1
|
Zhu XZ, Qiu Z, Lei SQ, Leng Y, Li WY, Xia ZY. The Role of P53 in Myocardial Ischemia-Reperfusion Injury. Cardiovasc Drugs Ther 2025; 39:195-209. [PMID: 37389674 DOI: 10.1007/s10557-023-07480-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/09/2023] [Indexed: 07/01/2023]
Abstract
PURPOSE P53 is one of the key tumor suppressors. In normal cells, p53 is maintained at low levels by the ubiquitination of the ubiquitinated ligase MDM2. In contrast, under stress conditions such as DNA damage and ischemia, the interaction between p53 and MDM2 is blocked and activated by phosphorylation and acetylation, thereby mediating the trans-activation of p53 through its target genes to regulate a variety of cellular responses. Previous studies have shown that the expression of p53 is negligible in normal myocardium, tends to increase in myocardial ischemia and is maximally induced in ischemia-reperfused myocardium, demonstrating a possible key role of p53 in the development of MIRI. In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and describe the therapeutic agents targeting the relevant targets to provide new strategies for the prevention and treatment of MIRI. METHODS We collected 161 relevant papers mainly from Pubmed and Web of Science (search terms "p53" and "myocardial ischemia-reperfusion injury"). After that, we selected pathway studies related to p53 and classified them according to their contents. We eventually analyzed and summarized them. RESULTS AND CONCLUSION In this review, we detail and summarize recent studies on the mechanism of action of p53 in MIRI and validate its status as an important intermediate affecting MIRI. On the one hand, p53 is regulated and modified by multiple factors, especially non-coding RNAs; on the other hand, p53 regulates apoptosis, programmed necrosis, autophagy, iron death and oxidative stress in MIRI through multiple pathways. More importantly, several studies have reported medications targeting p53-related therapeutic targets. These medications are expected to be effective options for the alleviation of MIRI, but further safety and clinical studies are needed to convert them into clinical applications.
Collapse
Affiliation(s)
- Xi-Zi Zhu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhen Qiu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Shao-Qing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Wen-Yuan Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China
| | - Zhong-Yuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuhan, Hubei, 430060, People's Republic of China.
| |
Collapse
|
2
|
Lee ZJ, Cai JX, Wang LH, Yang MR. Ensemble Algorithm Based on Gene Selection, Data Augmentation, and Boosting Approaches for Ovarian Cancer Classification. Diagnostics (Basel) 2024; 14:2772. [PMID: 39767133 PMCID: PMC11674093 DOI: 10.3390/diagnostics14242772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Ovarian cancer is a difficult and lethal illness that requires early detection and precise classification for effective therapy. Microarray technology has permitted the simultaneous assessment of hundreds of genes' expression levels, yielding important insights into the molecular pathways driving ovarian cancer. To reduce computational complexity and improve accuracy, choosing the most likely differential genes to explain the impacts of ovarian cancer is necessary. Medical datasets, including those related to ovarian cancer, are often limited in size due to privacy concerns, data collection challenges, and the rarity of certain conditions. Data augmentation allows researchers to expand the dataset, providing a larger and more diverse set of examples for model training. Recent advances in machine learning and bioinformatics have shown promise in improving ovarian cancer classification based on gene information. Methods: In this paper, we present an ensemble algorithm based on gene selection, data augmentation, and boosting approaches for ovarian cancer classification. In the proposed approach, the initial genetic data were first subjected to feature selection. Results: The target genes were screened and combined with data augmentation and ensemble boosting algorithms. From the results, the chosen ten genes could accurately classify ovarian cancer at 98.21%. Conclusions: We further show that the proposed algorithm based on clustering approaches is effective for real-world ovarian cancer data, with 100% accuracy and strong performance in distinguishing between distinct ovarian cancer subtypes. The proposed algorithm may help doctors identify ovarian cancer patients early and develop individualized treatment plans.
