1
|
Ni CX, Xu JJ, Pang Y, Xu JJ. Treatment strategies targeting the phosphoinositide 3-kinase/protein kinase B/mechanistic target of rapamycin pathway against triple-negative breast cancer. World J Clin Oncol 2025; 16:104623. [DOI: 10.5306/wjco.v16.i5.104623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/25/2025] [Accepted: 03/25/2025] [Indexed: 05/19/2025] Open
Abstract
Triple negative breast cancer (TNBC) is an exceptionally aggressive subtype of breast cancer with a poor prognosis. TNBC patients have limited treatment options beyond conventional chemotherapy, and they face significant challenges associated with disease recurrence and resistance to chemotherapy. The phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mechanistic target of rapamycin (mTOR) signaling pathway plays a pivotal role in cell proliferation, growth, metabolism, and survival. Its aberrant activation is closely linked to the development and progression of TNBC, as well as treatment response and drug resistance. Currently, numerous targeted drugs specifically inhibiting this signaling pathway are being developed and undergoing clinical trials. These include inhibitors targeting PI3K, AKT, or mTOR individually, as well as dual-target or multi-target inhibitors simultaneously targeting different components of this pathway. Encouragingly, some inhibitors have demonstrated promising potential in clinical trials. This review delves into the therapeutic potential of the PI3K/AKT/mTOR signaling pathway for TNBC and explores prospects for drug discovery.
Collapse
Affiliation(s)
- Chun-Xiao Ni
- Department of Minimally Invasive Oncology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| | - Jia-Ju Xu
- Department of Pediatrics, Yantai Yuhuangding Hospital Affiliated to Qingdao University, Yantai 264000, Shandong Province, China
| | - Yu Pang
- Department of Pathology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| | - Jia-Ju Xu
- Department of Medical Oncology, Tai’an Central Hospital Affiliated to Qingdao University, Tai’an 271000, Shandong Province, China
| |
Collapse
|
2
|
Wu Y, Zhao J, Zhao S, Li J, Luo J, Wang Y. PFKFB4 promotes endometrial cancer by regulating glycolysis through SRC‑3 phosphorylation. Oncol Rep 2025; 53:53. [PMID: 40116122 PMCID: PMC11948970 DOI: 10.3892/or.2025.8886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 03/06/2025] [Indexed: 03/23/2025] Open
Abstract
The present study aimed to investigate the role of 6‑phosphofructo‑2‑kinase/fructose‑2,6‑biphosphatase 4 (PFKFB4) in endometrial cancer cells and to explore its potential molecular mechanisms. PFKFB4 expression in endometrial cancer tissues was detected by immunohistochemistry. Cell Counting Kit‑8, Transwell assays and flow cytometry were used to detect cell proliferation, invasion and apoptosis in endometrial cancer cells after PFKFB4 knockdown. An enzyme‑linked immunosorbent assay was used to detect the glucose and lactic acid contents. Western blotting was performed to detect the levels of glycolysis‑related enzymes, steroid receptor coactivator‑3 (SRC‑3), and phosphorylated SRC‑3. In vivo experiments were performed to investigate the tumorigenic potential of PFKFB4. PFKFB4 expression was upregulated in endometrial cancer tissues compared with that in normal controls, and its upregulation was positively correlated with the depth of myometrial invasion, lymph node metastasis, surgical pathological stage and vascular invasion. PFKFB4 knockdown significantly inhibited proliferation and invasion, increased apoptosis, and decreased oxygen consumption and lactic acid production in endometrial cancer cells. PFKFB4 knockdown decreased SRC‑3 phosphorylation. After simultaneous PFKFB4 knockdown and SRC‑3 overexpression in cancer cells, oxygen consumption, lactic acid production, and glycolysis‑related protein expression were increased compared with those in control cells. PFKFB4 knockdown inhibited tumor proliferation, apoptosis and the expression of Ki‑67. PFKFB4 may regulate glycolysis in endometrial cancer cells by targeting SRC‑3, thus promoting endometrial cancer progression.
Collapse
Affiliation(s)
- Yaling Wu
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Department of Gynecology and Obstetrics, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Jianzhen Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Shuangshuang Zhao
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Jianfang Li
- Department of Gynecology and Obstetrics, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Jin Luo
- Department of Pathology, People's Hospital of Shanxi, Taiyuan, Shanxi 030012, P.R. China
| | - Yingmei Wang
- Department of Gynecology and Obstetrics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
- Tianjin Key Laboratory of Female Reproductive Health and Eugenics, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| |
Collapse
|
3
|
Guo M, Meng H, Sun Y, Zhou L, Hu T, Yu T, Bai H, Zhang Y, Gu C, Yang Y. Bruceine A Inhibits Cell Proliferation by Targeting the USP13/PARP1 Signalling Pathway in Multiple Myeloma. Basic Clin Pharmacol Toxicol 2025; 136:e70027. [PMID: 40151951 PMCID: PMC11955937 DOI: 10.1111/bcpt.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/21/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Multiple myeloma (MM) is an incurable hematologic malignancy, driving significant interest in the discovery of novel therapeutic strategies. Bruceine A (BA), a tetracyclic triterpene quassinoid derived from Brucea javanica, has shown anticancer properties by modulating multiple intracellular signalling pathways and exhibiting various biological effects. However, the specific pharmacological mechanisms by which it combats MM remain unclear. In this study, we identified USP13 as a potential target of BA. We observed a significant increase in USP13 expression in patients with MM, which was strongly associated with a poorer prognosis. Furthermore, enhanced USP13 expression can stimulate MM cell proliferation both in vitro and in vivo. Mass spectrometry analysis, combined with co-immunoprecipitation and in vitro ubiquitination experiments, revealed PARP1 as a critical downstream target of USP13. USP13 can stabilize PARP1 protein through deubiquitination, promoting PARP1-mediated DNA damage repair (DDR) and facilitating MM progression. Notably, we utilized MM cell lines, an MM Patient-Derived Tumour Xenograft model, and a 5TMM3VT mouse model to determine the anticancer effects of BA on MM progression, revealing its potential to target USP13/PARP1 signalling and disrupt DDR in MM cells. In conclusion, these findings suggest that BA inhibiting USP13/PARP1-mediated DDR might be a promising therapeutic strategy for MM.
