1
|
Michel R, Vincent KL, Kirschen GW, Motamedi M, Saada J, Yang J, Ozpolat B, Kilic GS, Borahay MA. Simvastatin-loaded liposomal nanoparticles as treatment for adenomyosis in a patient-derived xenograft mouse model: a pilot study. J OBSTET GYNAECOL 2025; 45:2502083. [PMID: 40340640 DOI: 10.1080/01443615.2025.2502083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/26/2025] [Indexed: 05/10/2025]
Abstract
BACKGROUND Adenomyosis is a common gynaecological condition where ectopic endometrial glands and stroma grow within the myometrium. This condition has a high clinical burden impacting those afflicted with debilitating symptoms including heavy painful periods. Simvastatin is an oral hydroxymethylglutaryl-coenzyme A (HMG-CoA) reductase inhibitor, typically used to treat hyperlipidaemia. Simvastatin has recently shown promise for treating gynaecological conditions such as endometriosis and uterine fibroids with nanoliposomal formulations demonstrating improved efficacy. In this pilot study, we tested simvastatin-loaded liposomal nanoparticles on xenografted adenomyosis tissues in a patient-derived mouse model. METHODS We surgically inserted oestrogen/progesterone pellets into mice, followed by adenomyosis tissue xenografts 15 days later. Mice were then randomised into three groups: control, simvastatin, and simvastatin-loaded liposomal nanoparticles (simvastatin-NP). We quantified the changes in adenomyosis xenograft size weekly using a calliper as well as ultrasound imaging 28 days after treatment, prior to sacrifice. We also measured the proliferation of biomarker Ki67 in the xenografted tissues using immunohistochemistry after animal sacrifice. RESULTS Treatment with simvastatin-NP significantly reduced volume and weight of adenomyosis xenografts while attenuating Ki67 expression when compared to the control and simvastatin groups. Conclusions: This pilot study demonstrates promising improved efficacy of simvastatin delivered via liposomal nanoparticles. However, larger studies are needed to fully explore the potential of simvastatin-NP in adenomyosis.
Collapse
Affiliation(s)
- Rachel Michel
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Kathleen L Vincent
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gregory W Kirschen
- Department of Obstetrics & Gynecology, University of Pennsylvania, Philadelphia, PA, USA
| | - Massoud Motamedi
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Jamal Saada
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jinping Yang
- Department of Ophthalmology and Visual Sciences, University of Texas Medical Branch, Galveston, TX, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer center, Houston, TX, USA
| | - Gokhan S Kilic
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
Boldu-Fernández S, Lliberos C, Simon C, Mas A. Mapping Human Uterine Disorders Through Single-Cell Transcriptomics. Cells 2025; 14:156. [PMID: 39936948 PMCID: PMC11817058 DOI: 10.3390/cells14030156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/14/2025] [Accepted: 01/21/2025] [Indexed: 02/13/2025] Open
Abstract
Disruptions in uterine tissue function contribute to disorders such as endometriosis, adenomyosis, endometrial cancer, and fibroids, which all significantly impact health and fertility. Advances in transcriptomics, particularly single-cell RNA sequencing, have revolutionized uterine biological research by revealing the cellular heterogeneity and molecular mechanisms underlying disease states. Single-cell RNA sequencing and spatial transcriptomics have mapped endometrial and myometrial cellular landscapes, which helped to identify critical cell types, signaling pathways, and phase-specific dynamics. Said transcriptomic technologies also identified stromal and immune cell dysfunctions, such as fibroblast-to-myofibroblast transitions and impaired macrophage activity, which drive fibrosis, chronic inflammation, and lesion persistence in endometriosis. For endometrial cancer, scRNA-seq uncovered tumor microenvironmental complexities, identifying cancer-associated fibroblast subtypes and immune cell profiles contributing to progression and therapeutic resistance. Similarly, studies on adenomyosis highlighted disrupted signaling pathways, including Wnt and VEGF, and novel progenitor cell populations linked to tissue invasion and neuroinflammation, while single-cell approaches characterized smooth muscle and fibroblast subpopulations in uterine fibroids, elucidating their roles in extracellular matrix remodeling and signaling pathways like ERK and mTOR. Despite challenges such as scalability and reproducibility, single-cell transcriptomic approaches may have potential applications in biomarker discovery, therapeutic target identification, and personalized medicine in gynecological disorders.
Collapse
Affiliation(s)
- Sandra Boldu-Fernández
- Carlos Simón Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (S.B.-F.); (C.L.); (C.S.)
| | - Carolina Lliberos
- Carlos Simón Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (S.B.-F.); (C.L.); (C.S.)
| | - Carlos Simon
- Carlos Simón Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (S.B.-F.); (C.L.); (C.S.)
- Department of Obstetrics and Gynecology, Universidad de Valencia, 46010 Valencia, Spain
- Department of Pediatrics, Obstetrics and Gynecology, Beth Israel Deaconess Medical Center, Harvard University, Boston, MA 02215, USA
| | - Aymara Mas
- Carlos Simón Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (S.B.-F.); (C.L.); (C.S.)
| |
Collapse
|
3
|
Ma Y, Weng J, Zhu Y. Impact of serum lipid on recurrence of uterine fibroids: a single center retrospective study. BMC Womens Health 2024; 24:677. [PMID: 39741237 DOI: 10.1186/s12905-024-03530-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025] Open
Abstract
BACKGROUND We aimed to analyze the correlation between serum lipid levels [total cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C)] and recurrence after uterine fibroids (UF) resection, and explore the predictive value of serum lipid levels in determining recurrence after myomectomy. METHODS In this retrospective cohort study, 323 patients undergoing first myomectomy who came from Li Huili Hospital, Ningbo Medical Center between December 2019 and January 2023 were included. The primary endpoint was the recurrence of UF within 12 months following surgery. Univariate and multivariate logistic regression analyses were adopted to evaluate the association between four serum lipid parameters and the risk of UF recurrence. All included patients were randomly assigned to the training group for nomogram development and the testing group for nomogram validation, with a ratio of 7:3. Receiver operator characteristic, calibration curves, and decision curve analysis were used to assess the predicting performance of constructed nomograms. RESULTS Totally, 98 developed the recurrence of UF within 12 months following surgery. Multivariate logistic regression analyses indicated that high levels of TC [odds ratio (OR) = 9.98, 95% confidence interval (CI): 4.28-23.30], LDL-C (OR = 11.31, 95% CI: 4.66-27.47) and HDL-C (OR = 2.37, 95% CI: 1.21-4.64) were associated with recurrence of UF risk. The association between TG level and UF recurrence risk did not statistical significance (P > 0.05). Four online prediction nomograms by integrating serum lipid levels and clinical features for predicting the risk of recurrence of UF were developed (TC-model, TG-model, LDL-C-model and HDL-C-model). Through verification, these models may have good prediction performance for predicting the recurrence of UF risk. CONCLUSION This study developed and validated prediction nomograms for predicting the risk of UF recurrence. These nomograms can provide individual risk assessment for UF recurrence.