Collapse
Affiliation(s)
- Zne-Jung Lee
- School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China;
| | - Jing-Xun Cai
- Graduate School of New Generation Electronic Information Engineer, School of Advanced Manufacturing, Fuzhou University, Quanzhou 362200, China
| | - Liang-Hung Wang
- Department of Microelectronics, College of Physics and Information Engineering, Fuzhou University, Fuzhou 350108, China
| | - Ming-Ren Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 235, Taiwan
| |
Collapse
|
3
|
Niu X, Zhang J, Zhang J, Bai L, Hu S, Zhang Z, Bai M. Lipid Nanoparticle-Mediated Oip5-as1 Delivery Preserves Mitochondrial Function in Myocardial Ischemia/Reperfusion Injury by Inhibiting the p53 Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61565-61582. [PMID: 39485791 DOI: 10.1021/acsami.4c10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury, a major contributor to poor prognosis in patients with acute myocardial infarction, currently lacks effective therapeutic strategies in clinical practice. The long noncoding RNA (lncRNA) Oip5-as1 can regulate various cellular processes, such as cell proliferation, differentiation, and survival. Oip5-as1 may have potential as a therapeutic target for MI/R injury as its upregulated expression has been associated with reduced infarct size and improved cardiac function in animal models, although how to effectively and safely overexpress Oip5-as1 in vivo remains unclear. Lipid nanoparticles (LNPs) are a versatile technology for targeted drug delivery in numerous therapeutic applications. Herein, we aimed to assess the therapeutic efficacy and safety of LNPs coloaded with Oip5-as1 and a cardiomyocyte-specific binding peptide (LNP@Oip5-as1@CMP) in a murine model of MI/R injury. To achieve this, LNP@Oip5-as1@CMP was synthesized via ethanol injection method. The structural components of LNP@Oip5-as1@CMP were physicochemically analyzed. A hypoxia/reoxygenation (H/R) model in HL-1 cells and coronary artery ligation in mice were used to simulate MI/R injury. Our results demonstrated that LNPs designed for cardiomyocyte targeting and efficient Oip5-as1 delivery were successfully synthesized. In HL-1 cells, LNP@Oip5-as1@CMP treatment significantly reduced mitochondrial apoptosis caused by H/R injury. In the murine MI/R model, the intravenous administration of LNP@Oip5-as1@CMP significantly decreased myocardial infarct size and improved cardiac function. Mechanistic investigations revealed that Oip5-as1 delivery inhibited the p53 signaling pathway. However, the cardioprotective effects of Oip5-as1 were abrogated by administrating Nutlin-3a, a p53 activator. Furthermore, no signs of major organ damage were detected after LNP@Oip5-as1@CMP injection. Our study reveals the therapeutic potential of LNPs for targeted Oip5-as1 delivery in mitigating MI/R injury. These findings pave the way for advanced targeted treatments in cardiovascular diseases, emphasizing the promise of lncRNA-based therapies.
Collapse
Affiliation(s)
- Xiaowei Niu
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Jing Zhang
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Jingjing Zhang
- Medical Genetics Center, Gansu Provincial Central Hospital/Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, No. 143, North Road, Qilihe District, Lanzhou, Gansu 730000, China
| | - Lu Bai
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Shuwen Hu
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Ming Bai
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| |
Collapse
|
4
|
Feng M, Zhang L, Yin A, Zhang H, Wu X, Qian L. Peptide PDRPS6 attenuates myocardial ischemia injury by improving mitochondrial function. Eur J Pharmacol 2024; 974:176570. [PMID: 38688398 DOI: 10.1016/j.ejphar.2024.176570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/07/2024] [Accepted: 04/07/2024] [Indexed: 05/02/2024]
Abstract
Mitochondrial dynamics play a crucial role in myocardial ischemia-reperfusion (I/R) injury, where an imbalance between fusion and fission processes occurs. However, effective measures to regulate mitochondrial dynamics in this context are currently lacking. Peptide derived from the 40 S ribosomal protein S6 (PDRPS6), a peptide identified via peptidomics, is associated with hypoxic stress. This study aimed to investigate the function and mechanism of action of PDRPS6 in I/R injury. In vivo, PDRPS6 ameliorated myocardial tissue injury and cardiomyocyte apoptosis and decreased cardiac function induced by I/R injury in rats. PDRPS6 supplementation significantly reduced apoptosis in vitro. Mechanistically, PDRPS6 improved mitochondrial function by decreasing reactive oxygen species (ROS) levels, maintaining mitochondrial membrane potential (MMP), and inhibiting mitochondrial fission. Pull-down assay analyses revealed that phosphoglycerate mutase 5 (PGAM5) may be the target of PDRPS6, which can lead to the dephosphorylation of dynamin-related protein1 (Drp1) at ser616 site. Overexpression of PGAM5 partially eliminated the effect of PDRPS6 on improving mitochondrial function. These findings suggest that PDRPS6 supplementation is a novel method for treating myocardial injuries caused by I/R.
