1
|
Kong Z, Zhu L, Liu Y, Liu Y, Chen G, Wang H. Effects of different stages, dosages and courses of prenatal dexamethasone exposure on testicular development in mice. Food Chem Toxicol 2025; 201:115468. [PMID: 40262731 DOI: 10.1016/j.fct.2025.115468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/27/2025] [Accepted: 04/19/2025] [Indexed: 04/24/2025]
Abstract
PURPOSE Observe the effects of prenatal dexamethasone exposure (PDE) at different stages, dosages, and courses on testicular morphology and multicellular function in offspring mice. METHODS Pregnant Kunming mice were subjected to subcutaneous injections of dexamethasone at different stages [GD (gestational day) 14-15 and 16-17], dosages (0.2, 0.4, and 0.8 mg/kg·d), and courses (GD 14-15 and 14-17). Pregnant mice were euthanized on GD 18, and fetal serum and testicular samples were collected to assess serum testosterone level, testicular morphology, cellular proliferation/apoptosis function, expression of multicellular marker/functional gene, and the expression of developmental regulatory signalling pathways such as Notch and Wnt. RESULTS PDE could lead to widening of the interstitial area and reduction of seminiferous tubules in fetal testicular tissue, accompanied by significant impairment of Sertoli cell function, particularly evident during late gestation, at high doses, and with multiple courses. However, changes in Leydig cells and spermatogonia function of PDE are not significant. Furthermore, we discovered that PDE could activate the Notch signalling pathway in Sertoli cells while inhibiting the Wnt signalling pathway. CONCLUSION PDE could affect fetal testicular development, especially for Sertoli cells during late gestation, at high doses and multiple courses. This study confirms the effects of PDE on testicular tissue morphology and multicellular function, providing a comprehensive understanding of the testicular developmental toxicity of dexamethasone and evidence for guiding rational medication during pregnancy.
Collapse
Affiliation(s)
- Ziyu Kong
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Yi Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yi Liu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China
| | - Guanghui Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
2
|
Liu Y, Dong Y, Jiang Y, Han S, Liu X, Xu X, Zhu A, Zhao Z, Gao Y, Zou Y, Zhang C, Bian Y, Zhang Y, Liu J, Zhao S, Zhao H, Chen ZJ. Caloric restriction prevents inheritance of polycystic ovary syndrome through oocyte-mediated DNA methylation reprogramming. Cell Metab 2025; 37:920-935.e6. [PMID: 39986273 DOI: 10.1016/j.cmet.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 10/17/2024] [Accepted: 01/15/2025] [Indexed: 02/24/2025]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent metabolic and reproductive endocrine disorder with strong heritability. However, the independent role of oocytes in mediating this heritability remains unclear. Utilizing in vitro fertilization-embryo transfer and surrogacy, we demonstrated that oocytes from androgen-exposed mice (F1) transmitted PCOS-like traits to F2 and F3 generations. Notably, caloric restriction (CR) in F1 or F2 effectively prevented this transmission by restoring disrupted DNA methylation in oocyte genes related to insulin secretion and AMPK signaling pathways. Further detection in adult tissues of offspring revealed dysregulated DNA methylation and expression of those genes (e.g., Adcy3, Gnas, and Srebf1) were reversed by maternal CR. Moreover, similar benefits of CR were observed in aberrant embryonic methylome of women with PCOS. These findings elucidate the essential role of CR in preventing PCOS transmission via methylation reprogramming, emphasizing the importance of preconception metabolic management for women with PCOS.
Collapse
Affiliation(s)
- Yue Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China; Center for Reproductive Medicine, Gusu School, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing 212028, Jiangsu, China
| | - Yi Dong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yonghui Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Shan Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Xin Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Xin Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Aiqing Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Zihe Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yuan Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yang Zou
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Chuanxin Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yuehong Bian
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Yuqing Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China
| | - Jiang Liu
- Institute of Biophysics, Chinese Academy of Science, Beijing 100101, China
| | - Shigang Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China; Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan 250012, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan 250012, Shandong, China.
| | - Han Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China; Center for Reproductive Medicine, Gusu School, The First Affiliated Hospital of Nanjing Medical University/Jiangsu Province Hospital, Nanjing 212028, Jiangsu, China; Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan 250012, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan 250012, Shandong, China.