Collapse
Affiliation(s)
- Yimin Ma
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, Zhejiang Province, 315040, China.
| | - Jingjing Weng
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, Zhejiang Province, 315040, China
| | - Yingying Zhu
- Department of Gynecology, Ningbo Medical Center Lihuili Hospital, No.1111 Jiangnan Road, Yinzhou District, Ningbo, Zhejiang Province, 315040, China
| |
Collapse
|
4
|
Lee A, Han K, Kang S, Kwon D, Namkung J, Kim M, Chung YJ, Song J, Yoon J, Kim MR. Increased incidence of uterine leiomyoma in young females with depression: An observational study. iScience 2024; 27:110896. [PMID: 39635127 PMCID: PMC11615256 DOI: 10.1016/j.isci.2024.110896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/14/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024] Open
Abstract
Based on analyses of 22,487,947 person-years of follow-up data in a cohort of 2,523,565 young females, we found that the presence of depression was associated with a higher cumulative incidence of new-onset uterine leiomyoma than the absence of depression. This risk was even higher in patients with recurrent depression, and depression had a significant interaction with relatively old age and dyslipidemia. Screening for uterine leiomyoma is advisable in young females experiencing depression, as they appear to be at increased risk for developing this tumor type.
Collapse
Affiliation(s)
- Ahra Lee
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Kyungdo Han
- Department of Statistics and Actuarial Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Soyeon Kang
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Dongjin Kwon
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Jeong Namkung
- Department of Obstetrics and Gynecology, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 03312, Republic of Korea
| | - Minjeong Kim
- Department of Obstetrics and Gynecology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Bucheon 14647, Republic of Korea
| | - Youn-Jee Chung
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Jaeyen Song
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Joohee Yoon
- Department of Obstetrics and Gynecology, St. Vincent’s Hospital, College of Medicine, The Catholic University of Korea, Suwon 16247, Republic of Korea
| | - Mee-Ran Kim
- Department of Obstetrics and Gynecology, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
5
|
Agbana S, McIlroy M. Extra-nuclear and cytoplasmic steroid receptor signalling in hormone dependent cancers. J Steroid Biochem Mol Biol 2024; 243:106559. [PMID: 38823459 DOI: 10.1016/j.jsbmb.2024.106559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/03/2024]
Abstract
Steroid hormone receptors are key mediators in the execution of hormone action through a combination of genomic and non-genomic action. Since their isolation and characterisation in the early 20th Century much of our understanding of the biological actions of steroid hormones are underpinned by their activated receptor activity. Over the past two decades there has been an acceleration of more omics-based research which has resulted in a major uptick in our comprehension of genomic steroid action. However, it is well understood that steroid hormones can induce very rapid signalling events in tandem with their genomic actions wherein they exert their influence through alterations in gene expression. Thus the totality of genomic and non-genomic steroid action occurs in a simultaneous and reciprocal manner and a greater appreciation of whole cell action is required to fully evaluate steroid hormone activity in vivo. In this mini-review we outline the most recent developments in non-genomic steroid action and cytoplasmic steroid hormone receptor biology in endocrine-related cancers with a focus on the 3-keto steroid receptors, in particular the androgen receptor.
Collapse
Affiliation(s)
- Stephanie Agbana
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland
| | - Marie McIlroy
- Androgens in Health and Disease research group, RCSI University of Medicine and Health Sciences, Dublin, Ireland; Department of Surgery, RCSI University of Medicine and Health Sciences, Ireland.
| |
Collapse
|
6
|
Cao D, Sun W, Li X, Jian L, Zhou X, Bode AM, Luo X. The role of novel protein acylations in cancer. Eur J Pharmacol 2024; 979:176841. [PMID: 39033839 DOI: 10.1016/j.ejphar.2024.176841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 07/23/2024]
Abstract
Novel protein acylations are a class of protein post-translational modifications, such as lactylation, succinylation, crotonylation, palmitoylation, and β-hydroxybutyrylation. These acylation modifications are common in prokaryotes and eukaryotes and play pivotal roles in various key cellular processes by regulating gene transcription, protein subcellular localization, stability and activity, protein-protein interactions, and protein-DNA interactions. The diversified acylations are closely associated with various human diseases, especially cancer. In this review, we provide an overview of the distinctive characteristics, effects, and regulatory factors of novel protein acylations. We also explore the various mechanisms through which novel protein acylations are involved in the occurrence and progression of cancer. Furthermore, we discuss the development of anti-cancer drugs targeting novel acylations, offering promising avenues for cancer treatment.
Collapse
Affiliation(s)
- Dan Cao
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Wenxuan Sun
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinyi Li
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Lian Jian
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Xinran Zhou
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA
| | - Xiangjian Luo
- Key Laboratory of Carcinogenesis and Invasion, Chinese Ministry of Education, Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, 410078, China; Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, Hunan, 410078, China; Hunan Key Laboratory of Oncotarget Gene, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China; Molecular Imaging Research Center of Central South University, Changsha, Hunan, 410078, China; Key Laboratory of Biological Nanotechnology of National Health Commission, Central South University, Changsha, Hunan, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410078, China.
| |
Collapse
|
7
|
Saad EE, Michel R, Borahay MA. Cholesterol and Immune Microenvironment: Path Towards Tumorigenesis. Curr Nutr Rep 2024; 13:557-565. [PMID: 38696074 DOI: 10.1007/s13668-024-00542-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2024] [Indexed: 08/16/2024]
Abstract
PURPOSE OF REVIEW Since obesity is a major risk factor for many different types of cancer, examining one of the most closely associated comorbidities, such as hypercholesterolemia, is crucial to understanding how obesity causes cancer. Hypercholesterolemia is usually associated with many cardiovascular complications such as hypertension, angina, and atherosclerosis. In addition, cholesterol may be a major factor in increasing cancer risk. Cancer patients who received statins, an anti-hypercholesteremic medicine, demonstrated improved prognosis possibly through its effect on tumor proliferation, apoptosis, and oxidative stress. Cholesterol could also aid in tumor progression through reprogramming tumor immunological architecture and mediators. This review focuses on the immunomodulatory role of cholesterol on cellular and molecular levels, which may explain its oncogenic driving activity. We look at how cholesterol modulates tumor immune cells like dendritic cells, T cells, Tregs, and neutrophils. Further, this study sheds light on the modification of the expression pattern of the common cancer-related immune mediators in the tumor immune microenvironment, such as programmed cell death 1 (PD-1), cytotoxic T lymphocyte antigen-4 (CTLA-4), transforming growth factor-beta (TGF-β), interleukin 12 (IL-12), IL-23, and forkhead box protein P3 (FOXP3). RECENT FINDINGS We highlight relevant literature demonstrating cholesterol's immunosuppressive role, leading to a worse cancer prognosis. This review invites further research regarding the pathobiological role of cholesterol in many obesity-related cancers such as uterine fibroids, post-menopausal breast, colorectal, endometrial, kidney, esophageal, pancreatic, liver, and gallbladder cancers. This review suggests that targeting cholesterol synthesis may be a fruitful approach to cancer targeting, in addition to traditional chemotherapeutics.