Collapse
Affiliation(s)
- Mengjie Guo
- Nanjing Hospital of Chinese Medicine Affiliated With Nanjing University of Chinese MedicineNanjingChina
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Han Meng
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yi Sun
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Lianxin Zhou
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Tingting Hu
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Tianyi Yu
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Haowen Bai
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Yuanjiao Zhang
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Chunyan Gu
- Nanjing Hospital of Chinese Medicine Affiliated With Nanjing University of Chinese MedicineNanjingChina
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| | - Ye Yang
- School of MedicineNanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
4
|
Zhao X, Chen C, Feng X, Lei H, Qi L, Zhang H, Xu H, Wan J, Zhang Y, Yang B. Emd-D inhibited ovarian cancer progression via PFKFB4-dependent glycolysis and apoptosis. Chin J Nat Med 2025; 23:431-442. [PMID: 40274346 DOI: 10.1016/s1875-5364(25)60843-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/11/2024] [Accepted: 04/27/2024] [Indexed: 04/26/2025]
Abstract
Ovarian cancer poses a significant threat to women's health, necessitating effective therapeutic strategies. Emd-D, an emodin derivative, demonstrates enhanced pharmaceutical properties and bioavailability. In this study, Cell Counting Kit 8 (CCK8) assays and Ki-67 staining revealed dose-dependent inhibition of cell proliferation by Emd-D. Migration and invasion experiments confirmed its inhibitory effects on OVHM cells, while flow cytometry analysis demonstrated Emd-D-induced apoptosis. Mechanistic investigations elucidated that Emd-D functions as an inhibitor by directly binding to the glycolysis-related enzyme PFKFB4. This was corroborated by alterations in intracellular lactate and pyruvate levels, as well as glucose transporter 1 (GLUT1) and hexokinase 2 (HK2) expression. PFKFB4 overexpression experiments further supported the dependence of Emd-D on PFKFB4-mediated glycolysis and SRC3/mTORC1 pathway-associated apoptosis. In vivo experiments exhibited reduced xenograft tumor sizes upon Emd-D treatment, accompanied by suppressed glycolysis and increased expression of Bax/Bcl-2 apoptotic proteins within the tumors. In conclusion, our findings demonstrate Emd-D's potential as an anti-ovarian cancer agent through inhibition of the PFKFB4-dependent glycolysis pathway and induction of apoptosis. These results provide a foundation for further exploration of Emd-D as a promising drug candidate for ovarian cancer treatment.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin 150081, China
| | - Chao Chen
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Xuefei Feng
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Haoqi Lei
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Lingling Qi
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Hongxia Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Haiying Xu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Jufeng Wan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
| | - Yan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin 150081, China.
| | - Baofeng Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Medicine Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin Medical University, Harbin 150081, China; Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China.
| |
Collapse
|
5
|
Liang J, Tian J, Zhang H, Li H, Chen L. Proteomics: An In-Depth Review on Recent Technical Advances and Their Applications in Biomedicine. Med Res Rev 2025. [PMID: 39789883 DOI: 10.1002/med.22098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/11/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
Proteins hold pivotal importance since many diseases manifest changes in protein activity. Proteomics techniques provide a comprehensive exploration of protein structure, abundance, and function in biological samples, enabling the holistic characterization of overall changes in organisms. Nowadays, the breadth of emerging methodologies in proteomics is unprecedentedly vast, with constant optimization of technologies in sample processing, data collection, data analysis, and its scope of application is steadily transitioning from the bench to the clinic. Here, we offer an insightful review of the technical developments in proteomics and its applications in biomedicine over the past 5 years. We focus on its profound contributions in profiling disease spectra, discovering new biomarkers, identifying promising drug targets, deciphering alterations in protein conformation, and unearthing protein-protein interactions. Moreover, we summarize the cutting-edge technologies and potential breakthroughs in the proteomics pipeline and provide the principal challenges in proteomics. Based on these, we aspire to broaden the applicability of proteomics and inspire researchers to enhance our understanding of complex biological systems by utilizing such techniques.
Collapse
Affiliation(s)
- Jing Liang
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Jundan Tian
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| | - Huadong Zhang
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Hua Li
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
- College of Pharmacy, Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Lixia Chen
- Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
6
|
He SJ, Li J, Zhou JC, Yang ZY, Liu X, Ge YW. Chemical proteomics accelerates the target discovery of natural products. Biochem Pharmacol 2024; 230:116609. [PMID: 39510194 DOI: 10.1016/j.bcp.2024.116609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
More than half of the global novel drugs are directly or indirectly derived from natural products (NPs) because of their better selectivity towards proteins. Traditional medicines perform multiple bioactivities through various NPs binding to drug targets, which highlights the opportunities of target discovery for drug development. However, detecting the binding relationship between NPs and targets remains challenging. Chemical proteomics, an interdisciplinary field of chemistry, proteomics, biology, and bioinformatics, has emerged as a potential approach for uncovering drug-target interactions. This review summarizes the principles and characteristics of the current widely applied chemical proteomic technologies, while delving into their latest applications in the target discovery of natural medicine. These endeavours demonstrate the potential of chemical proteomics for target discovery to supply dependable methodologies for the target elucidation of NPs.
Collapse
Affiliation(s)
- Shu-Jie He
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jun Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie-Chun Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhi-You Yang
- College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Institute of Nutrition and Marine Drugs, Guangdong Ocean University, Zhanjiang, China
| | - Xi Liu
- School of Medical Information Engineering, Guangdong Pharmaceutical University, Guangzhou, China.
| | - Yue-Wei Ge
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China; Key Laboratory of Digital Quality Evaluation of Chinese Materia Medica of State Administration of TCM, Innovative Team of Research on Effective Substances of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
7
|
Hop NQ, Son NT. The quassinoids bruceines A-M: pharmacology, mechanism of action, synthetic advance, and pharmacokinetics-a review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:9417-9433. [PMID: 38985315 DOI: 10.1007/s00210-024-03281-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Bruceines A-L are among the quassinoid representatives found in the medicinal plant Brucea javanica (L.). An overview of their pharmacological activities is still unknown. The given research deals with highlights in their pharmacological result, molecular mechanism of action, synthetic progress, and pharmacokinetics. From previous evidence, bruceine derivatives are potential agents for anticancer treatments, as well as they are appropriate to treat inflammation, diabetes, and parasitic infections, and protect the neurons, kidneys, and lungs. Cytokine inhibitions, oxidative stress responses, and various signaling pathways, such as MAPK (mitogen-activated protein kinase) and NF-κB (nuclear factor-kappa B), have been proposed as the underlying mechanisms of action. Synthetic approaches to synthesize new derivatives with enhancement activities are based on free hydroxyl group modifications. Bruceines seem to be promptly absorbed by both oral and intravenous administrations, but their bioavailability is not high (less than 6%). Pre-clinical and clinical studies to prove their anticancer potential and other activities are urgent. Structural modifications, nano-combinations, and synergistic effects are necessary.