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, The Second Hospital, Institute of Women, Children and Reproductive Health, Shandong University, Jinan 250012, Shandong, China; National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan 250012, Shandong, China; Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan 250012, Shandong, China; Shandong Technology Innovation Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan 250012, Shandong, China; Shandong Key Laboratory of Reproductive Research and Birth Defect Prevention, Jinan 250012, Shandong, China; Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No. 2021RU001), Jinan 250012, Shandong, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200025, China; Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
3
|
Wang F, Yang P, Xu L, Han X, Zhang M. Effects of cadmium on female Drosophila melanogaster and its transgenerational inheritance effects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 374:124076. [PMID: 39818074 DOI: 10.1016/j.jenvman.2025.124076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/21/2024] [Accepted: 01/06/2025] [Indexed: 01/18/2025]
Abstract
Cadmium (Cd) is a silvery-white and shiny heavy metal that is common in daily life and can adversely affect the development, lifespan, and reproduction of organisms. In this study, Drosophila melanogaster (F0) were cultured from eggs to adults in medium containing different Cd concentrations (0, 2.25, and 4.5 mg/kg), and offspring (F1-F4 generations) were cultured in standard medium. The morphology of the ovaries of female flies under Cd stress changed, apoptosis occurred, fertility decreased, and the levels of 20-Hydroxyecdysone and vitellogenin decreased significantly. These changes were more significant under high-concentration treatment. In addition, the inhibitory effects of Cd on reproduction-related genes (spook, phantom, disembodies, shadow, shade, ECR, vg, and Kr-h1) in F0 female flies could transmit to two or three generations. Cd exposure also induced increased expression of miR-927 and mediated its transgenerational inheritance. These results indicate that damage to the ovaries and the changes in related-genes expressions of female flies induced by Cd stress can be transmitted to offspring and may be related to changes in miRNA expression in Drosophila. The transgenerational inheritance effects of heavy metals on organisms and their potential risks to future ecosystems deserve attention and reassess.
Collapse
Affiliation(s)
- Fusheng Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Pingping Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Lu Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Xiaobing Han
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| | - Min Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China.
| |
Collapse
|
4
|
Dai S, Luo M, Jiang T, Lu M, Zhou X, Zhu S, Han X, Yang F, Wang H, Xu D. Dexamethasone as an emerging environmental pollutant: Disruption of cholesterol-dependent synaptogenesis in the hippocampus and subsequent neurobehavioral impacts in offspring. ENVIRONMENT INTERNATIONAL 2024; 192:109064. [PMID: 39413532 DOI: 10.1016/j.envint.2024.109064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/26/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
When fetuses are exposed to abnormally high levels of glucocorticoids in utero, irreversible damage to neuronal synaptogenesis occurs, leading to long-term cognitive and emotional behavioral abnormalities after birth. In this study, we investigated how maternal exposure to a novel environmental pollutant-synthetic glucocorticoid dexamethasone-affects offspring cognitive and emotional behaviors enduringly. We noted that offspring subjected to maternal dexamethasone exposure (MDE) displayed cognitive and emotional neurobehavioral deficits beginning in infancy, and these impairments persisted into adulthood. The principal mechanism involves MDE-induced damage to hippocampal neuronal synapse formation in the offspring, primarily due to a cholesterol deficiency which destabilizes neuronal membranes, thereby affecting normal synapse formation and ultimately leading to cognitive and emotional deficiencies. Specifically, we demonstrated abnormal activation of glucocorticoid receptors in hippocampal astroglial cells of MDE offspring, which triggers changes in the miR-450a-3p/HAT1/ABCG1 signaling axis, causing impaired cholesterol efflux in astroglial cells and insufficient cholesterol supply to neurons, further impairing synaptogenesis. This research not only underscores the significant impact of prenatal environmental pollutants on long-term health outcomes in offspring but also broadens our understanding of how prenatal exposure to glucocorticoids affects brain development in the progeny, providing new insights for interventions in neurodevelopmental and psychiatric disorders of fetal origin.