Collapse
Affiliation(s)
- Eslam E Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Rachel Michel
- Department of Population, Family, and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
8
|
Hosseini FS, Ahmadi A, Kesharwani P, Hosseini H, Sahebkar A. Regulatory effects of statins on Akt signaling for prevention of cancers. Cell Signal 2024; 120:111213. [PMID: 38729324 DOI: 10.1016/j.cellsig.2024.111213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Statins, which are primarily used as lipid-lowering drugs, have been found to exhibit anti-tumor effects through modulating and interfering with various signaling pathways. In observational studies, statin use has been associated with a significant reduction in the progression of various cancers, including colon, lung, prostate, pancreas, and esophagus cancer, as well as melanoma and B and T cell lymphoma. The mevalonate pathway, which is affected by statins, plays a crucial role in activating Rho, Ras, and Rab proteins, thereby impacting the proliferation and apoptosis of tumor cells. Statins block this pathway, leading to the inhibition of isoprenoid units, which are critical for the activation of these key proteins, thereby affecting cancer cell behavior. Additionally, statins affect MAPK and Cdk2, which in turn reduce the expression of p21 and p27 cyclin-dependent kinase inhibitors. Akt signaling plays a crucial role in key cancer cell features like proliferation, invasion, and apoptosis by activating multiple effectors in downstream pathways such as FOXO, PTEN, NF-κB, GSK3β, and mTOR. The PI3K/Akt signaling is necessary for many events in the metastatic pathway and has been implicated in the resistance to cytostatic drugs. The Akt/PTEN axis is currently attracting great interest for its role in carcinogenesis. Statins have been shown to activate the purinergic receptor P2X7 and affect Akt signaling, which may have important anti-cancer effects. Hence, targeting Akt shows promise as an effective approach to cancer prevention and therapy. This review aims to provide a comprehensive discussion on the specific impact of statins through Akt signaling in different types of cancer.
Collapse
Affiliation(s)
- Fatemeh Sadat Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| | - Hossein Hosseini
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Afrin S, Kirschen GW, Miyashita‐Ishiwata M, El Sabeh M, Borahay MA. Synergistic inhibition of progesterone receptor-A/B signalling by simvastatin and mifepristone in human uterine leiomyomas. Clin Transl Med 2024; 14:e1672. [PMID: 38649749 PMCID: PMC11035378 DOI: 10.1002/ctm2.1672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/25/2024] Open
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and ObstetricsThe Johns Hopkins HospitalBaltimoreMarylandUSA
| | - Gregory W. Kirschen
- Department of Gynecology and ObstetricsThe Johns Hopkins HospitalBaltimoreMarylandUSA
| | | | - Malak El Sabeh
- Department of Obstetrics and GynecologyBaylor College of MedicineHoustonTexasUSA
| | - Mostafa A. Borahay
- Department of Gynecology and ObstetricsThe Johns Hopkins HospitalBaltimoreMarylandUSA
| |
Collapse
|
10
|
Ali M, Ciebiera M, Wlodarczyk M, Alkhrait S, Maajid E, Yang Q, Hsia SM, Al-Hendy A. Current and Emerging Treatment Options for Uterine Fibroids. Drugs 2023; 83:1649-1675. [PMID: 37922098 DOI: 10.1007/s40265-023-01958-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/05/2023]
Abstract
Uterine fibroids are the most common benign neoplasm of the female reproductive tract in reproductive age women. Their prevalence is age dependent and can be detected in up to 80% of women by the age of 50 years. Patients affected by uterine fibroids may experience a significant physical, emotional, social, and financial toll as well as losses in their quality of life. Unfortunately, curative hysterectomy abolishes future pregnancy potential, while uterine-sparing surgical and radiologic alternatives are variously associated with reduced long-term reproductive function and/or high tumor recurrence rates. Recently, pharmacological treatment against uterine fibroids have been widely considered by patients to limit uterine fibroid-associated symptoms such as heavy menstrual bleeding. This hormonal therapy seemed effective through blocking the stimulatory effects of gonadal steroid hormones on uterine fibroid growth. However, they are contraindicated in women actively pursuing pregnancy and otherwise effective only during use, which is limited because of long-term safety and other concerns. Accordingly, there is an urgent unmet need for safe, durable, and fertility-compatible non-surgical treatment options for uterine fibroids. In this review article, we cover the current pharmacological treatments for uterine fibroids including their comparable efficacy and side effects as well as emerging safe natural compounds with promising anti-uterine fibroid effects.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, 00-189, Poland
| | - Marta Wlodarczyk
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, Warsaw, 02-097, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Elise Maajid
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Enazy SA, Kirschen GW, Vincent K, Yang J, Saada J, Shah M, Oberhauser AF, Bujalowski PJ, Motamedi M, Salama SA, Kilic G, Rytting E, Borahay MA. PEGylated Polymeric Nanoparticles Loaded with 2-Methoxyestradiol for the Treatment of Uterine Leiomyoma in a Patient-Derived Xenograft Mouse Model. J Pharm Sci 2023; 112:2552-2560. [PMID: 37482124 PMCID: PMC10529399 DOI: 10.1016/j.xphs.2023.07.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Leiomyomas, the most common benign neoplasms of the female reproductive tract, currently have limited medical treatment options. Drugs targeting estrogen/progesterone signaling are used, but side effects and limited efficacy in many cases are major limitation of their clinical use. Previous studies from our laboratory and others demonstrated that 2-methoxyestradiol (2-ME) is promising treatment for uterine fibroids. However, its poor bioavailability and rapid degradation hinder its development for clinical use. The objective of this study is to evaluate the in vivo effect of biodegradable and biocompatible 2-ME-loaded polymeric nanoparticles in a patient-derived leiomyoma xenograft mouse model. PEGylated poly(lactide-co-glycolide) (PEG-PLGA) nanoparticles loaded with 2-ME were prepared by nanoprecipitation. Female 6-week age immunodeficient NOG (NOD/Shi-scid/IL-2Rγnull) mice were used. Estrogen-progesterone pellets were implanted subcutaneously. Five days later, patient-derived human fibroid tumors were xenografted bilaterally subcutaneously. Engrafted mice were treated with 2-ME-loaded or blank (control) PEGylated nanoparticles. Nanoparticles were injected intraperitoneally and after 28 days of treatment, tumor volume was measured by caliper following hair removal, and tumors were removed and weighed. Up to 99.1% encapsulation efficiency was achieved, and the in vitro release profile showed minimal burst release, thus confirming the high encapsulation efficiency. In vivo administration of the 2-ME-loaded nanoparticles led to 51% growth inhibition of xenografted tumors compared to controls (P < 0.01). Thus, 2-ME-loaded nanoparticles may represent a novel approach for the treatment of uterine fibroids.