Collapse
Affiliation(s)
- Nguyen Quang Hop
- Faculty of Chemistry, Hanoi Pedagogical University 2 (HPU2), 32 Nguyen Van Linh, Xuanhoa, Phucyen, Vinhphuc, Vietnam
| | - Ninh The Son
- Graduate University of Science and Technology, VAST, 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Caugiay, Hanoi, Vietnam.
| |
Collapse
|
8
|
Pan X, Jiang S, Zhang X, Wang Z, Wang X, Cao L, Xiao W. Recent strategies in target identification of natural products: Exploring applications in chronic inflammation and beyond. Br J Pharmacol 2024. [PMID: 39428703 DOI: 10.1111/bph.17356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/01/2024] [Accepted: 08/25/2024] [Indexed: 10/22/2024] Open
Abstract
Natural products are a treasure trove for drug discovery, especially in the areas of infection, inflammation and cancer, due to their diverse bioactivities and complex, and varied structures. Chronic inflammation is closely related to many diseases, including complex diseases such as cancer and neurodegeneration. Improving target identification for natural products contributes to elucidating their mechanism of action and clinical progress. It also facilitates the discovery of novel druggable targets and the elimination of undesirable ones, thereby significantly enhancing the productivity of drug discovery and development. Moreover, the rise of polypharmacological strategies, considered promising for the treatment of complex diseases, will further increase the demand for target deconvolution. This review underscores strategies for identifying natural product targets (NPs) in the context of chronic inflammation over the past 5 years. These strategies encompass computational methodologies for early target discovery and the anticipation of compound binding sites, proteomics-driven approaches for target delineation and experimental biology techniques for target validation and comprehensive mechanistic exploration.
Collapse
Affiliation(s)
- Xian Pan
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Shan Jiang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Xinzhuang Zhang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Zhenzhong Wang
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| | - Xin Wang
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Liang Cao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Xiao
- State Key Laboratory on Technologies for Chinese Medicine Pharmaceutical Process Control and Intelligent Manufacture, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
- Jiangsu Kanion Pharmaceutical Co Ltd, Jiangning Industrial City, Economic and Technological Development Zone of Lianyungang, Lianyungang, China
| |
Collapse
|
9
|
Liu Y, Shi Q, Liu Y, Li X, Wang Z, Huang S, Chen Z, He X. Fibrillarin reprograms glucose metabolism by driving the enhancer-mediated transcription of PFKFB4 in liver cancer. Cancer Lett 2024; 602:217190. [PMID: 39182558 DOI: 10.1016/j.canlet.2024.217190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/28/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
DNA- and RNA-binding proteins (DRBPs) are versatile proteins capable of binding to both DNA and RNA molecules. In this study, we identified fibrillarin (FBL) as a key DRBP that is upregulated in liver cancer tissues vs. normal tissues and is correlated with patient prognosis. FBL promotes the proliferation of liver cancer cells both in vitro and in vivo. Mechanistically, FBL interacts with the transcription factor KHSRP, thereby regulating the expression of genes involved in glucose metabolism and leading to the reprogramming of glucose metabolism. Specifically, FBL and KHSRP work together to transcriptionally activate the glycolytic enzyme PFKFB4 by co-occupying enhancer and promoter elements, thereby further promoting liver cancer growth. Collectively, these findings provide compelling evidence highlighting the role of FBL as a transcriptional regulator in liver cancer cells, working in conjunction with KHSRP. The FBL/KHSRP-PFKFB4 regulatory axis holds potential as both a prognostic indicator and a therapeutic target for liver cancer. SIGNIFICANCE: A novel role of FBL in the transcriptional activation of PFKFB4, leading to glucose metabolism reprogramming in liver cancer.
Collapse
Affiliation(s)
- Yizhe Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qili Shi
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanfang Liu
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xinrong Li
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhen Wang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Shenglin Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China
| | - Zhiao Chen
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| | - Xianghuo He
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Radiation Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Li H, Zhu X, Sun Z, Wang Q, Song S, Xu Y, He G, Mao X. Bruceine B Displays Potent Antimyeloma Activity by Inducing the Degradation of the Transcription Factor c-Maf. ACS Pharmacol Transl Sci 2024; 7:176-185. [PMID: 38230274 PMCID: PMC10789117 DOI: 10.1021/acsptsci.3c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/26/2023] [Accepted: 11/17/2023] [Indexed: 01/18/2024]
Abstract
The oncogenic transcription factor c-Maf has been proposed as an ideal therapeutic target for multiple myeloma (MM), a not-yet-curable malignancy of plasma cells. In the present study, we establish a c-Maf-based luciferase screen system and apply it to screen a homemade library composed of natural products from which bruceine B (BB) is identified to display potent antimyeloma activity. BB is a key ingredient isolated from the Chinese traditional medicinal plant Brucea javanica (L.) Merr. (Simaroubaceae). BB inhibits MM cell proliferation and induces MM cell apoptosis in a caspase-3-dependent manner. The mechanism studies showed that BB inhibits c-Maf transcriptional activity and downregulates the expression of CCND2 and ITGB7, the downstream genes typically modulated by c-Maf. Moreover, BB induces c-Maf degradation via proteasomes by inducing c-Maf for K48-linked polyubiquitination in association with downregulated Otub1 and USP5, two proven deubiquitinases of c-Maf. We also found that c-Maf activates STAT3 and BB suppresses the STAT3 signaling. In the in vivo study, BB displays potent antimyeloma activity and almost suppresses the growth of myeloma xenografts in 7 days but shows no overt toxicity to mice. In conclusion, this study identifies BB as a novel inhibitor of c-Maf by promoting its degradation via the ubiquitin-proteasomal pathway. Given the safety and the successful clinical application of bruceine products in traditional medicine, BB is ensured for further investigation for the treatment of patients with MM.