Collapse
Affiliation(s)
- Mengwen Feng
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China; Department of Cardiology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China
| | - Li Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Anwen Yin
- Department of Cardiology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Han Zhang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China
| | - Xueping Wu
- Department of Anatomy, Histology and Embryology, Shanghai University of Medicine & Health Sciences, 279 Zhouzhu Road, Pudding New District, Shanghai, 201318, China.
| | - Lingmei Qian
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xianxia Road, Shanghai, 200336, China.
| |
Collapse
|
5
|
Feng J, Li Y, Wang C, Wang Y, Wan Y, Zheng M, Chen T, Xiao X. Peripheral blood transcriptomic analysis identifies potential inflammation and immune signatures for central retinal artery occlusion. Sci Rep 2024; 14:7398. [PMID: 38548806 PMCID: PMC10978867 DOI: 10.1038/s41598-024-57052-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/13/2024] [Indexed: 04/01/2024] Open
Abstract
Central retinal artery occlusion (CRAO) is an acute retinal ischaemic disease, but early diagnosis is challenging due to a lack of biomarkers. Blood samples were collected from CRAO patients and cataract patients. Gene expression profiles were distinct between arterial/venous CRAO blood (A-V group) and venous CRAO/control blood (V-C group) samples. Differentially expressed genes (DEGs) were subjected to GO and KEGG enrichment analyses. Hub genes were identified by Cytoscape and used to predict gene interactions via GeneMANIA. Immune cell infiltration was analysed by CIBERSORT. More than 1400 DEGs were identified in the A-V group and 112 DEGs in the V-C group compared to controls. The DEGs in both groups were enriched in the ribosome pathway, and those in the V-C group were also enriched in antigen processing/MHC pathways. Network analysis identified ribosomal proteins (RPS2 and RPS5) as the core genes of the A-V group and MHC genes (HLA-F) as the core genes of the V-C group. Coexpression networks showed ribosomal involvement in both groups, with additional immune responses in the V-C group. Immune cell analysis indicated increased numbers of neutrophils and T cells. Ribosomal and MHC-related genes were identified as potential CRAO biomarkers, providing research directions for prevention, diagnosis, treatment and prognosis.
Collapse
Affiliation(s)
- Jiaqing Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ying Li
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Chuansen Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuedan Wang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Yuwei Wan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Mengxue Zheng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China
| | - Ting Chen
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
| | - Xuan Xiao
- Department of Ophthalmology, Renmin Hospital of Wuhan University, No. 238 Jie Fang Road, Wuhan, 430060, Hubei, China.
- Department of Clinical Laboratory, Institute of Translational Medicine, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
6
|
Wang H, Yu W, Wang Y, Wu R, Dai Y, Deng Y, Wang S, Yuan J, Tan R. p53 contributes to cardiovascular diseases via mitochondria dysfunction: A new paradigm. Free Radic Biol Med 2023; 208:846-858. [PMID: 37776918 DOI: 10.1016/j.freeradbiomed.2023.09.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/21/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Cardiovascular diseases (CVDs) are leading causes of global mortality; however, their underlying mechanisms remain unclear. The tumor suppressor factor p53 has been extensively studied for its role in cancer and is also known to play an important role in regulating CVDs. Abnormal p53 expression levels and modifications contribute to the occurrence and development of CVDs. Additionally, mounting evidence underscores the critical involvement of mitochondrial dysfunction in CVDs. Notably, studies indicate that p53 abnormalities directly correlate with mitochondrial dysfunction and may even interact with each other. Encouragingly, small molecule inhibitors targeting p53 have exhibited remarkable effects in animal models of CVDs. Moreover, therapeutic strategies aimed at mitochondrial-related molecules and mitochondrial replacement therapy have demonstrated their advantageous potential. Therefore, targeting p53 or mitochondria holds immense promise as a pioneering therapeutic approach for combating CVDs. In this comprehensive review, we delve into the mechanisms how p53 influences mitochondrial dysfunction, including energy metabolism, mitochondrial oxidative stress, mitochondria-induced apoptosis, mitochondrial autophagy, and mitochondrial dynamics, in various CVDs. Furthermore, we summarize and discuss the potential significance of targeting p53 or mitochondria in the treatment of CVDs.