Collapse
Affiliation(s)
- Sanaalarab Al Enazy
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gregory W Kirschen
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Kathleen Vincent
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Jinping Yang
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Jamal Saada
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mansi Shah
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Andres F Oberhauser
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Paul J Bujalowski
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, USA
| | - Massoud Motamedi
- Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA
| | - Salama A Salama
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Gokhan Kilic
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Erik Rytting
- Department of Pharmacology & Toxicology, University of Texas Medical Branch, Galveston, TX, USA; Center for Biomedical Engineering, University of Texas Medical Branch, Galveston, TX, USA; Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
12
|
Cignarella A, Boscaro C, Albiero M, Bolego C, Barton M. Post-Transcriptional and Epigenetic Regulation of Estrogen Signaling. J Pharmacol Exp Ther 2023; 386:288-297. [PMID: 37391222 DOI: 10.1124/jpet.123.001613] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/17/2023] [Accepted: 06/16/2023] [Indexed: 07/02/2023] Open
Abstract
Post-translational and epigenetic regulation are important mechanisms controlling functions of genes and proteins. Although the "classic" estrogen receptors (ERs) have been acknowledged to function in mediating estrogen effects via transcriptional mechanisms, estrogenic agents modulate the turnover of several proteins via post-transcriptional and post-translational pathways including epigenetics. For instance, the metabolic and angiogenic action of G-protein coupled estrogen receptor (GPER) in vascular endothelial cells has been recently elucidated. By interacting with GPER, 17β-estradiol and the GPER agonist G1 enhance endothelial stability of 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) and capillary tube formation by increasing ubiquitin-specific peptidase 19 levels, thereby reducing PFKFB3 ubiquitination and proteasomal degradation. In addition to ligands, the functional expression and trafficking of ERs can be modulated by post-translational modification, including palmitoylation. MicroRNAs (miRNAs), the most abundant form of endogenous small RNAs in humans, regulate multiple target genes and are at the center of the multi-target regulatory network. This review also discusses the emerging evidence of how miRNAs affect glycolytic metabolism in cancer, as well as their regulation by estrogens. Restoring dysregulated miRNA expression represents a promising strategy to counteract the progression of cancer and other disease conditions. Accordingly, estrogen post-transcriptional regulatory and epigenetic mechanisms represent novel targets for pharmacological and nonpharmacological intervention for the treatment and prevention of hormone-sensitive noncommunicable diseases, including estrogen-sensitive cancers of the reproductive system in women. SIGNIFICANCE STATEMENT: The effects of estrogen are mediated by several mechanisms that are not limited to the transcriptional regulation of target genes. Slowing down the turnover of master regulators of metabolism by estrogens allows cells to rapidly adapt to environmental cues. Identification of estrogen-targeted microRNAs may lead to the development of novel RNA therapeutics that disrupt pathological angiogenesis in estrogen-dependent cancers.
Collapse
Affiliation(s)
- Andrea Cignarella
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Carlotta Boscaro
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Mattia Albiero
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Chiara Bolego
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| | - Matthias Barton
- Departments of Medicine (A.C., Ca.B., M.A.) and Pharmaceutical and Pharmacological Sciences (Ch.B.), University of Padova, Padova, Italy; and Molecular Internal Medicine, University of Zürich and Andreas Grüntzig Foundation, Zürich, Switzerland (M.B.)
| |
Collapse
|
13
|
Ali M, Stone D, Laknaur A, Yang Q, Al-Hendy A. EZH2 activates Wnt/β-catenin signaling in human uterine fibroids, which is inhibited by the natural compound methyl jasmonate. F&S SCIENCE 2023; 4:239-256. [PMID: 37182601 PMCID: PMC10527015 DOI: 10.1016/j.xfss.2023.05.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE To investigate the link between EZH2 and Wnt/β-catenin signaling and its role in uterine fibroids (UFs) pathogenesis and explore the potential effect of natural compound methyl jasmonate (MJ) against UFs. DESIGN EZH2 overexpression or inhibition was achieved in human uterine leiomyoma (HuLM) cells using EZH2-expressing adenovirus or chemical EZH2 inhibitor (DZNep), respectively. The HuLM and normal uterine smooth muscle cells were treated with 0.1-3 mM of MJ, and several experiments were employed. SETTING Laboratory study. PATIENTS(S) None. INTERVENTION(S) Methyl jasmonate. MAIN OUTCOME MEASURE(S) Protein expression of EZH2, β-catenin, and proliferating cell nuclear antigen (PCNA) was measured by Western blot as well as gene expression alterations of Wnt ligands (Wnt5A, Wnt5b, and Wnt9A), WISP1, CTNNB1, and its responsive gene PITX2 using quantitative real-time polymerase chain reaction. The protein and ribonucleic acid (RNA) levels of several markers were measured in MJ-treated or untreated HuLM cells, including EZH2 and β-catenin, extracellular matrix markers collagen type 1 (COL1A1) and fibronectin (FN), proliferation markers cyclin D1 (CCND1) and PCNA, tumor suppressor marker p21, and apoptotic markers (BAX, cytochrome c, and cleaved caspase 3). RESULT(S) EZH2 overexpression significantly increased the gene expression of several Wnt ligands (PITX2, WISP1, WNT5A, WNT5B, and WNT9A), which increased nuclear translocation of β-catenin and PCNA and eventually HuLM cell proliferation. EZH2 inhibition blocked Wnt/β-catenin signaling activation where the aforementioned genes significantly decreased as well as PCNA, cyclin D1, and PITX2 protein expression compared with those in untreated HuLM. Methyl jasmonate showed a potent antiproliferative effect on HuLM cells in a dose- and time-dependent manner. Interestingly, the dose range (0.1-0.5 mM) showed a selective growth inhibitory effect on HuLM cells, not on normal uterine smooth muscle cells. Methyl jasmonate treatment at 0.5 mM for 24 hours significantly decreased both protein and RNA levels of EZH2, β-catenin, COL1A1, FN, CCND1, PCNA, WISP1, and PITX2 but increased the protein levels of p21, BAX, cytochrome, c and cleaved caspase 3 compared with untreated HuLM. Methyl jasmonate-treated cells exhibited down-regulation in the RNA expression of 36 genes, including CTNNB1, CCND1, Wnt5A, Wnt5B, and Wnt9A, and up-regulation in the expression of 34 genes, including Wnt antagonist genes WIF1, PRICKlE1, and DKK1 compared with control, confirming the quantitative real-time polymerase chain reaction results. CONCLUSION(S) Our studies provide a novel link between EZH2 and the Wnt/β-catenin signaling pathway in UFs. Targeting EZH2 with MJ interferes with the activation of wnt/β-catenin signaling in our model. Methyl jasmonate may offer a promising therapeutic option as a nonhormonal and cost-effective treatment against UFs with favorable clinical utility, pending proven safe and efficient in human clinical trials.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois; Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - David Stone
- Department of hospital medicine, university of Colorado, Colorado Springs, Colorado
| | - Archana Laknaur
- Division of Translation Research, Augusta University, Augusta, Georgia
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, Illinois.