Collapse
Affiliation(s)
- Hongyue Li
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Xiaoting Zhu
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Ziying Sun
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Qi Wang
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shaojiang Song
- Department
of Natural Medicinal Chemistry, Shenyang
Pharmaceutical University, Shenyang 110016, China
| | - Yujia Xu
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| | - Guisong He
- Department
of Orthopaedics, the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou 510260, P. R. China
| | - Xinliang Mao
- Institute
of Clinical Pharmacology, Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Guangdong
Provincial Key Laboratory of Protein Modification and Degradation,
School of Basic Medical Sciences, Guangzhou
Medical University, Guangzhou 511436, P. R. China
| |
Collapse
|
11
|
Gao Z, Zhang Y, Shen W, Liu X, Wei Y, Li L, Cui H. Bruceine A inhibited breast cancer proliferation and metastasis by inducing autophagy via targeting PI3K-AKT signaling pathway. Chem Biol Drug Des 2024; 103:e14398. [PMID: 38010171 DOI: 10.1111/cbdd.14398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Although there have been significant advances in cancer treatment, the urgent need to inhibit breast cancer metastasis remained unmet. Bruceine A (BA) is a natural compound extracted from Bruceae Fructus and has long been recognized to have antitumor effects with high safety and biocompatibility. However, the mechanisms and/or targets of BA for metastatic breast cancer treatment are still not fully elucidated. In this study, we systematically investigated the effects of BA on inhibition of breast cancer metastasis and its underlying mechanisms. We found that, in addition to its cytotoxic effects, BA significantly inhibited the invasion and migration capabilities of two types of breast cancer cell lines (MDA-MB-231 and MCF-7) while concurrently promoting apoptosis in these cells. Further mechanistic studies revealed that, by targeting the canonical PI3K-AKT signaling pathway, BA initiated autophagy of both types of breast cancer cell lines in vitro. In vivo results further confirmed the in vitro findings, manifested by shrinkage of size and weight of breast tumor as well as initiation of autophagy (indicated by upregulation of LC3I/II) through targeting PI3K-AKT pathway on mice model. These data collectively demonstrated the potential of BA in antimetastasis of breast cancer cells, suggesting its future clinical transformation in metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Zhen Gao
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zhang
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weixing Shen
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinyu Liu
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfang Wei
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linxia Li
- Department of Gynecology, Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hengguan Cui
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
12
|
Li X, Liu C, Zhang X, Sun C, Ling J, Liu Y, Zuo Y, Cao Y, Zhang C, Jiang T, Wang M, Liu J, Lu J. Bruceine A: Suppressing metastasis via MEK/ERK pathway and invoking mitochondrial apoptosis in triple-negative breast cancer. Biomed Pharmacother 2023; 168:115784. [PMID: 37879215 DOI: 10.1016/j.biopha.2023.115784] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/20/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023] Open
Abstract
Triple-negative breast cancer (TNBC), as the most aggressive subtype of breast cancer, presents a scarcity of miraculous drugs in suppressing its proliferation and metastasis. Bruceine A (BA) is a functional group-rich quassin compound with extensive and distinctive pharmacological activities. Within the present study, we investigated the capabilities of BA in suppressing TNBC proliferation and metastasis as well as its potential mechanisms. The results displayed that BA dramatically repressed the proliferation of MDA-MB-231 and 4T1 cells with corresponding IC50 values of 78.4 nM and 524.6 nM, respectively. Concurrently, BA arrested cells in G1 phase by downregulating cycle-related proteins Cyclin D1 and CDK4. Furthermore, BA distinctly induced mitochondrial dysfunction as manifested by diminished mitochondrial membrane potential, elevated reactive oxygen species generation, minimized ATP production, and Caspase-dependent activation of the mitochondrial apoptosis pathway. Additionally, BA restrained the invasion and metastasis of TNBC cells by repressing MMP9 and MMP2 expression. Intriguingly, after pretreatment with MEK activator C16-PAF, the inhibitory effect of BA on MEK/ERK pathway was notably diminished, while the proliferation suppression and metastasis repression exerted by BA were all strikingly curtailed. Molecular docking illustrated that BA potently combined with residues on the MEK1 protein with the presence of diverse intermolecular interactions. Ultimately, BA effectively suppressed tumor growth in the 4T1 xenograft tumor model with no detectable visceral toxicity in the high-dose group and, astonishingly, repressed tumor metastasis in the 4T1-luc lung metastasis model. Collectively, our study demonstrates that BA is a promising chemotherapeutic agent for treating TNBC and suppressing lung metastasis.
Collapse
Affiliation(s)
- Xiao Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Changqun Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Xin Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jie Ling
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yilan Liu
- Hematology Department, The General Hospital of the Western Theater Command PLA, Chengdu, China
| | - Yi Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuening Cao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chaozheng Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Maolin Wang
- Clinical Research Center, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong Province, 515000, China.
| | - Jin Liu
- Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Institute for Advancing Translational Medicine in Bone & Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, 999077, Hong Kong, China.