Collapse
Affiliation(s)
- Hao Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Wei Yu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yibo Wang
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ruihao Wu
- School of Clinical Medicine, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yifei Dai
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ye Deng
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shijun Wang
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200433, China.
| | - Jinxiang Yuan
- The Collaborative Innovation Center, Jining Medical University, Jining, 272000, China.
| | - Rubin Tan
- Department of Physiology, Basic Medical School, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
7
|
Chang X, Xiao Y, Cheng L, Gu X, Yang L, Chamba Y, Zhang J, Geng F. Quantitative Proteomic Analysis of Yorkshire Pig Liver Reveals Its Response to High Altitude. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7618-7629. [PMID: 37140090 DOI: 10.1021/acs.jafc.3c01724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
In this study, the protein profiles in the livers of Shannan Yorkshire pigs (SNY), Linzhi Yorkshire pigs (LZY), and Jiuzhaigou Yorkshire pigs (JZY) were comparatively analyzed using quantitative proteomics. A total of 6804 proteins were identified, of which 6471 were quantified and 774 differentially expressed proteins (DEPs) were screened. The higher level of energy metabolism in LZY livers was in response to the critical altitude environment compared to that in JZY, while the high-altitude environment suppressed energy output in SNY livers. Several key antioxidant enzymes were locally regulated in Yorkshire pig liver to balance antioxidant levels in a high-altitude, low-oxygen environment. In addition, ribosomal proteins were differentially expressed in Yorkshire pig livers in response to different altitudinal environments. These findings provide clues to the adaptation of the Yorkshire pig liver to the three altitudinal environments and the molecular links that exist between them.
Collapse
Affiliation(s)
- Xinping Chang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yu Xiao
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Xuedong Gu
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
- Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Lin Yang
- Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Yangzom Chamba
- College of Food Science, Tibet Agriculture and Animal Husbandry University, Linzhi 860000, China
- Provincial and Ministerial Co-Founded Collaborative Innovation Center for R & D in Tibet Characteristic Agricultural and Animal Husbandry Resources, Tibet Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Jiamin Zhang
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| |
Collapse
|
8
|
Qin Y, Shi Y, Yu Q, Yang S, Wang Y, Dai X, Li G, Cheng Z. Vitamin B12 alleviates myocardial ischemia/reperfusion injury via the SIRT3/AMPK signaling pathway. Biomed Pharmacother 2023; 163:114761. [PMID: 37126929 DOI: 10.1016/j.biopha.2023.114761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023] Open
Abstract
AIM To examine the protective effect of vitamin B12 against myocardial ischemia/reperfusion (I/R) injury and elucidate its underlying mechanism of action. METHODS Mice were subjected to myocardial I/R injury by left anterior descending coronary artery (LAD) occlusion followed by 24 h reperfusion. Cardiac function and injury were evaluated by echocardiography, triphenyl tetrazolium chloride (TTC) and cardiac troponin T (cTnT) staining, and measuring lactate dehydrogenase (LDH) levels. In addition, various molecular and biochemical methods, as well as RNA sequencing were used to determine the effects and mechanism of action of vitamin B12 on I/R injury. RESULTS We found that high doses of vitamin B12 inhibited myocardial I/R injury. Furthermore, our data indicated that vitamin B12 supplementation alleviated cardiac dysfunction and injury by mitigating oxidative stress and apoptosis through downregulation of Nox2, the Ac-SOD2/SOD2 and Bax/Bcl-2 ratios and cleaved caspase-3 expression, and upregulation of SIRT3 expression and AMPK activity. However, these effects were largely reversed following treatment with the SIRT3 inhibitor, 3-TYP. Our RNA-sequencing data further demonstrated that vitamin B12 supplementation reduced inflammation during I/R injury. CONCLUSION High doses of vitamin B12 supplements improved myocardial I/R injury by suppressing the accumulation of reactive oxygen species and apoptosis of myocardial tissue through modulation of the SIRT3/AMPK signaling pathway, while reducing inflammation. Our findings suggested that vitamin B12 administered at high doses could be a potential therapy for myocardial I/R damage.
Collapse
Affiliation(s)
- Yuhong Qin
- Department of Hepatology and Translational Medicine, Chongqing University Fuling Hospital, Chongqing 400016, China
| | - Yani Shi
- Department of General medicine, Chongqing University Fuling Hospital, Chongqing 400016, China
| | - Qi Yu
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Shenglan Yang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Ying Wang
- Department of Cardiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaojia Dai
- Clinic Medical College, Southwest Medical University, Sichuan 646099, China
| | - Guoxing Li
- Institute of Life Sciences, Chongqing Medical University, 400016, China.
| | - Zhe Cheng
- Institute of Life Sciences, Chongqing Medical University, 400016, China; Department of Cardiology, Chongqing University Three Gorges Hospital & Chongqing Three Gorges Central Hospital, 404000, China.
| |
Collapse
|