| |
Collapse
|
14
|
Singh S, Kumar P, Rathore SS, Singh Y, Garg N. Contemporary approaches in the management of uterine leiomyomas. Eur J Obstet Gynecol Reprod Biol 2023; 287:195-210. [PMID: 37385088 DOI: 10.1016/j.ejogrb.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 04/24/2023] [Accepted: 06/20/2023] [Indexed: 07/01/2023]
Abstract
BACKGROUND Leiomyomas (fibroids), the most common benign solid tumours in females, originate from the myometrium and are associated with poor quality of life for patients. The current management of uterine leiomyomas mainly includes surgical interventions such as hysterectomy and myomectomy, either by laparoscopy or laparotomy, which have several complications and are not ideal for preserving fertility. Therefore, there is a need to develop or repurpose medical treatments that do not require surgical intervention. OBJECTIVE Many drugs are used to treat the symptoms associated with uterine fibroids. The main objective of this systematic review is to give an up-to-date account of potential pharmacological agents (non-surgical methods) for the management of uterine leiomyomas. SEARCH STRATEGY PubMed was searched for scientific and clinical literature using the keyword 'uterine fibroids' along with the drug names described in each section. For example, 'uterine fibroids' and 'ulipristal acetate' were the keywords used to search for literature on ulipristal acetate (UPA). RESULTS Various preclinical and clinical studies have shown that some drugs and herbal formulations exhibit activity in the management of uterine leiomyomas. Recent studies found that drugs such as UPA, elagolix, EC313, asoprisnol, nutritional supplements and herbal preparations were helpful in treating the symptoms associated with uterine leiomyomas. CONCLUSION Many drugs show efficacy in patients with symptomatic uterine fibroids. UPA is one of the most studied and prescribed medicines for uterine fibroids; however, its usage has been restricted due to a few recent incidences of hepatic toxicity. Herbal drugs and natural supplements have also shown promising effects on uterine fibroids. The synergistic effects of nutritional and herbal supplements have been reported in certain cases, and should be studied in detail. Further research is warranted to identify the mode of action of the drugs, and to determine the precise conditions that would explain the causes of toxicity in some patients.
Collapse
Affiliation(s)
- Shikha Singh
- Department of Prasuti Tantra, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Saurabh Singh Rathore
- Department of Biotechnology, Mahatma Gandhi Central University, Raghunathpur, Motihari, East Champaran, Bihar, India
| | - Yashasvi Singh
- Department of Urology, CSSB, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India.
| |
Collapse
|
15
|
Islam MS, Parish M, Brennan JT, Winer BL, Segars JH. Targeting fibrotic signaling pathways by EGCG as a therapeutic strategy for uterine fibroids. Sci Rep 2023; 13:8492. [PMID: 37231028 DOI: 10.1038/s41598-023-35212-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/15/2023] [Indexed: 05/27/2023] Open
Abstract
Fibrosis is characterized by excessive accumulation of extracellular matrix, which is a key feature of uterine fibroids. Our prior research supports the tenet that inhibition of fibrotic processes may restrict fibroid growth. Epigallocatechin gallate (EGCG), a green tea compound with powerful antioxidant properties, is an investigational drug for uterine fibroids. An early phase clinical trial showed that EGCG was effective in reducing fibroid size and its associated symptoms; however, its mechanism of action(s) has not been completely elucidated. Here, we probed effects of EGCG on key signaling pathways involved in fibroid cell fibrosis. Viability of myometrial and fibroid cells was not greatly affected by EGCG treatment (1-200 µM). Cyclin D1, a protein involved in cell cycle progression, was increased in fibroid cells and was significantly reduced by EGCG. EGCG treatment significantly reduced mRNA or protein levels of key fibrotic proteins, including fibronectin (FN1), collagen (COL1A1), plasminogen activator inhibitor-1 (PAI-1), connective tissue growth factor (CTGF), and actin alpha 2, smooth muscle (ACTA2) in fibroid cells, suggesting antifibrotic effects. EGCG treatment altered the activation of YAP, β-catenin, JNK and AKT, but not Smad 2/3 signaling pathways involved in mediating fibrotic process. Finally, we conducted a comparative study to evaluate the ability of EGCG to regulate fibrosis with synthetic inhibitors. We observed that EGCG displayed greater efficacy than ICG-001 (β-catenin), SP600125 (JNK) and MK-2206 (AKT) inhibitors, and its effects were equivalent to verteporfin (YAP) or SB525334 (Smad) for regulating expression of key fibrotic mediators. These data indicate that EGCG exhibits anti-fibrotic effects in fibroid cells. These results provide insight into mechanisms behind the observed clinical efficacy of EGCG against uterine fibroids.
Collapse
Affiliation(s)
- Md Soriful Islam
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA.
| | - Maclaine Parish
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA
| | - Joshua T Brennan
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA
| | - Briana L Winer
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA
| | - James H Segars
- Division of Reproductive Sciences and Women's Health Research, Department of Gynecology and Obstetrics, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
AlAshqar A, Lulseged B, Mason-Otey A, Liang J, Begum UAM, Afrin S, Borahay MA. Oxidative Stress and Antioxidants in Uterine Fibroids: Pathophysiology and Clinical Implications. Antioxidants (Basel) 2023; 12:antiox12040807. [PMID: 37107181 PMCID: PMC10135366 DOI: 10.3390/antiox12040807] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
In the last few decades, our understanding of the complex pathobiology of uterine fibroid development has grown. While previously believed to be a purely neoplastic entity, we now understand that uterine fibroids possess different and equally important aspects of their genesis. An increasing body of evidence suggests that oxidative stress, the imbalance between pro- and antioxidants, is an important factor in fibroid development. Oxidative stress is controlled by multiple, interconnecting cascades, including angiogenesis, hypoxia, and dietary factors. Oxidative stress in turn influences fibroid development through genetic, epigenetic, and profibrotic mechanisms. This unique aspect of fibroid pathobiology has introduced several clinical implications, both diagnostic and therapeutic, that can aid us in managing these debilitating tumors by using biomarkers as well as dietary and pharmaceutical antioxidants for diagnosis and treatment. This review strives to summarize and add to the current evidence revealing the relationship between oxidative stress and uterine fibroids by elucidating the proposed mechanisms and clinical implications.
Collapse
|
17
|
Alashqar A, El Ouweini H, Gornet M, Yenokyan G, Borahay MA. Cardiometabolic profile of women with uterine leiomyoma: a cross-sectional study. Minerva Obstet Gynecol 2023; 75:27-38. [PMID: 35333033 DOI: 10.23736/s2724-606x.22.04952-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Emerging evidence suggests that cardiometabolic risk factors contribute to uterine leiomyoma development, but cardiometabolic profiles of women with the tumor remain poorly defined. This study aimed to determine the association of cardiometabolic comorbidities and cardiometabolic medication use with a leiomyoma diagnosis. METHODS In this cross-sectional study, aggregate-level data from 2013-2020 were collected using the SlicerDicer feature of Epic (Epic, Verona, WI, USA) electronic medical record system. Women ≥18 years with at least one visit or hospital encounter at the Johns Hopkins Health System (N.=679,981) were assigned as cases or controls according to leiomyoma status. Individual prevalence of each prespecified cardiometabolic comorbidity and relevant prescription medications was obtained. Prevalence Odds Ratios were used to assess the association of cardiometabolic comorbidities and medication use with uterine leiomyoma. RESULTS Women with uterine leiomyoma (N.=27,703) were more likely to be obese (2.56; 95% CI: 2.49-2.63), have metabolic syndrome (1.82; 95% CI: 1.51-2.19), essential hypertension (1.45; 95% CI: 1.42-1.49), diabetes mellitus (1.29; 95% CI: 1.24-1.33) and hyperlipidemia (1.23; 95% CI: 1.19-1.26). These associations were stronger among younger women and persisted after excluding those with a hysterectomy. Notably, statins were the only medications associated with a lower leiomyoma risk (0.81; 95% CI: 0.79-0.84). CONCLUSIONS Uterine leiomyoma is associated with a spectrum of cardiometabolic comorbidities and use of associated medications, constituting an unfavorable cardiometabolic profile in women with the tumor. If definitively correlated, prevention and early management of cardiometabolic risk factors may decrease uterine leiomyoma incidence, and screening women with uterine leiomyoma for cardiometabolic comorbidities may aid in cardiovascular disease prevention.