| |
Collapse
|
13
|
Hu KF, Shu CW, Lee CH, Tseng CJ, Chou YH, Liu PF. Comparative clinical significance and biological roles of PFKFB family members in oral squamous cell carcinoma. Cancer Cell Int 2023; 23:257. [PMID: 37919747 PMCID: PMC10621127 DOI: 10.1186/s12935-023-03110-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/25/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Cancer cells promote glycolysis, which supports rapid cell growth and proliferation. Phosphofructokinase-fructose bisphosphatases (PFKFBs), a family of bidirectional glycolytic enzymes, play key roles in the regulation of glycolysis in many types of cancer. However, their roles in oral squamous cell carcinoma (OSCC), the most common type of oral cancer, are still unknown. METHODS We compared the gene expression levels of PFKFB family members and analyzed their clinical significance in oral cancer patients, whose clinical data were obtained the Cancer Genome Atlas database. Moreover, real-time quantitative polymerase chain reaction, western blotting, assays for cell viability, cell cycle, cell migration and viability of cell spheroid were performed in scramble and PFKFB-silenced cells. RESULTS We discovered that PFKFB3 expression in tumor tissues was slightly higher than that in tumor adjacent normal tissues but that PFKFB4 expression was significantly higher in the tumor tissues of oral cancer patients. High PFKFB3 and PFKFB4 expression had different effects on the prognosis of oral cancer patients with different clinicopathological outcomes. Our data showed that PFKFB3 and PFKFB4 play different roles; PFKFB3 is involved in cell viability, G2/M cell cycle progression, invasion, and migration, whereas PFKFB4 is involved in the drug resistance and cancer stemness of OSCC cells. Furthermore, oral cancer patients with co-expressions of PFKFB3/cell cycle or EMT markers and PFKFB4/stemness markers had poor prognosis. CONCLUSIONS PFKFB3 and PFKFB4 play different biological roles in OSCC cells, which implying that they might be potential prognostic biomarkers for OSCC patients with certain clinicopathological outcomes.
Collapse
Affiliation(s)
- Kai-Fang Hu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Dentistry, Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan
- Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Cheng-Hsin Lee
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Ching-Jiunn Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, 112304, Taiwan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, 813414, Taiwan
| | - Yu-Hsiang Chou
- Department of Dentistry, Division of Periodontics, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan
| | - Pei-Feng Liu
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, 80708, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, 80708, Taiwan.
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, 80424, Taiwan.
| |
Collapse
|
14
|
Xu M, Di D, Fan L, Ma Y, Wei X, Shang EX, Onakpa MM, Johnson OO, Duan JA, Che CT, Zhou J, Zhao M. Structurally diverse (9β-H)-pimarane derivatives with six frameworks from the leaves of Icacina oliviformis and their cytotoxic activities. PHYTOCHEMISTRY 2023; 214:113804. [PMID: 37541354 DOI: 10.1016/j.phytochem.2023.113804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/25/2023] [Accepted: 07/25/2023] [Indexed: 08/06/2023]
Abstract
Thirteen previously undescribed (9β-H)-pimarane derivatives, icacinolides A-G (1-7) and oliviformislactones C-H (8-13), together with four known analogs (14-17), were isolated from the leaves of Icacina oliviformis. Their structures were constructed by extensive spectroscopic analysis, 13C NMR-DP4+ analysis, ECD calculation, single-crystal X-ray diffraction, and chemical methods. These structurally diverse isolates were classified into six framework types: rearranged 3-epi-17-nor-(9β-H)-pimarane, rearranged 17-nor-(9β-H)-pimarane, 16-nor-(9β-H)-pimarane, 17-nor-(9β-H)-pimarane, 17,19-di-nor-(9β-H)-pimarane, and (9β-H)-pimarane. Among them, compounds 1, 5, and 7 were the first examples of three rearranged 3-epi-17-nor-(9β-H)-pimaranes featuring a unique (11S)-carboxyl-9-oxatricyclo[5.3.1.02,7]dodecane motif with contiguous stereogenic centers, whereas their C-3 epimers, compounds 2-4 and 6 were the second examples of four rearranged 17-nor-(9β-H)-pimaranes. Additionally, compounds 8 and 12/13 represented the second examples of a 16-nor-(9β-H)-pimarane and two 17,19-di-nor-(9β-H)-pimaranes, respectively. In cytotoxic bioassay, compound 2 exhibited significant cytotoxic against HT-29 with IC50 values of 7.88 μM, even stronger than 5-fluorouracil, and 15 showed broad-spectrum cytotoxic activities against HepG2, HT-29, and MIA PaCa-2 with IC50 values of 11.62, 9.77, and 4.91 μM, respectively. Meanwhile, a preliminary structure-activity relationship suggested that 3,20-epoxy, 6,19-lactone, 2-OH, 7-OH, and 8-OH in (9β-H)-pimarane derivatives might be active groups, whereas ring C aromatization may decrease the cytotoxic activities.
Collapse
Affiliation(s)
- Mingming Xu
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Di Di
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Lu Fan
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Yingrun Ma
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Xinyi Wei
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Er-Xin Shang
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Monday M Onakpa
- Department of Veterinary Pharmacology and Toxicology, University of Abuja, Abuja, 920001, Nigeria
| | - Oluwatosin O Johnson
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Lagos, CMUL Campus, Lagos, 100254, Nigeria
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciencesollege of Pharmacy, the University of Illinois at Chicago, Chicago, IL, 60612, United States
| | - Junfei Zhou
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China.
| | - Ming Zhao
- Jiangsu Collaborative Innovation Centre of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resource Industrialization and Formulae Innovative Medicine, Key Laboratory of Chinese Medicinal Resource Recycling Utilization Under National Administration of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, School of Pharmacy, Nanjing, Jiangsu, 210023, People's Republic of China; Department of Pharmaceutical Sciencesollege of Pharmacy, the University of Illinois at Chicago, Chicago, IL, 60612, United States.
| |
Collapse
|
15
|
Duan H, Li L, He S. Advances and Prospects in the Treatment of Pancreatic Cancer. Int J Nanomedicine 2023; 18:3973-3988. [PMID: 37489138 PMCID: PMC10363367 DOI: 10.2147/ijn.s413496] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 07/11/2023] [Indexed: 07/26/2023] Open
Abstract
Pancreatic cancer is a highly malignant and incurable disease, characterized by its aggressive nature and high fatality rate. The most common type is pancreatic ductal adenocarcinoma (PDAC), which has poor prognosis and high mortality rate. Current treatments for pancreatic cancer mainly encompass surgery, chemotherapy, radiotherapy, targeted therapy, and combination regimens. However, despite efforts to improve prognosis, and the 5-year survival rate for pancreatic cancer remains very low. Therefore, it's urgent to explore novel therapeutic approaches. With the rapid development of therapeutic strategies in recent years, new ideas have been provided for treating pancreatic cancer. This review expositions the advancements in nano drug delivery system, molecular targeted drugs, and photo-thermal treatment combined with nanotechnology for pancreatic cancer. It comprehensively analyzes the prospects of combined drug delivery strategies for treating pancreatic cancer, aiming at a deeper understanding of the existing drugs and therapeutic approaches, promoting the development of new therapeutic drugs, and attempting to enhance the therapeutic effect for patients with this disease.
