1
|
Pal RS, Jawaid T, Rahman MA, Verma R, Patra PK, Vijaypal SV, Pal Y, Upadhyay R. Metformin's anticancer odyssey: Revealing multifaceted mechanisms across diverse neoplastic terrains- a critical review. Biochimie 2025; 233:109-121. [PMID: 40058683 DOI: 10.1016/j.biochi.2025.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/10/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Metformin, initially prescribed as an oral hypoglycemic medication for type 2 diabetes, has recently gained attention for its potential anticancer effects. Its history dates to 1918, when guanidine, a component of the traditional European herb Galega officinalis, was found to reduce glycemia. This review precisely examines the mechanisms underlying Metformin's anticancer effects across various neoplastic conditions. This investigation explores the complex interactions between metformin and major signaling pathways associated with carcinogenesis, including AMP-activated protein kinase (AMPK), mTOR, and insulin-like growth factor (IGF) pathways. The review emphasizes Metformin's diverse effects on angiogenesis, inflammation, apoptosis, and cellular metabolism in cancer cells. Additionally, new data on metformin's capacity to alter the tumor microenvironment and enhance immune surveillance systems against cancer are examined. The review underscores Metformin's potential for repurposing in oncology, emphasizing its clinical relevance as an adjuvant therapy for various cancers. The review provides insightful information about the complex anticancer mechanisms of metformin by combining data from preclinical and clinical studies. These findings not only broaden our knowledge of the effects of metformin but also open new avenues for oncology research and treatment developments.
Collapse
Affiliation(s)
- Rashmi Saxena Pal
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Talha Jawaid
- Department of Pharmacology, College of Medicine, Imam Muhammad Ibn Saud Islamic University, Riyadh, Saudi Arabia
| | - M A Rahman
- Teegala Krishna Reddy College of Pharmacy, Hyderabad, Telangana, India
| | - Rakesh Verma
- Department of Pharmacology, Institute of Medical Science, BHU, Varanasi, Uttar Pradesh, India
| | - Pratap Kumar Patra
- School of Pharmacy & Life Sciences, Centurion University of Technology & Management, Bhubaneswar, Odisha, India
| | | | - Yogendra Pal
- School of Pharmaceutical Science, RIMT University, Mandi Gobindgarh, Punjab, India
| | - Rohit Upadhyay
- Department of Medicine, Tulane University School of Medicine, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Drewa J, Lazar-Juszczak K, Adamowicz J, Juszczak K. May Patients Receiving GLP-1 Agonists Be at Lower Risk of Prostate Cancer Aggressiveness and Progression? Cancers (Basel) 2025; 17:1576. [PMID: 40361502 PMCID: PMC12071316 DOI: 10.3390/cancers17091576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 04/27/2025] [Accepted: 05/03/2025] [Indexed: 05/15/2025] Open
Abstract
INTRODUCTION GLP-1 receptor agonists are valuable therapeutic agents for managing obesity and type 2 diabetes. The link between prostate cancer and obesity was described. The modulation of incretin hormone-dependent pathways may decrease the prostate cancer aggressiveness and progression. OBJECTIVES The purpose of this study was to review and summarize the literature on the role of GLP-1 agonists in prostate cancer. MATERIAL & METHODS We performed a scoping literature review of PubMed from January 2002 to February 2025. Search terms included "glucagon-peptide like 1", "incretin hormone", "GLP-1 receptor agonist", and "prostate cancer". Secondary search involved reference lists of eligible articles. The key criterion was to identify studies that included GLP-1 receptor, incretin hormones, GLP-1 receptor agonists, and their role in prostate cancer development. RESULTS 77 publications were selected for inclusion in this review. The studies contained in publications allowed us to summarize the data on the role of GLP-1 receptor and it's agonists in prostate cancer biology and development. The following review aims to discuss and provide information about the role of incretin hormones in prostate cancer pathogenesis and its clinical implication in patients with prostate cancer. CONCLUSION Incretin hormone-dependent pathways play an important role in prostate cancer pathogenesis. Moreover, GLP-1 receptor agonists seems to be a promising therapeutical agents when it comes to finding new therapies in patients with more aggressive and/or advanced stages of prostate cancer.