Collapse
Affiliation(s)
- Shiyun Dai
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; National Health Commission Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tao Jiang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mengxi Lu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
| | - Sen Zhu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xiaoyi Han
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Fang Yang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
5
|
Chang C, Gao P, Li J, Liang J, Xiang S, Zhang R. Embryonic dexamethasone exposure exacerbates hepatic steatosis and APAP-mediated liver injury in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116657. [PMID: 38968869 DOI: 10.1016/j.ecoenv.2024.116657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/01/2024] [Accepted: 06/26/2024] [Indexed: 07/07/2024]
Abstract
Dexamethasone (DXMS), a synthetic glucocorticoid, is known for its pharmacological effects on anti-inflammation, stress response enhancement and immune suppression, and has been widely used to treat potential premature delivery and related diseases. However, emerging evidence has shown that prenatal DXMS exposure leads to increased susceptibility to multiple diseases. In the present study, we used zebrafish as a model to study the effects of embryonic DXMS exposure on liver development and disease. We discovered that embryonic DXMS exposure upregulated the levels of total cholesterol and triglycerides in the liver, increased the glycolysis process and ultimately caused hepatic steatosis in zebrafish larvae. Furthermore, DXMS exposure exacerbated hepatic steatosis in a zebrafish model of fatty liver disease. In addition, we showed that embryonic DXMS exposure worsened liver injury induced by paracetamol (N-acetyl-p-aminophenol, APAP), increased the infiltration of macrophages and neutrophils, and promoted the expression of inflammatory factors, leading to impeded liver regeneration. Taken together, our results provide new evidence that embryonic DXMS exposure exacerbates hepatic steatosis by activating glycolytic pathway, aggravates APAP-induced liver damage and impeded regeneration under a persistent inflammation, calling attention to DXMS administration during pregnancy with probable clinical implications for offspring.
Collapse
Affiliation(s)
- Cheng Chang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Peng Gao
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jiayi Li
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Jieling Liang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Shupeng Xiang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China
| | - Ruilin Zhang
- TaiKang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, China.
| |
Collapse
|
6
|
Lu M, Dai S, Dai G, Wang T, Zhang S, Wei L, Luo M, Zhou X, Wang H, Xu D. Dexamethasone induces developmental axon damage in the offspring hippocampus by activating miR-210-3p/miR-362-5p to target the aberrant expression of Sonic Hedgehog. Biochem Pharmacol 2024; 226:116330. [PMID: 38815627 DOI: 10.1016/j.bcp.2024.116330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Given the extensive application of dexamethasone in both clinical settings and the livestock industry, human exposure to this drug can occur through various sources and pathways. Prior research has indicated that prenatal exposure to dexamethasone (PDE) heightens the risk of cognitive and emotional disorders in offspring. Axonal development impairment is a frequent pathological underpinning for neuronal dysfunction in these disorders, yet it remains unclear if it plays a role in the neural damage induced by PDE in the offspring. Through RNA-seq and bioinformatics analysis, we found that various signaling pathways related to nervous system development, including axonal development, were altered in the hippocampus of PDE offspring. Among them, the Sonic Hedgehog (SHH) signaling pathway was the most significantly altered and crucial for axonal development. By using miRNA-seq and targeting miRNAs and glucocorticoid receptor (GR) expression, we identified miR-210-3p and miR-362-5p, which can target and suppress SHH expression. Their abnormal high expression was associated with GR activation in PDE fetal rats. Further testing of PDE offspring rats and infant peripheral blood samples exposed to dexamethasone in utero showed that SHH expression was significantly decreased in peripheral blood mononuclear cells (PBMCs) and was positively correlated with SHH expression in the hippocampus and the expression of the axonal development marker growth-associated protein-43. In summary, PDE-induced hippocampal GR-miR-210-3p/miR-362-5p-SHH signaling axis changes lead to axonal developmental damage. SHH expression in PBMCs may reflect axonal developmental damage in PDE offspring and could serve as a warning marker for fetal axonal developmental damage.