Collapse
Affiliation(s)
- Huaiyu Duan
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Li Li
- Department of Hepatobiliary Pancreatic Oncology, Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, People’s Republic of China
| | - Shiming He
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
16
|
Lu C, Qiao P, Fu R, Wang Y, Lu J, Ling X, Liu L, Sun Y, Ren C, Yu Z. Phosphorylation of PFKFB4 by PIM2 promotes anaerobic glycolysis and cell proliferation in endometriosis. Cell Death Dis 2022; 13:790. [PMID: 36109523 PMCID: PMC9477845 DOI: 10.1038/s41419-022-05241-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 01/21/2023]
Abstract
Endometriosis (EM) is one of the vanquished wonted causes of chronic pelvic sting in women and is closely associated with infertility. The long-term, complex, systemic, and post-treatment recurrence of EM wreaks havoc on women's quality of life. Extensive metabolic reprogramming (aerobic glycolysis, glucose overweening intake, and high lactate production) and cancer-like changes have been found in EM, which bears striking similarities to tumorigenesis. The key glycolysis regulator PFKFB4 is overexpressed in EM. However, the mechanism of PFKFB4 in EM remains unknown. We found that PFKFB4 was upregulated and was closely related to the progression of EM. We identified focus PIM2 as a new pioneering adjoin protein of PFKFB4. Vigorous biochemical methods were used to confirm that PIM2 phosphorylated site Thr140 of PFKFB4. PIM2 also could enhance PFKFB4 protein expression through the ubiquitin-proteasome pathway. Moreover, PIM2 expression was really corresponding prevalent with PFKFB4 in endometriosis in vivo. Importantly, phosphorylation of PFKFB4 on Thr140 by PIM2 promoted EM glycolysis and cell growth. Our study demonstrates that PIM2 mediates PFKFB4 Thr140 phosphorylation thus regulating glycolysis and EM progression. We illustrated a new mechanism that PIM2 simulated a central upstream partnership in the regulation of PFKFB4, and reveal a novel means of PIM2-PFKFB4 setting EM growth. Our research provided new theoretical support for further clarifying the reprogramming of EM glucose metabolism, and provided new clues for exploring non-contraceptive treatments for EM.
Collapse
Affiliation(s)
- Chao Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| | - Pengyun Qiao
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Ruihai Fu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Yadi Wang
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Jiayi Lu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Xi Ling
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Lu Liu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Yujun Sun
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China
| | - Chune Ren
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| | - Zhenhai Yu
- Department of Reproductive Medicine, Affiliated Hospital of Weifang Medical University, Weifang, Shandong Province, P. R. China.
| |
Collapse
|
17
|
Jalal S, Zhang T, Deng J, Wang J, Xu T, Zhang T, Zhai C, Yuan R, Teng H, Huang L. β-elemene Isopropanolamine Derivative LXX-8250 Induces Apoptosis Through Impairing Autophagic Flux via PFKFB4 Repression in Melanoma Cells. Front Pharmacol 2022; 13:900973. [PMID: 36034839 PMCID: PMC9399853 DOI: 10.3389/fphar.2022.900973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/20/2022] [Indexed: 01/18/2023] Open
Abstract
Melanoma is a highly aggressive skin cancer and accounts for most of the skin cancer-related deaths. The efficacy of current therapies for melanoma remains to be improved. The isopropanolamine derivative of β-elemene LXX-8250 was reported to present better water solubility and stronger toxicity to tumor cells than β-elemene. Herein, LXX-8250 treatment showed 4-5-fold more toxicity to melanoma cells than the well-known anti-melanoma drug, Dacarbazine. LXX-8250 treatment induced apoptosis remarkably, which was caused by the impairment of autophagic flux. To clarify the molecular mechanism, microarray analyses were conducted, and PFKFB4 expression was found to be suppressed by LXX-8250 treatment. The cells overexpressed with PFKFB4 exhibited resistance to apoptosis induction and autophagic flux inhibition by LXX-8250 treatment. Moreover, LXX-8250 treatment suppressed glycolysis, to which the cells overexpressed with PFKFB4 were tolerant. LXX-8250 treatment inhibited the growth of melanoma xenografts and suppressed PFKFB4 expression and glycolysis in vivo. Taken together, LXX-8250 treatment induced apoptosis through inhibiting autophagic flux and glycolysis in melanoma cells, which was mediated by suppression of PFKFB4 expression. The study provides a novel strategy to melanoma treatment.
Collapse
Affiliation(s)
- Sajid Jalal
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Jia Deng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jie Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ting Xu
- Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Tianhua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Chuanxin Zhai
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ruqiang Yuan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian, China
| | - Hongming Teng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- Liaoning Provincial Key Laboratory of Medical Molecular Biology, Dalian, China
- *Correspondence: Lin Huang,
| |
Collapse
|
18
|
Yu L, Liu X, Wang X, Yan H, Pu Q, Xie Y, Du J, Yang Z. Glycometabolism-related gene signature of hepatocellular carcinoma predicts prognosis and guides immunotherapy. Front Cell Dev Biol 2022; 10:940551. [PMID: 35938165 PMCID: PMC9354664 DOI: 10.3389/fcell.2022.940551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/29/2022] [Indexed: 12/20/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a severe cancer endangering human health. We constructed a novel glycometabolism-related risk score to predict prognosis and immunotherapy strategies in HCC patients. The HCC data sets were obtained from the Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database, and the glycometabolism-related gene sets were obtained from the Molecular Signature Database. The least absolute contraction and selection operator (LASSO) regression model was used to construct a risk score based on glycometabolism-related genes. A simple visual nomogram model with clinical indicators was constructed and its effectiveness in calibration, accuracy, and clinical value was evaluated. We also explored the correlation between glycometabolism-related risk scores and molecular pathways, immune cells, and functions. Patients in the low-risk group responded better to anti-CTLA-4 immune checkpoint treatment and benefited from immune checkpoint inhibitor (ICI) therapy. The study found that glycometabolism-related risk score can effectively distinguish the prognosis, molecular and immune-related characteristics of HCC patients, and may provide a new strategy for individualized treatment.
