ray imaging, HE staining, and SO staining to provide biological evidence supporting the role of Ajugol as a potential therapeutic agent for modulating OA. Furthermore, in an in vivo experiment, intra-peritoneal injection of 50 mg/kg Ajugol effectively mitigated the progression of OA following destabilization of the medial meniscus (DMM) surgery. RESULTS Our findings revealed that treatment with 50 μM Ajugol activated TFEB-mediated autophagy, alleviating ER stress-induced chondrocyte apoptosis and ECM degradation caused by TBHP. Furthermore, in an in vivo experiment, intra-peritoneal injection of 50 mg/kg Ajugol effectively mitigated the progression of OA following destabilization of the medial meniscus (DMM) surgery. CONCLUSION These results provide compelling biological evidence supporting the role of Ajugol as a potential therapeutic agent for modulating OA by activating autophagy and attenuating ER stress-induced cell death and ECM degradation. The promising in vivo results further suggest the potential of Ajugol as a treatment strategy for OA progression.
Collapse
Affiliation(s)
- Jingtao Wu
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Heng Yu
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Yangcan Jin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jingquan Wang
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Liwen Zhou
- The First School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Teng Cheng
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhao Zhang
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Binghao Lin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Jiansen Miao
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China
| | - Zhongke Lin
- Department of Orthopaedics, Wenzhou Key Laboratory of Perinatal Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, 325000, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang Province, China.
| |
Collapse
|
15
|
Chen Y, Liao G, Ma T, Li L, Yang J, Shen B, Lu Y, Si H. YY1/miR-140-5p/Jagged1/Notch axis mediates cartilage progenitor/stem cells fate reprogramming in knee osteoarthritis. Int Immunopharmacol 2023; 121:110438. [PMID: 37295026 DOI: 10.1016/j.intimp.2023.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/11/2023]
Abstract
Osteoarthritis is a multifactorial disease characterized by cartilage degeneration, while cartilage progenitor/stem cells (CPCs) are responsible for endogenous cartilage repair. However, the relevant regulatory mechanisms of CPCs fate reprogramming in OA are rarely reported. Recently, we observed fate disorders in OA CPCs and found that microRNA-140-5p (miR-140-5p) protects CPCs from fate changes in OA. This study further mechanistically investigated the upstream regulator and downstream effectors of miR-140-5p in OA CPCs fate reprogramming. As a result, luciferase reporter assay and validation assays revealed that miR-140-5p targets Jagged1 and inhibits Notch signaling in human CPCs, and the loss-/gain-of-function experiments and rescue assays discovered that miR-140-5p improves OA CPCs fate, but this effect can be counteracted by Jagged1. Moreover, increased transcription factor Ying Yang 1 (YY1) was associated with OA progression, and YY1 could disturb CPCs fate via transcriptionally repressing miR-140-5p and enhancing the Jagged1/Notch signaling. Finally, the relevant changes and mechanisms of YY1, miR-140-5p, and Jagged1/Notch signaling in OA CPCs fate reprogramming were validated in rats. Conclusively, this study identified a novel YY1/miR-140-5p/Jagged1/Notch signaling axis that mediates OA CPCs fate reprogramming, wherein YY1 and Jagged1/Notch signaling exhibits an OA-stimulative role, and miR-140-5p plays an OA-protective effect, providing attractive targets for OA therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ting Ma
- Department of Operating Room of Anesthesia Surgery Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Li
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Yang
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bin Shen
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanrong Lu
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haibo Si
- Department of Orthopedic Surgery & Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
16
|
Wang W, Duan J, Ma W, Xia B, Liu F, Kong Y, Li B, Zhao H, Wang L, Li K, Li Y, Lu X, Feng Z, Sang Y, Li G, Xue H, Qiu J, Liu H. Trimanganese Tetroxide Nanozyme protects Cartilage against Degeneration by Reducing Oxidative Stress in Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205859. [PMID: 37088785 PMCID: PMC10265103 DOI: 10.1002/advs.202205859] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/12/2023] [Indexed: 05/03/2023]
Abstract