Collapse
Affiliation(s)
- Mengxi Lu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shiyun Dai
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; National Health Commission Key Laboratory of Clinical Research for Cardiovascular Medications, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gaole Dai
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Liyi Wei
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Mingcui Luo
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
| | - Xinli Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetric, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
7
|
Wu T, Huang J, Li Y, Guo Y, Wang H, Zhang Y. Prenatal acetaminophen exposure and the developing ovary: Time, dose, and course consequences for fetal mice. Food Chem Toxicol 2024; 189:114679. [PMID: 38657942 DOI: 10.1016/j.fct.2024.114679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/12/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Acetaminophen is an emerging endocrine disrupting chemical and has been detected in various natural matrices. Numerous studies have documented developmental toxicity associated with prenatal acetaminophen exposure (PAcE). In this study, we established a PAcE Kunming mouse model at different time (middle pregnancy and third trimester), doses (low, middle, high) and courses (single or multi-) to systematically investigate their effects on fetal ovarian development. The findings indicated PAcE affected ovarian development, reduced fetal ovarian oocyte number and inhibited cell proliferation. A reduction in mRNA expression was observed for genes associated with oocyte markers (NOBOX and Figlα), follicular development markers (BMP15 and GDF9), and pre-granulosa cell steroid synthase (SF1 and StAR). Notably, exposure in middle pregnancy, high dose, multi-course resulted in the most pronounced inhibition of oocyte development; exposure in third trimester, high dose and multi-course led to the most pronounced inhibition of follicular development; and in third trimester, low dose and single course, the inhibition of pre-granulosa cell function was most pronounced. Mechanistic investigations revealed that PAcE had the most pronounced suppression of the ovarian Notch signaling pathway. Overall, PAcE caused fetal ovarian multicellular toxicity and inhibited follicular development with time, dose and course differences.
Collapse
Affiliation(s)
- Tiancheng Wu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology and HN Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Yating Li
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Guo
- Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Hui Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China; Clinical Research Center for Prenatal Diagnosis and Birth Health of Hubei Province, Wuhan, 430071, China; Clinical Research Center for Reproductive Science and Birth Health of Wuhan, Wuhan, 430071, China.
| |
Collapse
|
8
|
Han H, Shi H, Jiang L, Zhang D, Wang H, Li J, Chen L. Autophagy activated by GR/miR-421-3p/mTOR pathway as a compensatory mechanism participates in chondrodysplasia induced by prenatal caffeine exposure in male fetal rats. Toxicol Lett 2024; 397:141-150. [PMID: 38759937 DOI: 10.1016/j.toxlet.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/01/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Autophagy has been implicated in the developmental toxicity of multiple organs in offspring caused by adverse environmental conditions during pregnancy. We have previously found that prenatal caffeine exposure (PCE) can cause fetal overexposure to maternal glucocorticoids, leading to chondrodysplasia. However, whether autophagy is involved and what role it plays has not been reported. In this study, a PCE rat model was established by gavage of caffeine (120 mg/kg.d) on gestational day 9-20. The results showed that reduced cartilage matrix synthesis in male fetal rats in the PCE group was accompanied by increased autophagy compared to the control group. Furthermore, the expression of mTOR, miR-421-3p, and glucocorticoid receptor (GR) in male fetal rat cartilage of PCE group was increased. At the cellular level, we confirmed that corticosterone inhibited matrix synthesis in fetal chondrocytes while increasing autophagic flux. However, administration of autophagy enhancer (rapamycin) or inhibitor (bafilomycin A1 or 3-methyladenine) partially increased or further decreased aggrecan expression respectively. At the same time, we found that corticosterone could increase the expression of miR-421-3p through GR and target to inhibit the expression of mTOR, thereby enhancing autophagy. In conclusion, PCE can cause chondrodysplasia and autophagy enhancement in male fetal rats. Intrauterine high corticosterone activates GR/miR-421-3p signaling and down-regulates mTOR signaling in fetal chondrocytes, resulting in enhanced autophagy, which can partially compensate for corticosterone-induced fetal chondrodysplasia. This study confirmed the compensatory protective effect of autophagy on the developmental toxicity of fetal cartilage induced by PCE and its epigenetic mechanism, providing novel insights for exploring the early intervention and therapeutic target of fetal-originated osteoarthritis.