Collapse
Affiliation(s)
- Lihua Yu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Liu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xinhui Wang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huiwen Yan
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Qing Pu
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yuqing Xie
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- First Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
| | - Juan Du
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Infectious Diseases, Beijing, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhiyun Yang
- Center of Integrative Medicine, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Chen J, Chen S, Yang X, Wang S, Wu W. Efficacy and safety of Brucea javanica oil emulsion injection as adjuvant therapy for cancer: An overview of systematic reviews and meta-analyses. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154141. [PMID: 35598523 DOI: 10.1016/j.phymed.2022.154141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/15/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In China, Brucea javanica oil emulsion injection (BJOEI) has been used as adjuvant therapy to treat cancer for many years. Many systematic reviews (SRs) or meta-analyses (MAs) were published to evaluate its efficacy and safety. Nevertheless, uneven quality made it difficult to reach a consensus and there has been no specific review to integrate the evidence of BJOEI for cancer at present. Therefore, a comprehensive evidence map is needed to guide clinicians. PURPOSE We, for the first time, conducted an overview to assess the SRs/MAs of BJOEI, and provided a comprehensive evidence map to guide clinicians. Besides, this study provided a promising direction for future research to promote the generation of advanced evidence. STUDY DESIGN An overview of SRs or MAs. METHODS The pre-defined search strategies were applied to 8 databases. Suitable SRs/MAs were included according to the inclusion and exclusion criteria. Methodological quality, reporting quality, and risk of bias were assessed. An evidence map was conducted to show the situation of clinical evidence. RESULTS 27 SRs/MAs in 7 cancer types were included in this overview. The main problems of SRs/MAs were concentrated on the following aspects: without registration or protocol, lacking gray literature retrieval and a list of excluded studies, incomplete description in the literature retrieval strategy or the methods of merging results, the bias of each synthetic result, less exploration in heterogeneity or publication bias, deficiencies in assessing evidence quality and less description in conflict, funding or access to relevant information. Based on the rules of GRADE, the evidence quality of 154 items in 27 SRs/MAs was defined as moderate quality (103 items), low-quality (44 items), and very low-quality (7 items). Especially, risk of bias (154 items), imprecision (27 items), inconsistency (20 items), and publication bias (9 items) were the main downgrading factors. CONCLUSION BJOEI may be a promising adjuvant therapy for treating cancer, especially in the digestive system. However, high-quality SRs/MAs are expected to be carried out to improve the reliability of the above conclusion in the future.
Collapse
Affiliation(s)
- Jixin Chen
- The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, P.R. China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong-HongKong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510120, PR China
| | - Shuqi Chen
- Artemisinin Research Center, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510405, PR China
| | - Xiaobing Yang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong-HongKong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510120, PR China
| | - Sumei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong-HongKong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510120, PR China.
| | - Wanyin Wu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510120, PR China; Department of Oncology, Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong-HongKong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangdong Provincial Hospital of Chinese Medicine, The Second Clinical Medical College of Guangzhou University of Chinese Medicine; Guangzhou, Guangdong 510120, PR China.
| |
Collapse
|
20
|
Yang CB, Lu SN, Lu C, Xu MM, Duan JA, Che CT, Zhou J, Zhao M. A New C22-Quassinoid with Anti-Pancreatic Adenocarcinoma Activity from Seeds of Brucea javanica. Chem Biodivers 2022; 19:e202101004. [PMID: 35514039 DOI: 10.1002/cbdv.202101004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
An undescribed C22-quassinoid named sergeolide A (1) and fifteen known quassinoids (2-16) were obtained from the seeds of Brucea javanica (Simaroubaceae). All chemical structures were established based on spectroscopic data and X-ray diffraction analysis. Sergeolide A (1) is the first example of a naturally occurring C22-quassinoid bearing a butenolide group fused the A ring of the bruceolide skeleton from Brucea genus. And this is the first report of the NMR data for desmethyl-bruceines B (2) and C (3) and the crystal structure for bruceolide (11). In addition, all isolates were evaluated for their anti-pancreatic adenocarcinoma activity by measuring the growth inhibitory of the MIA PaCa-2 cell lines. Consequently, compounds 1, 7-10, and 12-16 exhibited potent anti-pancreatic cancer activity in vitro (IC50 =0.054∼0.357 μM).
Collapse
Affiliation(s)
- Cheng-Bin Yang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Si-Nan Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Cai Lu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Ming-Ming Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Chun-Tao Che
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Junfei Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China
| | - Ming Zhao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, P. R. China.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| |
Collapse
|
21
|
Emodin Ameliorates Intestinal Dysfunction by Maintaining Intestinal Barrier Integrity and Modulating the Microbiota in Septic Mice. Mediators Inflamm 2022; 2022:5026103. [PMID: 35677734 PMCID: PMC9168211 DOI: 10.1155/2022/5026103] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 12/12/2022] Open
Abstract
Sepsis-induced inflammatory response leads to intestinal damage and secondary bacterial translocation, causing systemic infections and eventually death. Emodin is a natural anthraquinone derivative in many plants with promising bioactivities. However, the effects and mechanisms of emodin on sepsis-induced intestinal dysfunctions have not been well clarified yet. We found that emodin treatment suppressed the inflammatory response in the intestines of septic mice. Intestinal barrier function was also improved by emodin through enhancing ZO-1 and occludin expression, which prevented the secondary translocation of Escherichia coli. By proteome microarray investigation, JNK2 was identified as a direct target of emodin. In vitro study also showed that emodin inhibited LPS-induced inflammatory response in intestinal epithelial cells. Nuclear factors including NF-κB and AP-1 were further identified as downstream effectors of JNK2. Bioinformatic analysis based on 16s rRNA gene sequencing illustrated that emodin treatment significantly increased the alpha- and beta-diversity of gut microbiota in septic mice. Moreover, data according to functional prediction showed that emodin decreased the abundance of potential pathogenic bacteria in gut. Our findings have shown that emodin treatment prevented inflammatory induced barrier dysfunction and decreased the potential pathogenicity of lumen bacteria, reducing the hazard of lumen bacterial translocation during sepsis.