Osteoarthritis, a chronic degenerative cartilage disease, is the leading cause of movement disorders among humans. Although the specific pathogenesis and associated mechanisms remain unclear, oxidative stress-induced metabolic imbalance in chondrocytes plays a crucial role in the occurrence and development of osteoarthritis. In this study, a trimanganese tetroxide (Mn3 O4 ) nanozyme with superoxide dismutase (SOD)-like and catalase (CAT)-like activities is designed to reduce oxidative stress-induced damage and its therapeutic effect is investigated. In vitro, Mn3 O4 nanozymes are confirmed to reprogram both the imbalance of metabolism in chondrocytes and the uncontrolled inflammatory response stimulated by hydrogen peroxide. In vivo, a cross-linked chondroitin sulfate (CS) hydrogel is designed as a substrate for Mn3 O4 nanozymes to treat osteoarthritis in mouse models. As a result, even in the early stage of OA (4 weeks), the therapeutic effect of the Mn3 O4 @CS hydrogel is observed in both cartilage metabolism and inflammation. Moreover, the Mn3 O4 @CS hydrogel maintained its therapeutic effects for at least 7 days, thus revealing a broad scope for future clinical applications. In conclusion, these results suggest that the Mn3 O4 @CS hydrogel is a potentially effective therapeutic treatment for osteoarthritis, and a novel therapeutic strategy for osteoarthritis based on nanozymes is proposed.
Collapse
Affiliation(s)
- Wenhan Wang
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinan250012P. R. China
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Shandong Key Laboratory of Brain Function RemodelingJinan250012P. R. China
| | - Jiazhi Duan
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Institute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Wenjun Ma
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Bowei Xia
- Department of OrthopedicsQilu HospitalCheeloo College of MedicineShandong UniversityJinan250012P. R. China
| | - Feng Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Ying Kong
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Boyan Li
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinan250012P. R. China
- Shandong Key Laboratory of Brain Function RemodelingJinan250012P. R. China
| | - Hang Zhao
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Liang Wang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Keyi Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Yiwei Li
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Xiheng Lu
- Institute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| | - Yuanhua Sang
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Gang Li
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinan250012P. R. China
- Shandong Key Laboratory of Brain Function RemodelingJinan250012P. R. China
| | - Hao Xue
- Department of NeurosurgeryQilu HospitalCheeloo College of Medicine and Institute of Brain and Brain‐Inspired ScienceShandong UniversityJinan250012P. R. China
- Shandong Key Laboratory of Brain Function RemodelingJinan250012P. R. China
| | - Jichuan Qiu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
| | - Hong Liu
- State Key Laboratory of Crystal MaterialsShandong UniversityJinan250100P. R. China
- Institute for Advanced Interdisciplinary Research (iAIR)University of JinanJinan250022P. R. China
| |
Collapse
|
17
|
Sha H, He X, Yan K, Li J, Li X, Xie Y, Yang Y, Deng Y, Li G, Yang J. Blocking coprophagy increases the levels of inflammation and depression in healthy mice as well as mice receiving fecal microbiota transplantation from disease model mice donors. APMIS 2023. [PMID: 37145345 DOI: 10.1111/apm.13326] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 04/18/2023] [Indexed: 05/06/2023]
Abstract
Rodents have been extensively used as animal models in microbiome studies. However, all rodents have a habitual nature called coprophagy, a phenomenon that they self-reinoculate feces into their gastrointestinal tract. Recent studies have shown that blocking coprophagy can alter rodents' diversity of gut microbiota, metabolism, neurochemistry, and cognitive behavior. However, whether rodents' coprophagy behavior affects the levels of inflammation and depression is unclear. In order to address this problem, we first blocked coprophagy in healthy mice. It displayed an increase in the levels of depression, verified by depressive-like behaviors and mood-related indicators, and inflammation, verified by the increased levels of the pro-inflammatory cytokine, in coprophagy-blocked mice. Furthermore, we transplanted fecal microbiota from chronic restraint stress (CRS) depression model mice and lipopolysaccharide (LPS) inflammation model mice to healthy recipient mice, respectively. It showed that the disease-like phenotypes in the coprophagy-blocked group were worse than those in the coprophagy-unblocked group, including severer depressive symptoms and higher levels of pro-inflammatory cytokines (IL-1β, IL-6, TNF-α and IFN-γ) in serum, prefrontal cortex (PFC), and hippocampus (HIP). These findings showed that blocking coprophagy in mice not only increased the levels of inflammation and depression in healthy mice but also aggravated inflammation and depression induced by fecal microbiota from disease donors. The discovery may provide a vital reference for future research involving FMT in rodents.