Collapse
Affiliation(s)
- Julia Drewa
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Katarzyna Lazar-Juszczak
- Primary Health Care Clinic of the Ujastek Medical Center, Krakow University of Health Promotion, 31-158 Cracow, Poland
| | - Jan Adamowicz
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| | - Kajetan Juszczak
- Department of Urology and Andrology, Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| |
Collapse
|
3
|
Atas E, Berchtold K, Schlederer M, Prodinger S, Sternberg F, Pucci P, Steel C, Matthews JD, James ER, Philippe C, Trachtová K, Moazzami AA, Artamonova N, Melchior F, Redmer T, Timelthaler G, Pohl EE, Turner SD, Heidegger I, Krueger M, Resch U, Kenner L. The anti-diabetic PPARγ agonist Pioglitazone inhibits cell proliferation and induces metabolic reprogramming in prostate cancer. Mol Cancer 2025; 24:134. [PMID: 40320521 PMCID: PMC12051277 DOI: 10.1186/s12943-025-02320-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Prostate cancer (PCa) and Type 2 diabetes (T2D) often co-occur, yet their relationship remains elusive. While some studies suggest that T2D lowers PCa risk, others report conflicting data. This study investigates the effects of peroxisome proliferator-activated receptor (PPAR) agonists Bezafibrate, Tesaglitazar, and Pioglitazone on PCa tumorigenesis. Analysis of patient datasets revealed that high PPARG expression correlates with advanced PCa and poor survival. The PPARγ agonists Pioglitazone and Tesaglitazar notably reduced cell proliferation and PPARγ protein levels in primary and metastatic PCa-derived cells. Proteomic analysis identified intrinsic differences in mTORC1 and mitochondrial fatty acid oxidation (FAO) pathways between primary and metastatic PCa cells, which were further disrupted by Tesaglitazar and Pioglitazone. Moreover, metabolomics, Seahorse Assay-based metabolic profiling, and radiotracer uptake assays revealed that Pioglitazone shifted primary PCa cells' metabolism towards glycolysis and increased FAO in metastatic cells, reducing mitochondrial ATP production. Furthermore, Pioglitazone suppressed cell migration in primary and metastatic PCa cells and induced the epithelial marker E-Cadherin in primary PCa cells. In vivo, Pioglitazone reduced tumor growth in a metastatic PC3 xenograft model, increased phosho AMPKα and decreased phospho mTOR levels. In addition, diabetic PCa patients treated with PPAR agonists post-radical prostatectomy implied no biochemical recurrence over five to ten years compared to non-diabetic PCa patients. Our findings suggest that Pioglitazone reduces PCa cell proliferation and induces metabolic and epithelial changes, highlighting the potential of repurposing metabolic drugs for PCa therapy.
Collapse
Affiliation(s)
- Emine Atas
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria.
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
| | | | | | | | - Felix Sternberg
- Department of Biological Sciences and Pathobiology, Unit of Physiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
- Department of Nutritional Science, University of Vienna, Vienna, Austria
| | - Perla Pucci
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Christopher Steel
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Jamie D Matthews
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Emily R James
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
| | - Cécile Philippe
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Karolína Trachtová
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria
- Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Ali A Moazzami
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, 75007, Uppsala, Sweden
| | | | - Felix Melchior
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Torben Redmer
- Unit of Laboratory Animal Pathology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Gerald Timelthaler
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Elena E Pohl
- Department of Biological Sciences and Pathobiology, Unit of Physiology and Biophysics, University of Veterinary Medicine, Vienna, Austria
| | - Suzanne D Turner
- Division of Cellular and Molecular Pathology, Department of Pathology, University of Cambridge, Cambridge, UK
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Isabel Heidegger
- Department of Urology, Medical University of Innsbruck, Innsbruck, Austria
| | - Marcus Krueger
- Institute for Genetics, Cologne Excellence Cluster of Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany
| | - Ulrike Resch
- Center of Physiology and Pharmacology, Department of Vascular Biology and Thrombosis Research, Medical University of Vienna, Vienna, Austria
| | - Lukas Kenner
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Christian Doppler Laboratory for Applied Metabolomics (CDL-AM), Medical University of Vienna, Vienna, Austria.
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria.
- Unit of Laboratory Animal Pathology, Institute of Pathology, University of Veterinary Medicine Vienna, Vienna, Austria.
- Center for Biomarker Research in Medicine GmbH (CBmed), Graz, Austria.