Collapse
|
22
|
Yan H, Xu JJ, Ali I, Zhang W, Jiang M, Li G, Teng Y, Zhu G, Cai Y. CDK5RAP3, an essential regulator of checkpoint, interacts with RPL26 and maintains the stability of cell growth. Cell Prolif 2022; 55:e13240. [PMID: 35509151 PMCID: PMC9136512 DOI: 10.1111/cpr.13240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/22/2022] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
PURPOSE AND MATERIALS CDK5RAP3 (CDK5 regulatory subunit associated protein 3) was originally identified as a binding protein of CDK5. It is a crucial gene controlling biological functions, such as cell proliferation, apoptosis, invasion, and metastasis. Although previous studies have also shown that CDK5RAP3 is involved in a variety of signalling pathways, however, the mechanism of CDK5RAP3 remains largely undefined. This study utilized MEFs from conditional knockout mice to inhibit CDK5RAP3 and knockdown CDK5RAP3 in MCF7 to explore the role of CDK5RAP3 in cell growth, mitosis, and cell death. RESULTS CDK5RAP3 was found to be widely distributed throughout the centrosome, spindle, and endoplasmic reticulum, indicating that it is involved in regulating a variety of cellular activities. CDK5RAP3 deficiency resulted in instability of cell growth. CDK5RAP3 deficiency partly blocks the cell cycle in G2 /M by downregulating CDK1 (Cyclin-dependent kinase 1) and CCNB1 (Cyclin B1) expression levels. The cell proliferation rate was decreased, thereby slowing down the cell growth rate. Furthermore, the results showed that CDK5RAP3 interacts with RPL26 (ribosome protein L26) to regulate the mTOR pathway. CDK5RAP3 and RPL26 deficiency inhibited mTOR/p-mTOR protein and induce autophagy, resulting in an upregulation of the percentage of apoptosis, and the upregulated percentage of apoptosis also slowed cell growth. CONCLUSIONS Our experiments show that CDK5RAP3 interacts with RPL26 and maintains the stability of cell growth. It shows that CDK5RAP3 plays an important role in cell growth and can be used as the target of gene medicine.
Collapse
Affiliation(s)
- Hongchen Yan
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Jun-Jie Xu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ilyas Ali
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Wei Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Ming Jiang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guiping Li
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Guangxun Zhu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
23
|
Wu J, He X, Xiong Z, Shi L, Chen D, Feng Y, Wen Q. Bruceine H Mediates EGFR-TKI Drug Persistence in NSCLC by Notch3-Dependent β-Catenin Activating FOXO3a Signaling. Front Oncol 2022; 12:855603. [PMID: 35463301 PMCID: PMC9024338 DOI: 10.3389/fonc.2022.855603] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Tyrosine kinase inhibitors (TKIs) targeting epidermal growth factor receptor (EGFR) protein serve as a critical pillar in the treatment of non-small cell lung cancer (NSCLC), but resistance is universal. Identifying the potential key factors of drug resistance to EGFR-TKIs is essential to treat patients with EGFR mutant lung cancer. Our research here shows that bruceine H suppressed the proliferation, migration, and invasion of lung cancer cells; inhibited the growth of human NSCLC cell xenografts; and enhanced the therapeutic effects of gefitinib in the PC-9/GR xenograft models, possibly by inhibiting Notch3. In order to analyze the potential targets of the combination of Notch3 and EGFR-TKIs on resistance to EGFR, we analyzed the differences of gene expression between NSCLC tissues and EGFR-driven gefitinib-resistant tumoral groups and then identify through the WGCNA key genes that may provide therapeutic targets for TKI-resistant lung cancer xenograft models. We confirmed that EGFR-TKI in combination with Notch3 inhibitor can inhibit the expression of β-catenin and enhance the level of FOXO3a, leading to improved recurrence-free survival and overall survival of the xenotransplantation model. These results support that the combination of gefitinib and bruceine H may provide a promising alternative strategy for treating acquired EGFR-TKI resistance in patients with NSCLC.
Collapse
Affiliation(s)
- Jiahui Wu
- Pharmacy, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Xiao He
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi, China
| | - Ziwei Xiong
- Pharmacy, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Lingyu Shi
- Pharmacy, Jiangxi University of Chinese Medicine, Jiangxi, China
| | - Daofeng Chen
- Pharmacy, Fudan University of Pharmacy, Shanghai, China
| | - Yulin Feng
- National Pharmaceutical Engineering Center for Solid Preparation in Chinese Herbal Medicine, Jiangxi, China
| | - Quan Wen
- Pharmacy, Jiangxi University of Chinese Medicine, Jiangxi, China
| |
Collapse
|
24
|
Zhang J, Xu HX, Dou YX, Huang QH, Xian YF, Lin ZX. Major Constituents From Brucea javanica and Their Pharmacological Actions. Front Pharmacol 2022; 13:853119. [PMID: 35370639 PMCID: PMC8971814 DOI: 10.3389/fphar.2022.853119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Brucea javanica (Ya-dan-zi in Chinese) is a well-known Chinese herbal medicine, which is traditionally used in Chinese medicine for the treatment of intestinal inflammation, diarrhea, malaria, and cancer. The formulation of the oil (Brucea javanica oil) has been widely used to treat various types of cancer. It has also been found that B. javanica is rich in chemical constituents, including quassinoids, triterpenes, alkaloids and flavonoids. Pharmacological studies have revealed that chemical compounds derived from B. javanica exhibit multiple bioactivities, such as anti-cancer, anti-bacterial, anti-diabetic, and others. This review provides a comprehensive summary on the pharmacological properties of the main chemical constituents presented in B. javanica and their underlying molecular mechanisms. Moreover, the review will also provide scientific references for further research and development of B. javanica and its chemical constituents into novel pharmaceutical products for disease management.
Collapse
Affiliation(s)
- Juan Zhang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Hong-Xi Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yao-Xing Dou
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qiong-Hui Huang
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
| | - Yan-Fang Xian
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Yan-Fang Xian, ; Zhi-Xiu Lin,
| | - Zhi-Xiu Lin
- School of Chinese Medicine, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Hong Kong Institute of Integrative Medicine, The Chinese University of Hong Kong, Shatin, China
- *Correspondence: Yan-Fang Xian, ; Zhi-Xiu Lin,
| |
Collapse
|