Collapse
Affiliation(s)
- Hui Han
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Huasong Shi
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Lingxiao Jiang
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Dingmei Zhang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Jing Li
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan 430071, China.
| | - Liaobin Chen
- Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
9
|
Li Y, Huang J, Ge C, Zhu S, Wang H, Zhang Y. The effects of prenatal azithromycin exposure on offspring ovarian development at different stages, doses, and courses. Biomed Pharmacother 2024; 172:116246. [PMID: 38359487 DOI: 10.1016/j.biopha.2024.116246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024] Open
Abstract
Azithromycin, a commonly used macrolide antibiotic for treating chlamydial infections during pregnancy, has sparked investigations into its potential effects on offspring development. Despite these inquiries, there remains uncertainty about the specific impact of prenatal azithromycin exposure (PAzE) on offspring ovarian development and the precise "effect window". Pregnant mice, following clinical guidelines for azithromycin dosing, were orally administered azithromycin at different gestational stages [(gestational day, GD) 10-12 or GD 15-17], doses (50, 100, or 200 mg/kg·d), and courses (single or multiple). On GD 18, we collected offspring blood and ovaries to examine changes in fetal serum estradiol (E2) levels, fetal ovarian morphology, pre-granulosa cell function, and oocyte development. Multiple courses of PAzE resulted in abnormal fetal ovarian morphological development, disorganized germ cell nests, enhanced ovarian cell proliferation, and reduced apoptosis. Simultaneously, multiple courses of PAzE significantly increased fetal serum E2 levels, elevated ovarian steroidogenic function (indicated by Star, 3β-hsd, and Cyp19 expression), disrupted oocyte development (indicated by Figlα and Nobox expression), and led to alterations in the MAPK signal pathway in fetal ovaries, particularly in the high-dose treatment group. In contrast, a single course of PAzE reduced fetal ovarian cell proliferation, decreased steroidogenic function, and inhibited oocyte development, particularly through the downregulation of Mek2 expression in the MAPK signal pathway. These findings suggest that PAzE can influence various aspects of fetal mouse ovarian cell development. Multiple courses enhance pre-granulosa cell estrogen synthesis function and advance germ cell development, while a single terminal gestation dose inhibits germ cell development. These differential effects may be associated with changes in the MAPK signal pathway.
Collapse
Affiliation(s)
- Yating Li
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Jing Huang
- Department of Otorhinolaryngology Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Caiyun Ge
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Sen Zhu
- Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Department of Pharmacology, Basic Medical School of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Yuanzhen Zhang
- Department of Obstetrics and Gynaecology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
10
|
Chen Y, Wang H. The changes in adrenal developmental programming and homeostasis in offspring induced by glucocorticoids exposure during pregnancy. VITAMINS AND HORMONES 2024; 124:463-490. [PMID: 38408809 DOI: 10.1016/bs.vh.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Clinically, synthetic glucocorticoids are often used to treat maternal and fetal related diseases, such as preterm birth and autoimmune diseases. Although its clinical efficacy is positive, it will expose the fetus to exogenous glucocorticoids. Adverse environments during pregnancy (e.g., exogenous glucocorticoids exposure, malnutrition, infection, hypoxia, and stress) can lead to fetal overexposure to endogenous maternal glucocorticoids. Basal glucocorticoids levels in utero are crucial in determining fetal tissue maturation and its postnatal fate. As the synthesis and secretion organ of glucocorticoids, the adrenal development is crucial for the growth and development of the body. Studies have found that glucocorticoids exposure during pregnancy could cause abnormal fetal adrenal development, which could last after birth or even adulthood. As the key organ of fetal-originated adult disease, the adrenal developmental programming has a profound impact on the health of offspring, which can lead to many chronic diseases in adulthood. However, the aberrant adrenal development in offspring caused by glucocorticoids exposure during pregnancy and its intrauterine programming mechanism have not been systematically clarified. Therefore, this review summarizes recent research progress on the short and long-term hazards of aberrant adrenal development induced by glucocorticoids exposure during pregnancy, which is of great significance for the analysis of aberrant adrenal development and clarify the intrauterine origin mechanism of fetal-originated adult disease.
Collapse
Affiliation(s)
- Yawen Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China; Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan, P.R. China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, P.R. China.