- Department of Molecular Biology, Umeå University, Umea, Sweden.
| |
Collapse
|
4
|
Pagano AP, da Silva BR, Vieira FT, Meira Filho LF, Purcell SA, Lewis JD, Mackenzie ML, Robson PJ, Vena JE, Silva FM, Prado CM. Association Between Diabetes and Risk of Prostate Cancer: A Systematic Review and Meta-Analysis of Observational Studies. World J Mens Health 2025; 43:304-320. [PMID: 39028128 PMCID: PMC11937354 DOI: 10.5534/wjmh.240022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/26/2024] [Accepted: 04/09/2024] [Indexed: 07/20/2024] Open
Abstract
PURPOSE Metabolic diseases such as diabetes mellitus may play a role in the development and progression of prostate cancer (PC); however, this association remains to be explored in the context of specific PC stages. The objective of this study was to systematically review the evidence for an association between diabetes and overall, early, or advanced PC risk. MATERIALS AND METHODS A systematic review with meta-analysis was performed (MEDLINE, EMBASE, and CINAHL) from inception until September 2023. Cohort and case-control studies that assessed PC risk in adult males (≥18 years) associated with type 2 diabetes mellitus or diabetes (if there was no distinction between diabetes type) were included. The Newcastle-Ottawa Scale (NOS) was used to assess study bias; those with NOS<7 were excluded. Evidence certainty was assessed with the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) method. RESULTS Thirty-four studies (n=26 cohorts and n=8 case-controls) were included. Of these, 32 assessed diabetes and all PC stages combined, 12 included early PC stages, and 15 included advanced PC stages. Our meta-analysis showed diabetes had a protective effect against early PC development (n=11, risk ratio [RR]=0.71; 95% confidence interval [CI]=0.61-0.83, I²=84%) but no association was found for combined (n=21, RR=0.95; 95% CI=0.79-1.13, I²=99%) or advanced PC stages (n=15, RR=0.96; 95% CI=0.77-1.18, I²=98%) at diagnosis. According to GRADE, the evidence certainty was very low. CONCLUSIONS Diabetes may be protective against early PC stages, yet evidence linking diabetes to risk across all stages, and advanced PC specifically, is less conclusive. High heterogeneity may partially explain discrepancy in findings and was mostly associated with study design, method used for PC diagnosis, and risk measures. Our results may aid risk stratification of males with diabetes and inform new approaches for PC screening in this group, especially considering the reduced sensitivity of prostate-specific antigen values for those with diabetes.
Collapse
Affiliation(s)
- Ana Paula Pagano
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bruna Ramos da Silva
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Flávio Teixeira Vieira
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Luiz Fernando Meira Filho
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Sarah A Purcell
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Division of Endocrinology, Metabolism, and Diabetes, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John D Lewis
- Department of Experimental Oncology, University of Alberta, Edmonton, Alberta, Canada
| | - Michelle L Mackenzie
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Paula J Robson
- Cancer Care Alberta and the Cancer Strategic Clinical Network, Alberta Health Services, Edmonton, Alberta, Canada
| | - Jennifer E Vena
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
- Alberta's Tomorrow Project, Cancer Care Alberta, Alberta Health Services, Calgary, Alberta, Canada
| | - Flávia Moraes Silva
- Nutrition Department and Nutrition Science Graduate Program, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carla M Prado
- Human Nutrition Research Unit, Department of Agricultural, Food, and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
5
|
Lin A, Ding Y, Li Z, Jiang A, Liu Z, Wong HZH, Cheng Q, Zhang J, Luo P. Glucagon-like peptide 1 receptor agonists and cancer risk: advancing precision medicine through mechanistic understanding and clinical evidence. Biomark Res 2025; 13:50. [PMID: 40140925 PMCID: PMC11948983 DOI: 10.1186/s40364-025-00765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have emerged as a primary first-line treatment for type 2 diabetes. This has raised concerns about their impact on cancer risk, spurring extensive research. This review systematically examines the varied effects of GLP-1RAs on the risk of different types of tumors, including overall cancer risk and specific cancers such as thyroid, pancreatic, reproductive system, liver, and colorectal cancers. The potential biological mechanisms underlying their influence on cancer risk are complex, involving metabolic regulation, direct antitumor effects, immune modulation, and epigenetic changes. A systematic comparison with other antidiabetic agents reveals notable differences in their influence on cancer risk across drug classes. Additionally, critical factors that shape the relationship between GLP-1RAs and cancer risk are thoroughly analyzed, including patient demographics, comorbidities, treatment regimens, and lifestyle factors, offering essential insights for developing individualized treatment protocols. Despite significant research progress, critical gaps remain. Future research should prioritize elucidating the molecular mechanisms behind the antitumor effects, refining individualized treatment strategies, investigating early tumor prevention applications, assessing potential benefits for non-diabetic populations, advancing the development of novel therapies, establishing robust safety monitoring frameworks, and building precision medicine decision-making platforms. These efforts aim to establish novel roles for GLP-1RAs in cancer prevention. and treatment, thereby advancing the progress of precision medicine.