Collapse
Affiliation(s)
- Haoran Sha
- Grade 2020, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiaoyi He
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Kai Yan
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Jiakang Li
- Grade 2017, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xu Li
- Grade 2018, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yinyin Xie
- Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yousheng Yang
- Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yajuan Deng
- Grade 2018, School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Guoying Li
- Guangdong Medical Association, Guangzhou, Guangdong, China
| | - Junhua Yang
- Department of Anatomy, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
- Guangdong Key Laboratory of Bioactive Drug Research, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
18
|
Chen Y, Huang H, Zhong W, Li L, Lu Y, Si HB. miR-140-5p protects cartilage progenitor/stem cells from fate changes in knee osteoarthritis. Int Immunopharmacol 2023; 114:109576. [PMID: 36527878 DOI: 10.1016/j.intimp.2022.109576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022]
Abstract
Cartilage progenitor/stem cells (CPCs) are promising seed cells for cartilage regeneration, but their fate changes and regulatory mechanisms in osteoarthritis (OA) pathogenesis remain unclear. This study aimed to investigate the role and potential mechanism of the microRNA-140-5p (miR-140-5p), whose protective role in knee OA has been confirmed by our previous studies, in OA CPCs fate reprogramming. Firstly, the normal and OA CPCs were isolated, and the fate indicators, miR-140-5p, Jagged1, and Notch signals were detected and analyzed. Then, the effect of miR-140-5p and the Notch pathway on CPCs fate reprogramming and miR-140-5p on Jagged1/Notch signaling was investigated in IL-1β-induced chondrocytes in vitro. Finally, the effect of miR-140-5p on OA CPCs fate reprogramming and the potential mechanisms were validated in OA rats. As a result, CPCs percentage was increased in the mild OA cartilage-derived total chondrocytes while decreased in the advanced OA group. Significant fate changes (including reduced cell viability, migration, chondrogenesis, and increased apoptosis), increased Jagged1 and Notch signals, and reduced miR-140-5p were observed in OA CPCs and associated with OA progression. IL-1β induced OA-like changes in CPCs fate, which could be exacerbated by miR-140-5p inhibitor while alleviated by DAPT (a specific Notch inhibitor) and miR-140-5p mimic. Finally, the in vitro phenomenal and mechanistic findings were validated in OA rats. Overall, miR-140-5p protects CPCs from fate changes via inhibiting Jagged1/Notch signaling in knee OA, providing attractive targets for OA therapeutics.