Collapse
Affiliation(s)
- Abdelrahman Alashqar
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA.,Department of Obstetrics and Gynecology, Kuwait University, Kuwait City, Kuwait
| | - Hala El Ouweini
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA.,American University of Beirut, Beirut, Lebanon
| | - Megan Gornet
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA
| | - Gayane Yenokyan
- Johns Hopkins Bloomberg School of Public Health, Johns Hopkins Biostatistics Center, Baltimore, MD, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA -
| |
Collapse
|
18
|
Afrin S, Ramaiyer M, Begum UAM, Borahay MA. Adipocyte and Adipokines Promote a Uterine Leiomyoma Friendly Microenvironment. Nutrients 2023; 15:nu15030715. [PMID: 36771423 PMCID: PMC9919329 DOI: 10.3390/nu15030715] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/01/2023] Open
Abstract
Uterine leiomyomas are the most common benign tumors of the female reproductive system. Obese individuals have a higher burden of uterine leiomyoma, yet the mechanism relating obesity and leiomyoma development remains unknown. In this study, we observe the effect of adipocyte coculture and leptin treatment on human myometrium and leiomyoma cells. We isolated primary leiomyoma and myometrium cells from hysterectomy or myomectomy patients. Protein expression levels of phosphorylated ERK1/2/total ERK1/2, phosphorylated STAT3/total STAT3, and phosphorylated AKT1/2/3/total AKT1/2/3 were quantified using immunoblotting in immortalized and primary leiomyoma and myometrial cells cocultured with human adipocytes and treated with leptin. An enzyme-linked immunosorbent assay (ELISA) was used to assess pro-inflammatory, fibrotic, and angiogenic factors in immortalized human myometrium and leiomyoma cells treated with leptin. The effects of STAT3, ERK, and AKT inhibitors were assessed in leiomyoma cell lines additionally cultured with adipocytes. Adipocyte coculture and leptin treatment increases the expression of JAK2/STAT3, MAPK/ERK, and PI3K/AKT signaling while inhibitors suppressed this effect. Leptin induces a tumor-friendly microenvironment through upregulation of pro-inflammatory (IFNγ, IL-8, IL-6, GM-CSF, MCP-1, and TNF-α), fibrotic (TGF-β1, TGF-β2, and TGF-β3), and angiogenic (VEGF-A, HGF, and Follistatin) factors in human leiomyoma cells. Furthermore, adipocyte coculture and leptin treatment increases leiomyoma cells growth through activation of MAPK/ERK, JAK2/STAT3, and PI3k/AKT signaling pathways. Finally, STAT3, ERK, and AKT inhibitor treatment suppressed PCNA, TNF-α, TGF-β3, and VEGF-A intracellular staining intensity in both adipocyte coculture and leptin treated leiomyoma cells. These findings suggest that, in obese women, adipocyte secreted hormone or adipocytes may contribute to leiomyoma development and growth by activating leptin receptor signaling pathways.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Malini Ramaiyer
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Umme Aoufa Mafruha Begum
- Department of Gynecology and Obstetrics, Khulna City Medical College Hospital, 25-26, KDA Ave., Khulna 9100, Bangladesh
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence: ; Tel.: +1-(410)-550-0337
| |
Collapse
|
19
|
Afrin S, El Sabah M, Manzoor A, Miyashita-Ishiwata M, Reschke L, Borahay MA. Adipocyte coculture induces a pro-inflammatory, fibrotic, angiogenic, and proliferative microenvironment in uterine leiomyoma cells. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166564. [PMID: 36181981 PMCID: PMC9719372 DOI: 10.1016/j.bbadis.2022.166564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 10/14/2022]
Abstract
OBJECTIVE Obesity and its consequences are among the biggest challenges facing the healthcare system. Uterine leiomyomas are the most common gynecologic tumors. The risk of leiomyoma increases with obesity, but the underlying mechanisms of this association remain unclear. The aim of the present study to determine the cellular and molecular mechanisms by which adipocyte contributes to both leiomyoma tumor initiation and promotion. METHODS Primary myometrium and leiomyoma cells were isolated from patients who underwent a hysterectomy or myomectomy. Pro-inflammatory, fibrotic, and angiogenic factors were measured using a multiplex cytokine array in human primary and immortalized myometrial and leiomyoma cells cocultured with human adipocyte (SW872) cells, or in animal ELT3 leiomyoma cells cocultured with 3 T3-L1 adipocytes. The free fatty acids (FFAs) and fatty acid-binding protein 4 (FABP4) levels were measured using immunofluorescence assays. Other protein abundances were determined using western blots. The expression levels of TNF-α, MCP-1, phospho-NF-κB, TGFβ3 and VEGF-A in lean and obese in different leiomyoma patients were determined by immunofluorescence staining. RESULTS Adipocytes promote inflammation, fibrosis, and angiogenesis in uterine leiomyoma cells by upregulating associated factors, such as IL-1β, TNF-α, MCP-1, GM-CSF, TGF-βs, PLGF, VEGF, HB-EGF, G-CSF and FGF2. Coculture led to the transfer of FFAs and FABP4 from adipocytes to leiomyoma cells, suggesting that adipocytes may modulate metabolic activity in these tumor cells. Increased levels of FFA and FABP4 expressions were detected in obese leiomyoma tissue compared to lean. The adipocyte-leiomyoma cell interaction increased the phospho-NF-κB level, which plays a key role in inflammation, restructuring metabolic pathways, and angiogenesis. Obese leiomyoma patients expressed a higher amount of TNF-α, MCP-1, phospho-NF-κB, TGFβ3 and VEGF-A than lean leiomyoma patients, consistent with in vitro findings. Furthermore, we found that adipocyte secretory factors enhance leiomyoma cell proliferation by increasing PCNA abundance. Finally, the inhibition of the inflammatory factors TNF-α, MCP-1, and NF-κB abrogated the adipocyte coculture-induced proliferation of leiomyoma cells. CONCLUSIONS Adipocytes release inflammatory, fibrotic, and angiogenic factors, along with FFAs, which contribute to a tumor-friendly microenvironment that may promote leiomyoma growth and can represent a new target for leiomyoma prevention and treatment.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Malak El Sabah
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Ahmed Manzoor