Collapse
Affiliation(s)
- Anqi Lin
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, Jiangsu Province, 222000, China
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yanxi Ding
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Zhengrui Li
- Department of Oral and Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hank Z H Wong
- Li Ka Shing, Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| | - Peng Luo
- Donghai County People's Hospital - Jiangnan University Smart Healthcare Joint Laboratory, Donghai County People's Hospital (Affiliated Kangda College of Nanjing Medical University), Lianyungang, Jiangsu Province, 222000, China.
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China.
| |
Collapse
|
6
|
Wang J, Yang W. Advances in sodium-glucose transporter protein 2 inhibitors and tumors. Front Oncol 2025; 15:1522059. [PMID: 40007997 PMCID: PMC11850236 DOI: 10.3389/fonc.2025.1522059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 01/15/2025] [Indexed: 02/27/2025] Open
Abstract
Tumor is a major challenge to global health and has received extensive attention worldwide due to its high degree of malignancy and poor prognosis. Although the clinical application of targeted therapy and immunotherapy has improved the status quo of tumor treatment, the development of new therapeutic tools for tumors is still necessary. Sodium-glucose transporter protein 2 (SGLT2) inhibitors are a new type of glycemic control drugs, which are widely used in clinical practice because of their effects on weight reduction and protection of cardiac and renal functions. SGLT2 has been found to be overexpressed in many tumors and involved in tumorigenesis, progression and metastasis, suggesting that SGLT2i has a wide range of applications in tumor therapy. The aim of this article is to provide a comprehensive understanding of the research progress of SGLT2i in different tumors by integrating the latest studies and to encourage further exploration of SGLT2i therapies in clinical trials. This could pave the way for more effective management strategies and improved outcomes for tumor patients.
Collapse
Affiliation(s)
- Jiaqi Wang
- Department of Oncology, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| | - Wenyong Yang
- Department of Respiratory and Critical Care Medicine, Guangyuan Central Hospital, Guangyuan, Sichuan, China
| |
Collapse
|
7
|
Schooling CM, Yang G, Soliman GA, Leung GM. A Hypothesis That Glucagon-like Peptide-1 Receptor Agonists Exert Immediate and Multifaceted Effects by Activating Adenosine Monophosphate-Activate Protein Kinase (AMPK). Life (Basel) 2025; 15:253. [PMID: 40003662 PMCID: PMC11857512 DOI: 10.3390/life15020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/31/2025] [Indexed: 02/27/2025] Open
Abstract
Glucagon-like peptide-1 receptor agonists (GLP-1RAs) reduce bodyweight and blood glucose. Extensive evidence from randomized controlled trials has indicated that GLP-1RAs have benefits well beyond weight loss and glucose control, extending from reductions in cardiovascular mortality to reductions in prostate cancer risk. Notably, some benefits of GLP-1RAs for the cardiovascular-kidney-metabolic (CKM) system arise before weight loss occurs for reasons that are not entirely clear but are key to patient care and drug development. Here, we hypothesize that GLP-1RAs act by inducing calorie restriction and by activating adenosine monophosphate-activated protein kinase (AMPK), which not only provides an explanation for the unique effectiveness of GLP-1RAs but also indicates a common mechanism shared by effective CKM therapies, including salicylates, metformin, statins, healthy diet, and physical activity. Whether AMPK activation is obligatory for effective CKM therapies should be considered. As such, we propose a mechanism of action for GLP-1RAs and explain how it provides an overarching framework for identifying means of preventing and treating cardiovascular, kidney, metabolic and related diseases, as well as informing the complementary question as to the components of a healthy lifestyle.
Collapse
Affiliation(s)
- C. Mary Schooling
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (G.Y.)