Collapse
Affiliation(s)
- Yang Chen
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hua Huang
- Department of Orthopedics, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Wen Zhong
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lan Li
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yanrong Lu
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Hai-Bo Si
- Department of Orthopedics, Key Laboratory of Transplant Engineering and Immunology, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
19
|
Chen D, Wu Z, Wu LN, Jiang J, Hu GN. Theaflavin Attenuates TBHP-Induced Endothelial Cells Oxidative Stress by Activating PI3K/AKT/Nrf2 and Accelerates Wound Healing in Rats. Front Bioeng Biotechnol 2022; 10:830574. [PMID: 35309982 PMCID: PMC8924520 DOI: 10.3389/fbioe.2022.830574] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
The treatment of wounds remains a clinical challenge because of poor angiogenesis under the wound bed, and increasingly, the patients’ need for functional and aesthetically pleasing scars. Previous reports have shown that Theaflavin can induce angiogenesis and terminate the progression of ischemic cardiovascular disease, but limited therapy is available for the management of cutaneous wounds. In this study, our in vitro work discovered that human umbilical vein endothelial cells (HUVECs) exposed to Theaflavin can alleviate apoptosis and cell dysfunction induced by tert-butyl hydroperoxide (TBHP). The cellular activity of HUVECs were assessed by cell tube formation, migration and adhesion. Mechanistically, Theaflavin protected HUVECs from TBHP-stimulated cell apoptosis through the activation of the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (AKT)/nuclear factor (erythroid-derived 2)-like 2 (Nrf2) axis, so Nrf2 silencing can partly eliminate the cytoprotective effect of Theaflavin treatment. In in vivo experiments, administering Theaflavin orally can enhance vascularization in regenerated tissues and accelerate wound healing. In summary, our data served as a novel evidence for the wound healing treatment with Theaflavin, and certified the potential mechanism of Theaflavin, which can be used as a potential agent for cutaneous wound therapy.
Collapse
Affiliation(s)
- Dalei Chen
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Zhijian Wu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Lu-Ning Wu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
| | - Jingtao Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Gui-Nv Hu
- Department of Thyroid and Breast Surgery, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang, China
- *Correspondence: Gui-Nv Hu,
| |
Collapse
|
20
|
Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021; 10:cells10102752. [PMID: 34685734 PMCID: PMC8534995 DOI: 10.3390/cells10102752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Correspondence: (S.K.); (R.S.)
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Fidel-Nicolás Lolo
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Raffaele Strippoli
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Correspondence: (S.K.); (R.S.)
| | | |
Collapse
|
21
|
Lu H, Jia C, Wu D, Jin H, Lin Z, Pan J, Li X, Wang W. Fibroblast growth factor 21 (FGF21) alleviates senescence, apoptosis, and extracellular matrix degradation in osteoarthritis via the SIRT1-mTOR signaling pathway. Cell Death Dis 2021; 12:865. [PMID: 34556628 PMCID: PMC8460788 DOI: 10.1038/s41419-021-04157-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/28/2021] [Accepted: 09/09/2021] [Indexed: 01/09/2023]
Abstract
Osteoarthritis (OA) is a complex condition that involves both apoptosis and senescence and currently cannot be cured. Fibroblast growth factor 21 (FGF21), known for its role as a potent regulator of glucose and energy metabolism, protects from various diseases, possibly by mediating autophagy. In the present study, the role of FGF21 in the progression of OA was investigated in both in vitro and in vivo experiments. In vitro, the results revealed that FGF21 administration alleviated apoptosis, senescence, and extracellular matrix (ECM) catabolism of the chondrocytes induced by tert-butyl hydroperoxide (TBHP) by mediating autophagy flux. Furthermore, CQ, an autophagy flux inhibitor, could reverse the protective effect of FGF21. It was observed that the FGF21-induced autophagy flux enhancement was mediated by the nuclear translocation of TFEB, which occurs due to the activation of the SIRT1-mTOR signaling pathway. The in vivo experiments demonstrated that FGF21 treatment could reduce OA in the DMM model. Taken together, these findings suggest that FGF21 protects chondrocytes from apoptosis, senescence, and ECM catabolism via autophagy flux upregulation and also reduces OA development in vivo, demonstrating its potential as a therapeutic agent in OA.
Collapse
Affiliation(s)
- Hongwei Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Chao Jia
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Dengying Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Haidong Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China.
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China.
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| | - Xiucui Li
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
| | - Wei Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, Zhejiang Province, China.
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325027, Zhejiang Province, China.
- Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China.
| |
Collapse
|