- School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Reschke L, Afrin S, El Sabah M, Charewycz N, Miyashita-Ishiwata M, Borahay MA. Leptin induces leiomyoma cell proliferation and extracellular matrix deposition via JAK2/STAT3 and MAPK/ERK pathways. F&S SCIENCE 2022; 3:383-391. [PMID: 35598777 PMCID: PMC9669119 DOI: 10.1016/j.xfss.2022.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE To investigate the molecular effects of leptin on uterine leiomyoma cells. DESIGN Experimental study using in vitro culture of immortalized human leiomyoma (HuLM) cells. SETTING Academic university center. PATIENT(S) Women with uterine fibroids who underwent a hysterectomy or myomectomy. INTERVENTION(S) Administration of human recombinant leptin to the media of cultured HuLM cells separately or in combination with pharmacologic Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) or mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) inhibitors. MAIN OUTCOME MEASURE(S) We examined HuLM tissues and cells for the expression of the leptin receptor, termed OB-R. Cellular proliferation was measured at 6, 24, and 48 hours using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay. Protein expression levels of proliferating cell nuclear antigen, collagen 1, phosphorylated STAT3/total STAT3, and phosphorylated ERK1/2 and total ERK1/2 were quantified using immunoblotting. Pharmacologic inhibitors were employed to further assess the role of the JAK2/STAT3 and MAPK/ERK pathways in the proliferative response. RESULT(S) The presence of OB-R was confirmed in clinical leiomyoma and myometrial tissue obtained from 3 separate human subjects using immunofluorescence staining, and the expression of OB-R in HuLM cells was identified using immunoblotting. There was no significant difference in the expression of the leptin receptor in the myometrium compared with that in the leiomyoma tissue. Leptin stimulated cell proliferation and extracellular matrix (ECM) deposition at 24 hours after treatment. Pretreatment with a JAK2/STAT3 inhibitor attenuated ECM deposition, and pretreatment with a MAPK/ERK inhibitor significantly decreased leptin's stimulatory effect on cell proliferation and ECM deposition. CONCLUSION(S) Leptin induces a proliferative response and ECM deposition in HuLM cells. These findings suggest that leptin, acting through the JAK2/STAT3 and MAPK/ERK pathways, is involved in the development of uterine leiomyomas, which may partly explain their increased incidence in obese women.
Collapse
Affiliation(s)
- Lauren Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Malak El Sabah
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Natasha Charewycz
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
21
|
Afrin S, El Sabeh M, Miyashita-Ishiwata M, Charewycz N, Singh B, Borahay MA. Simvastatin reduces plasma membrane caveolae and caveolin-1 in uterine leiomyomas. Life Sci 2022; 304:120708. [PMID: 35705139 DOI: 10.1016/j.lfs.2022.120708] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 11/18/2022]
Abstract
AIMS Uterine leiomyomas, or fibroids, are estrogen dependent benign tumor in women, however, they have limited treatment options. Simvastatin, a drug commonly used to treat high cholesterol. Recently we demonstrated that simvastatin alters estrogen signaling by reducing the expression and trafficking of the estrogen receptor-α (ER-α) in human uterine leiomyoma cells. Caveolae are invaginations of the plasma membrane where ER-α is known to localize and directly interacts with the caveolar protein caveolin-1 (CAV1). This study examines the effects of simvastatin on plasma membrane caveolae and the expression and palmitoylation of CAV1 in human leiomyomas which may influence ER-α signaling. MAIN METHODS We performed in vitro experiments using primary and immortalized human uterine leiomyoma cells. The caveolae were quantified using transmission electron microscopy. Additionally, we examined the impact of simvastatin treatment (40 mg orally per day for 12 weeks) on human leiomyoma tissue obtained from a randomized controlled trial. The CAV1 protein and mRNA levels were determined using quantitative real-time polymerase chain reactions, western blotting, and immunofluorescence analyses. KEY FINDINGS Simvastatin decreased the number of caveolae in primary leiomyoma cells and reduced CAV1 abundance in whole cells and remarkably the plasma protein fraction. It also decreased CAV1 palmitoylation, a post-translational modification associated with CAV1 activation. The effects of simvastatin on CAV1 were recapitulated in human leiomyoma tissue samples. SIGNIFICANCE Our results identify caveolae and CAV1 as novel targets of simvastatin which may contribute to the recently described effects of simvastatin on ER-α signaling and plasma membrane trafficking.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Natasha Charewycz
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
22
|
Afrin S, Ali M, El Sabeh M, Yang Q, Al‐Hendy A, Borahay MA. Simvastatin inhibits stem cell proliferation in human leiomyoma via TGF-β3 and Wnt/β-Catenin pathways. J Cell Mol Med 2022; 26:1684-1698. [PMID: 35118811 PMCID: PMC8899165 DOI: 10.1111/jcmm.17211] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 01/13/2022] [Accepted: 01/19/2022] [Indexed: 01/06/2023] Open
Abstract
Uterine leiomyoma (UL) is the most common gynaecologic tumour, affecting an estimated 70 to 80% of women. Leiomyomas develop from the transformation of myometrial stem cells into leiomyoma stem (or tumour-initiating) cells. These cells undergo self-renewal and differentiation to mature cells, both are necessary for the maintenance of tumour stem cell niche and tumour growth, respectively. Wnt/β-catenin and TGF-β/SMAD pathways, both overactive in UL, promote stem cell self-renewal, crosstalk between stem and mature cells, cellular proliferation, extracellular matrix (ECM) accumulation and drive overall UL growth. Recent evidence suggests that simvastatin, an antihyperlipidemic drug, may have anti-leiomyoma properties. Herein, we investigated the effects of simvastatin on UL stem cells. We isolated leiomyoma stem cells by flow cytometry using DyeCycle Violet staining and Stro-1/CD44 surface markers. We found that simvastatin inhibits proliferation and induces apoptosis in UL stem cells. In addition, it also suppressed the expression of the stemness markers Nanog, Oct4 and Sox2. Simvastatin significantly decreased the production of the key ECM proteins, collagen 1 and fibronectin. Finally, it inhibited genes and/or proteins expression of TGF-β1, 2 and 3, SMAD2, SMAD4, Wnt4, β-Catenin, LRP6, AXIN2 and Cyclin D1 in UL stem cells, all are key drivers of the TGF-β3/SMAD2 and Wnt4/β-Catenin pathways. Thus, we have identified a novel stem cell-targeting anti-leiomyoma simvastatin effect. Further studies are needed to replicate these findings in vivo.