- School of Public Health and Health Policy, City University of New York, Graduate School of Public Health and Health Policy, 55 W 125th St, New York, NY 10027, USA;
| | - Guoyi Yang
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (G.Y.)
| | - Ghada A. Soliman
- School of Public Health and Health Policy, City University of New York, Graduate School of Public Health and Health Policy, 55 W 125th St, New York, NY 10027, USA;
| | - Gabriel M. Leung
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; (G.Y.)
| |
Collapse
|
8
|
Zhang L, Cai J, Lin H, Wu W, Hu C, Lin X, Sun H, Wei X. SGLT-2 inhibitors are beneficial in reducing the risk of thyroid cancer: findings from a Mendelian randomization study. Acta Diabetol 2025; 62:185-192. [PMID: 39153085 DOI: 10.1007/s00592-024-02344-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/15/2024] [Indexed: 08/19/2024]
Abstract
OBJECTIVE Previous studies have investigated the association between diabetes medications and thyroid cancer, but the results have not been conclusive. This study used a Mendelian randomization approach to investigate the causal relationship between diabetes medications and thyroid cancer (TC). METHODS Exposures were six major diabetes medications target, while outcomes were TC and its differentiated forms, including papillary thyroid carcinoma (PTC) and follicular thyroid carcinoma (FTC). Mendelian randomization was conducted using IVW, MR-Egger, and weighted median methods. Tests for heterogeneity, horizontal pleiotropy, and leave-one-out were also performed. RESULTS In European populations, SGLT2 inhibitors were significantly negatively associated with TC (OR 0.051, 95% CI 0.006-0.465, P = 0.0082) as well as PTC (OR 0.034, 95% CI 0.003-0.411, P = 0.0079), while no correlation was found with FTC. These findings remained consistent even after applying the Bonferroni correction. CONCLUSIONS The evidence suggests that SGLT2 inhibitors could be potential therapeutic targets for TC, especially for PTC, in European populations. However, further large-scale randomized controlled trials are necessary to verify their ability to reduce the risk of and treat these types of cancer.
Collapse
Affiliation(s)
- LiRong Zhang
- School of Pharmacy, Fujian Medical University, Fuzhou, China
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134, Gulou District, Fuzhou City, 350001, Fujian Province, People's Republic of China
| | - Jiaqin Cai
- School of Pharmacy, Fujian Medical University, Fuzhou, China
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134, Gulou District, Fuzhou City, 350001, Fujian Province, People's Republic of China
| | - Huiting Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, China
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134, Gulou District, Fuzhou City, 350001, Fujian Province, People's Republic of China
| | - Wenhua Wu
- School of Pharmacy, Fujian Medical University, Fuzhou, China
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134, Gulou District, Fuzhou City, 350001, Fujian Province, People's Republic of China
| | - Congting Hu
- School of Pharmacy, Fujian Medical University, Fuzhou, China
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134, Gulou District, Fuzhou City, 350001, Fujian Province, People's Republic of China
| | - Xinmiao Lin
- School of Pharmacy, Fujian Medical University, Fuzhou, China
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134, Gulou District, Fuzhou City, 350001, Fujian Province, People's Republic of China
| | - Hong Sun
- School of Pharmacy, Fujian Medical University, Fuzhou, China.
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134, Gulou District, Fuzhou City, 350001, Fujian Province, People's Republic of China.
| | - XiaoXia Wei
- School of Pharmacy, Fujian Medical University, Fuzhou, China.
- Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, No. 134, Gulou District, Fuzhou City, 350001, Fujian Province, People's Republic of China.