| |
Collapse
|
11
|
Lu X, Mao T, Dai Y, Zhu L, Li X, Ao Y, Wang H. Azithromycin exposure during pregnancy disturbs the fetal development and its characteristic of multi-organ toxicity. Life Sci 2023; 329:121985. [PMID: 37516432 DOI: 10.1016/j.lfs.2023.121985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 07/31/2023]
Abstract
AIMS Azithromycin is widely used in clinical practice for treating maternal infections during pregnancy. Meanwhile, azithromycin, as an "emerging pollutant", is increasingly polluting the environment due to the rapidly increasing usage (especially after the COVID-19). Previous studies have suggested a possible teratogenic risk of prenatal azithromycin exposure (PAzE), but its effects on fetal multi-organ development are still unclear. This study aimed to explore the potential impacts of PAzE. MATERIALS AND METHODS We focused on pregnancy outcomes, maternal/fetal serum phenotypes, and fetal multiple organ development in mice at different doses (50/200 mg/kg·d) during late pregnancy or at 200 mg/kg·d during different stages (mid-/late-pregnancy) and courses (single-/multi-course). KEY FINDINGS The results showed PAzE increased the rate of the absorbed fetus during mid-pregnancy and increased the intrauterine growth retardation rate (IUGR) during late pregnancy. PAzE caused multiple blood phenotypic changes in maternal and fetal mice, among which the number and degree of changes in fetal blood indicators were more significant. Moreover, PAzE inhibited long bone/cartilage development and adrenal steroid synthesis, promoting hepatic lipid production and ovarian steroid synthesis in varying degrees. The order of severity might be bone/cartilage > liver > gonads > other organs. PAzE-induced multi-organ alterations differed in stages, courses doses and fetal sex. The most apparent changes might be in high-dose, mid-pregnancy, multi-course, and female, while there was no typical rule for a dose-response relationship. SIGNIFICANCE This study confirmed PAzE could cause fetal developmental abnormalities and multi-organ functional alterations, which deepens the comprehensive understanding of azithromycin's fetal developmental toxicity.
Collapse
Affiliation(s)
- Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Tongyun Mao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Yongguo Dai
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Lu Zhu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaomin Li
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Diseases, Wuhan 430071, China.
| |
Collapse
|
12
|
Luo M, Yi Y, Huang S, Dai S, Xie L, Liu K, Zhang S, Jiang T, Wang T, Yao B, Wang H, Xu D. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm Sin B 2023; 13:3708-3727. [PMID: 37719378 PMCID: PMC10501875 DOI: 10.1016/j.apsb.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 09/19/2023] Open
Abstract
The formation of learning and memory is regulated by synaptic plasticity in hippocampal neurons. Here we explored how gestational exposure to dexamethasone, a synthetic glucocorticoid commonly used in clinical practice, has lasting effects on offspring's learning and memory. Adult offspring rats of prenatal dexamethasone exposure (PDE) displayed significant impairments in novelty recognition and spatial learning memory, with some phenotypes maintained transgenerationally. PDE impaired synaptic transmission of hippocampal excitatory neurons in offspring of F1 to F3 generations, and abnormalities of neurotransmitters and receptors would impair synaptic plasticity and lead to impaired learning and memory, but these changes failed to carry over to offspring of F5 and F7 generations. Mechanistically, altered hippocampal miR-133a-3p-SIRT1-CDK5-NR2B signaling axis in PDE multigeneration caused inhibition of excitatory synaptic transmission, which might be related to oocyte-specific high expression and transmission of miR-133a-3p. Together, PDE affects hippocampal excitatory synaptic transmission, with lasting consequences across generations, and CDK5 in offspring's peripheral blood might be used as an early-warning marker for fetal-originated learning and memory impairment.
Collapse
Affiliation(s)
- Mingcui Luo
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yiwen Yi
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Songqiang Huang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Shiyun Dai
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Lulu Xie
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Kexin Liu
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shuai Zhang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tao Jiang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Tingting Wang
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Baozhen Yao
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
- Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430071, China
| | - Hui Wang
- Department of Pharmacology, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Dan Xu
- Department of Obstetrics, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| |
Collapse
|
13
|
Chen K, Lu X, Xu D, Guo Y, Ao Y, Wang H. Prenatal exposure to corn oil, CMC-Na or DMSO affects physical development and multi-organ functions in fetal mice. Reprod Toxicol 2023; 118:108366. [PMID: 36958465 DOI: 10.1016/j.reprotox.2023.108366] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023]
Abstract
Corn oil, sodium carboxymethyl cellulose (CMC-Na), and dimethyl sulfoxide (DMSO) are widely used as solvents or suspensions in animal experiments, but the effects of prenatal exposure to them on fetal development have not been reported. In this study, Kunming mice were given a conventional dose of corn oil (9.2g/kg·d), CMC-Na (0.05g/kg·d) or DMSO (0.088g/kg·d) during gestation days 10-18, and the pregnancy outcome, fetal physical development, serum phenotype, and multi-organ function changes were observed. The results showed that corn oil decreased serum triglyceride level in males but increased their serum testosterone and CORT levels, and affected female placenta and female/male multi-organ functions (mainly bone, liver, kidney). CMC-Na increased female/male body lengths and tail lengths, decreased serum glucose and total cholesterol levels in males as well as increased their serum LDL-C/HDL-C ratio and testosterone level, decreased female serum bile acid level, and affected male/female placenta and multi-organ functions (mainly bone, liver, hippocampus). DMSO decreased male body weight and serum glucose level, decreased male/female serum bile acid levels, and affected male/female placenta and multi-organs functions (mainly bone, hippocampus, adrenal gland). In conclusion, prenatal exposure to a conventional dose of corn oil, CMC-Na or DMSO could affect fetal physical development and multi-organ functions, and has the characteristics of "multi-pathway, multi-organ and multi-target". This study provides the experimental basis for the rational selection of solvents or suspensions in pharmacology and toxicology studies. DATA AVAILABILITY: Data will be made available on request.