Collapse
Affiliation(s)
- Sadia Afrin
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Mohamed Ali
- Clinical Pharmacy DepartmentFaculty of PharmacyAin Shams UniversityCairoEgypt
| | - Malak El Sabeh
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Qiwei Yang
- Department of Gynecology and ObstetricsUniversity of Chicago School of MedicineChicagoIllinoisUSA
| | - Ayman Al‐Hendy
- Department of Gynecology and ObstetricsUniversity of Chicago School of MedicineChicagoIllinoisUSA
| | - Mostafa A. Borahay
- Department of Gynecology and ObstetricsJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
23
|
Miyashita-Ishiwata M, El Sabeh M, Reschke LD, Afrin S, Borahay MA. Differential response to hypoxia in leiomyoma and myometrial cells. Life Sci 2022; 290:120238. [PMID: 34942165 PMCID: PMC8757389 DOI: 10.1016/j.lfs.2021.120238] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/12/2021] [Indexed: 02/03/2023]
Abstract
AIMS Recent evidence suggests that repetitive hypoxia occurs during menstrual cycles due to vasoconstriction and myometrial contraction. It is unknown if hypoxia contributes to the development of uterine leiomyoma, the most common tumor of the female reproductive system. This study aims to characterize the response to hypoxia in leiomyoma and myometrial cells; and determine if an aberrant leiomyoma response to hypoxia may contribute to leiomyomatogenesis. MAIN METHODS Primary and immortalized leiomyoma and myometrial cells were cultured under normoxic and hypoxic conditions. Expression levels of vascular endothelial growth factor-A (VEGF-A), adrenomedullin (ADM), endothelin-1 (ET-1), and hypoxia-inducible factor-1 alpha (HIF-1α) were measured by qRT-PCR, western blotting and ELISA. Cell proliferation was assessed using MTT assay and proliferating-cell-nuclear-antigen (PCNA) expression. KC7F2 (HIF-1α inhibitor) was used to examine the regulating mechanisms. KEY FINDINGS As expected, hypoxia induced HIF-1α expression in both leiomyoma and myometrial cells. However, hypoxia induced VEGF-A, ET-1 and ADM expression and VEGF-A secretion into the culture media in leiomyoma but not myometrial cells. MTT assay and PCNA expression showed that hypoxia induces proliferation in leiomyoma, but not myometrial cells. HIF-1α inhibitor abrogated the hypoxia-induced VEGF-A, ET-1, ADM, and PCNA expression in leiomyoma cells. SIGNIFICANCE This study suggests an aberrant leiomyoma cellular response to hypoxia compared to myometrium. This differential response to menstruation-related repetitive hypoxia episodes may lead to selective proliferation of hypoxia-adaptive leiomyoma cells and contribute to leiomyoma growth. Thus, in addition to adding to our understanding of leiomyoma pathobiology, the study proposes angiogenic factors as a potential leiomyoma therapeutic target.
Collapse
Affiliation(s)
- Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Lauren D Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780,Correspondence address: Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD, 21205, USA,
| |
Collapse
|
24
|
Miyashita-Ishiwata M, El Sabeh M, Reschke LD, Afrin S, Borahay MA. Hypoxia induces proliferation via NOX4-Mediated oxidative stress and TGF-β3 signaling in uterine leiomyoma cells. Free Radic Res 2022; 56:163-172. [PMID: 35377824 PMCID: PMC9863770 DOI: 10.1080/10715762.2022.2061967] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Uterine leiomyomas, the most common tumors of the female reproductive system, are known to have a hypoxic microenvironment. However, the role of such environment in leiomyoma pathobiology remains unknown. The objective was to determine the effects of hypoxia on leiomyoma cells, and the mechanisms. We found that hypoxia induces proliferation and inhibits apoptosis in human leiomyoma cells. This pro-proliferative effect was accompanied by an increase in reactive oxygen species (ROS) generation and the expression of NADPH oxidase 4 (NOX4). The specific NOX4 inhibitor GLX351322 abrogated this hypoxia-induced ROS generation, cellular proliferation, and apoptosis inhibition. To further investigate the mechanism of NOX4-mediated proliferation, we treated leiomyoma cells grown in normoxia with media from leiomyoma cells cultured under hypoxia. This resulted in increased ROS generation and NOX4 expression, suggesting the hypoxia-induced effects are mediated by an autocrine mechanism. We worked to identify the nature of this autocrine factor. We found that the expression of TGF-β3 and its downstream signaling target pSmad3, are increased in hypoxic leiomyoma cells. To examine the hypothesis that TGF-β3 is, at least, a part of this autocrine mechanism, we treated hypoxic leiomyoma cells with the HIF-1α inhibitor KC7F2 which we discovered to ameliorate the hypoxia-induced TGF-β3 expression. Furthermore, pharmacologic inhibition with the TGF-β/Smad inhibitor SB431542 reduced hypoxia-induced NOX4 expression and ROS generation and attenuated cell proliferation. Thus, we have identified a novel mechanism by which hypoxia induces proliferation in leiomyoma cells. This finding adds to our understanding of leiomyoma pathobiology and can help in identifying new therapeutic targets.
Collapse
Affiliation(s)
- Mariko Miyashita-Ishiwata
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Malak El Sabeh
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Lauren D Reschke
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Sadia Afrin
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780
| | - Mostafa A Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, Baltimore, MD, USA, Address: 4940 Eastern Ave, Baltimore, MD, USA 21224-2780,Correspondence address: Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, 720 Rutland Ave, Baltimore, MD, 21205, USA, ,
| |
Collapse
|
25
|
El Sabeh M, Saha SK, Afrin S, Borahay MA. Simvastatin Inhibits Wnt/β-Catenin Pathway in Uterine Leiomyoma. Endocrinology 2021; 162:6382454. [PMID: 34614511 PMCID: PMC8557633 DOI: 10.1210/endocr/bqab211] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Indexed: 12/16/2022]
Abstract
The Wnt/β-catenin pathway is upregulated in uterine leiomyomas, the most common benign tumors in the female reproductive tract. Simvastatin is an antihyperlipidemic drug, and previous in vitro and in vivo reports showed that it may have therapeutic effects in treating leiomyomas. The objective of this study was to examine the effects of simvastatin on the Wnt/β-catenin signaling pathway in leiomyoma. We treated primary and immortalized human leiomyoma cells with simvastatin and examined its effects using quantitative real-time polymerase chain reaction, Western blotting, and immunocytochemistry. We also examined the effects using human leiomyoma tissues from an ongoing randomized controlled trial in which women with symptomatic leiomyoma received simvastatin (40 mg) or placebo for 3 months prior to their surgery. The results of this study revealed that simvastatin significantly reduced the expression of Wnt4 and its co-receptor LRP5. After simvastatin treatment, levels of total β-catenin and its active form, nonphosphorylated β-catenin, were reduced in both cell types. Additionally, simvastatin reduced the expression of Wnt4 and total β-catenin, as well as nonphosphorylated β-catenin protein expression in response to estrogen and progesterone. Simvastatin also inhibited the expression of c-Myc, a downstream target of the Wnt/β-catenin pathway. The effect of simvastatin on nonphosphorylated-β-catenin, the key regulator of the Wnt/β-catenin pathway, was recapitulated in human leiomyoma tissue. These results suggest that simvastatin may have a beneficial effect on uterine leiomyoma through suppressing the overactive Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Malak El Sabeh
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Subbroto Kumar Saha
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Sadia Afrin
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Mostafa A Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Correspondence: Mostafa A. Borahay, M.D., Ph.D., Johns Hopkins University School of Medicine, 720 Rutland Avenue, Baltimore, MD 21205, USA.
| |
Collapse
|