| |
Collapse
|
9
|
Pandey A, Alcaraz M, Saggese P, Soto A, Gomez E, Jaldu S, Yanagawa J, Scafoglio C. Exploring the Role of SGLT2 Inhibitors in Cancer: Mechanisms of Action and Therapeutic Opportunities. Cancers (Basel) 2025; 17:466. [PMID: 39941833 PMCID: PMC11815934 DOI: 10.3390/cancers17030466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 01/23/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Cancer cells utilize larger amounts of glucose than their normal counterparts, and the expression of GLUT transporters is a known diagnostic target and a prognostic factor for many cancers. Recent evidence has shown that sodium-glucose transporters are also expressed in different types of cancer, and SGLT2 has raised particular interest because of the current availability of anti-diabetic drugs that block SGLT2 in the kidney, which could be readily re-purposed for the treatment of cancer. The aim of this article is to perform a narrative review of the existing literature and a critical appraisal of the evidence for a role of SGLT2 inhibitors for the treatment and prevention of cancer. SGLT2 inhibitors block Na-dependent glucose uptake in the proximal kidney tubules, leading to glycosuria and the improvement of blood glucose levels and insulin sensitivity in diabetic patients. They also have a series of systemic effects, including reduced blood pressure, weight loss, and reduced inflammation, which also make them effective for heart failure and kidney disease. Epidemiological evidence in diabetic patients suggests that individuals treated with SGLT2 inhibitors may have a lower incidence and better outcomes of cancer. These studies are confirmed by pre-clinical evidence of an effect of SGLT2 inhibitors against cancer in xenograft and genetically engineered models, as well as by in vitro mechanistic studies. The action of SGLT2 inhibitors in cancer can be mediated by the direct inhibition of glucose uptake in cancer cells, as well as by systemic effects. In conclusion, there is evidence suggesting a potential role of SGLT2 inhibitors against different types of cancer. The most convincing evidence exists for lung and breast adenocarcinomas, hepatocellular carcinoma, and pancreatic cancer. Several ongoing clinical trials will provide more information on the efficacy of SGLT2 inhibitors against cancer.
Collapse
Affiliation(s)
- Aparamita Pandey
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Martín Alcaraz
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Pasquale Saggese
- Department of Biology and Biotechnologies Charles Darwin, University of Rome “Sapienza”, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Adriana Soto
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Estefany Gomez
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Shreya Jaldu
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| | - Jane Yanagawa
- Department of Surgery, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA;
| | - Claudio Scafoglio
- Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine, University of California Los Angeles, 700 Tiverton Drive, Los Angeles, CA 90095, USA; (A.P.); (A.S.); (E.G.); (S.J.)
| |
Collapse
|
10
|
Chou OHI, Lu L, Chung CT, Chan JSK, Chan RNC, Lee AYH, Dee EC, Ng K, Pui HHH, Lee S, Cheung BMY, Tse G, Zhou J. Comparisons of the risks of new-onset prostate cancer in type 2 diabetes mellitus between SGLT2I and DPP4I users: A population-based cohort study. DIABETES & METABOLISM 2025; 51:101571. [PMID: 39182669 DOI: 10.1016/j.diabet.2024.101571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Sodium-glucose cotransporter 2 inhibitors (SGLT2I) have been suggested to reduce new-onset cancer amongst type-2 diabetes mellitus (T2DM) patients. This study aims to compare the risks of prostate cancer between SGLT2I and dipeptidyl peptidase-4 inhibitors (DPP4I) amongst T2DM patients. DESIGN, SETTING AND PARTICIPANTS This was a retrospective population-based cohort study of prospectively recorded data on male patients with T2DM who were prescribed either SGLT2I or DPP4I between 1st January 2015 and 31st December 2020 from Hong Kong. METHODS The primary outcome was new-onset prostate cancer. The secondary outcomes included cancer-related mortality and all-cause mortality. Propensity score matching (1:1 ratio) using the nearest neighbor search was performed and multivariable Cox regression was applied. A three-arm analysis including the glucagon-like peptide-1 receptor agonist (GLP1a) cohort was conducted. RESULTS This study included 42129 male T2DM patients (median age: 61.0 years old [SD: 12.2]; SGLT2I: n = 17,120; DPP4I: n = 25,009). In the propensity score matched cohort, the number of prostate cancers was significantly lower in SGLT2I users (n = 60) than in DPP4I (n = 102). Over a follow-up duration of 5.61 years, SGLT2I was associated with lower prostate cancer risks (HR: 0.45; 95% CI: 0.30-0.70) than DPP4I after adjustments. The subgroup analyses showed that the interactions between SGLT2I and age, hypertension, heart failure, and GLP-1a were not statistically significant. The result remained consistent in the sensitivity analysis. CONCLUSION The study demonstrated SGLT2I was associated with lower risks of new-onset prostate cancer after propensity score matching and adjustments compared to DPP4I amongst T2DM patients.