Collapse
Affiliation(s)
- Kaiqi Chen
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Xiaoqian Lu
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China
| | - Dan Xu
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Yu Guo
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China
| | - Ying Ao
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| | - Hui Wang
- Department of Pharmacology, Wuhan University School of Basic Medical Sciences, Wuhan 430071, China; Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan 430071, China.
| |
Collapse
|
14
|
Han H, Xiao H, Wu Z, Liu L, Chen M, Gu H, Wang H, Chen L. The miR-98-3p/JAG1/Notch1 axis mediates the multigenerational inheritance of osteopenia caused by maternal dexamethasone exposure in female rat offspring. Exp Mol Med 2022; 54:298-308. [PMID: 35332257 PMCID: PMC8979986 DOI: 10.1038/s12276-022-00743-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 11/28/2021] [Accepted: 12/23/2021] [Indexed: 11/09/2022] Open
Abstract
As a synthetic glucocorticoid, dexamethasone is widely used to treat potential premature delivery and related diseases. Our previous studies have shown that prenatal dexamethasone exposure (PDE) can cause bone dysplasia and susceptibility to osteoporosis in female rat offspring. However, whether the effect of PDE on bone development can be extended to the third generation (F3 generation) and its multigenerational mechanism of inheritance have not been reported. In this study, we found that PDE delayed fetal bone development and reduced adult bone mass in female rat offspring of the F1 generation, and this effect of low bone mass caused by PDE even continued to the F2 and F3 generations. Furthermore, we found that PDE increases the expression of miR-98-3p but decreases JAG1/Notch1 signaling in the bone tissue of female fetal rats. Moreover, the expression changes of miR-98-3p/JAG1/Notch1 caused by PDE continued from the F1 to F3 adult offspring. Furthermore, the expression levels of miR-98-3p in oocytes of the F1 and F2 generations were increased. We also confirmed that dexamethasone upregulates the expression of miR-98-3p in vitro and shows targeted inhibition of JAG1/Notch1 signaling, leading to poor osteogenic differentiation of bone marrow mesenchymal stem cells. In conclusion, maternal dexamethasone exposure caused low bone mass in female rat offspring with a multigenerational inheritance effect, the mechanism of which is related to the inhibition of JAG1/Notch1 signaling caused by the continuous upregulation of miR-98-3p expression in bone tissues transmitted by F2 and F3 oocytes.
Collapse
Affiliation(s)
- Hui Han
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hao Xiao
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China
| | - Zhixin Wu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Liang Liu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Ming Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hanwen Gu
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Hui Wang
- Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.,Department of Pharmacology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Liaobin Chen
- Division of Joint Surgery and Sports Medicine, Department of Orthopedic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China. .,Hubei Provincial Key Laboratory of Developmentally Originated Disease, Wuhan, 430071, China.
| |
Collapse
|
15
|
Wang J, Chen F, Zhu S, Li X, Shi W, Dai Z, Hao L, Wang X. Adverse effects of prenatal dexamethasone exposure on fetal development. J Reprod Immunol 2022; 151:103619. [DOI: 10.1016/j.jri.2022.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 02/20/2022] [Accepted: 03/24/2022] [Indexed: 12/15/2022]
|