Collapse
Affiliation(s)
- Oscar Hou In Chou
- Division of Clinical Pharmacology, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Lei Lu
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Cheuk To Chung
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | | | | | | | - Edward Christopher Dee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer, New York, United States
| | - Kenrick Ng
- Department of Medical Oncology, University College London Hospital, London, UK; Department of Medical Oncology, St Bartholomew's Hospital, London, UK
| | - Hugo Hok Him Pui
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Sharen Lee
- Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Bernard Man Yung Cheung
- Division of Clinical Pharmacology, Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Gary Tse
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China; School of Nursing and Health Sciences, Hong Kong Metropolitan University, Hong Kong, China; Kent and Medway Medical School, Canterbury Christ Church University and University of Kent, Canterbury, United Kingdom.
| | - Jiandong Zhou
- Department of Family Medicine and Primary Care, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; Department of Pharmacology and Pharmacy, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
11
|
Kounatidis D, Vallianou NG, Karampela I, Rebelos E, Kouveletsou M, Dalopoulos V, Koufopoulos P, Diakoumopoulou E, Tentolouris N, Dalamaga M. Anti-Diabetic Therapies and Cancer: From Bench to Bedside. Biomolecules 2024; 14:1479. [PMID: 39595655 PMCID: PMC11591849 DOI: 10.3390/biom14111479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Diabetes mellitus (DM) is a significant risk factor for various cancers, with the impact of anti-diabetic therapies on cancer progression differing across malignancies. Among these therapies, metformin has gained attention for its potential anti-cancer effects, primarily through modulation of the AMP-activated protein kinase/mammalian target of rapamycin (AMPK/mTOR) pathway and the induction of autophagy. Beyond metformin, other conventional anti-diabetic treatments, such as insulin, sulfonylureas (SUs), pioglitazone, and dipeptidyl peptidase-4 (DPP-4) inhibitors, have also been examined for their roles in cancer biology, though findings are often inconclusive. More recently, novel medications, like glucagon-like peptide-1 (GLP-1) receptor agonists, dual GLP-1/glucose-dependent insulinotropic polypeptide (GIP) agonists, and sodium-glucose co-transporter-2 (SGLT-2) inhibitors, have revolutionized DM management by not only improving glycemic control but also delivering substantial cardiovascular and renal benefits. Given their diverse metabolic effects, including anti-obesogenic properties, these novel agents are now under meticulous investigation for their potential influence on tumorigenesis and cancer advancement. This review aims to offer a comprehensive exploration of the evolving landscape of glucose-lowering treatments and their implications in cancer biology. It critically evaluates experimental evidence surrounding the molecular mechanisms by which these medications may modulate oncogenic signaling pathways and reshape the tumor microenvironment (TME). Furthermore, it assesses translational research and clinical trials to gauge the practical relevance of these findings in real-world settings. Finally, it explores the potential of anti-diabetic medications as adjuncts in cancer treatment, particularly in enhancing the efficacy of chemotherapy, minimizing toxicity, and addressing resistance within the framework of immunotherapy.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, Attikon General University Hospital, University of Athens, 1 Rimini str., 12461 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Vasileios Dalopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Petros Koufopoulos
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece; (N.G.V.); (V.D.); (P.K.)
| | - Evanthia Diakoumopoulou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Medical School, Laiko General Hospital, National and Kapustina University of Athens, 11527 Athens, Greece; (D.K.); (E.R.); (M.K.); (E.D.); (N.T.)
| | - Maria Dalamaga
- Department of Biological Chemistry, National and Kapodistrian University of Athens, 75 Mikras Asias str., 11527 Athens, Greece
| |
Collapse
|
12
|
Yu X, Liu J. Effect of glucagon-like peptide-1 receptor agonists on prostate cancer: A review. Medicine (Baltimore) 2024; 103:e39956. [PMID: 39465848 PMCID: PMC11479428 DOI: 10.1097/md.0000000000039956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/16/2024] [Indexed: 10/29/2024] Open
Abstract
Glucagon-like peptide-1 receptor agonist (GLP-1RA) is widely used in the treatment of type 2 diabetes mellitus (T2DM) for its significant hypoglycemic effect, weight loss and small side effects. Some studies have shown that GLP-1RA has an inhibitory effect on prostate cancer, and its application will produce adverse effects associated with an increased or decreased risk of some tumors. GLP-1R is widely expressed by various types of cells and tissues in the human body, so GLP-1RA has attracted wide clinical attention to the occurrence, development and prognosis of tumors, which brings more new directions and hopes for the treatment of prostate cancer. This paper describes the expression of glucagon-like peptide-1 receptor (GLP-1R) in prostate cancer and the effects of glucagon-like peptide-1 receptor agonist (GLP-1RA) on prostate cancer.
Collapse
Affiliation(s)
- Xu Yu
- Linyi People’s Hospital of Shandong Second Medical University, Weifang, Shandong, China
| | - Jie Liu
- Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
13
|
Sauter ER, Agurs-Collins T. Mechanisms by Which Pharmacotherapy May Impact Cancer Risk among Individuals with Overweight and Obesity. Cancers (Basel) 2024; 16:3275. [PMID: 39409896 PMCID: PMC11475810 DOI: 10.3390/cancers16193275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Diets geared to reduce cancer risk in overweight and obese individuals focus on (1) caloric restriction (every day, some days, or most hours of each day); (2) changes in macronutrient intake; or (3) a combination of the prior two strategies. Diets generally fail because of nonadherence or due to limited sustained weight loss. This is in contrast to a diet supplemented with a weight loss medication, so long as the participant continues the medication or after bariatric surgery, in which adherence tends to be much higher. Among individuals who regain weight after surgery, weight loss medications are proving beneficial in maintaining weight loss. Both maximum and sustained weight loss are essential for all forms of effective metabolic improvement, including cancer risk reduction. The focus of this report is to assess the state of research on the consequence of pharmacotherapy use on weight loss and proposed weight loss-independent effects on subsequent cancer risk reduction, including the potential role of medication use in conjunction with metabolic (bariatric) surgery (MBS). Finally, we present Notices of Funding Opportunities (NOFOs) by the National Cancer Institute (NCI) to better understand the mechanism(s) that are driving the efficacy of pharmacotherapy in cancer risk reduction.
Collapse
Affiliation(s)
- Edward R. Sauter
- Divisions of Cancer Prevention, National Cancer Institute/National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD 20850, USA
| | - Tanya Agurs-Collins
- Cancer Control and Population Sciences, National Cancer Institute/National Institutes of Health (NIH), 9609 Medical Center Drive, Rockville, MD 20850, USA;
| |
Collapse
|
14
|
Lin Y, Xu G, Li L, Xiang J, Zhai L. Incretin-based drugs decrease the incidence of prostate cancer in type 2 diabetics: A pooling-up analysis. Medicine (Baltimore) 2024; 103:e38018. [PMID: 38758855 PMCID: PMC11098233 DOI: 10.1097/md.0000000000038018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024] Open
Abstract
Incretin-based drugs, a class of Antidiabetic medications (ADMs) used in the treatment of type 2 diabetes, may affect the incidence of prostate cancer (PCa). But real-world evidence for this possible effect is lacking. Therefore, the aim of this study is to assess the effect of incretin-based drugs on the incidence of PCa, including glucagon-like peptide-1 (GLP-1) receptor agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors. We searched PubMed, Embase, and Cochrane Library databases for eligible studies through September 2023. Two independent reviewers performed screening and data extraction. We used the Cochrane Handbook for Systematic Reviews and the Newcastle-Ottawa Scale (NOS) to assess the quality of included randomized controlled trials (RCTs) and cohort studies. We did a meta-analysis of available trial data to calculate overall risk ratios (RRs) for PCa. A total of 1238 articles were identified in our search. After screening for eligibility, 7 high-quality studies met the criteria for meta-analysis, including 2 RCTs and 5 cohort studies, with a total of 1165,738 patients. Compared with the control group, we found that incretin-based drugs reduced the relative risk of PCa by 35% (95% confidence interval (CI), 0.17-0.49; P = .0006). In subgroup analysis, the RR values for GLP-1 receptor agonists and DPP-4 inhibitors were 62% (95% CI, 0.45-0.85; P = .003) and 72% (95% CI, 0.46-1.12; P = .14), respectively. Incretin-based drugs are associated with lower incidence of prostate cancer and may have a preventive effect on prostate cancer in patients with type 2 diabetes.
Collapse
Affiliation(s)
- Yuxiang Lin
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guangyong Xu
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Liangyu Li
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyi Xiang
- Department of Infectious Diseases, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lingyun Zhai
- Department of Urology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
15
|
Sun X, Ping J, Guo X, Long J, Cai Q, Shu XO, Shu X. Drug-target Mendelian randomization revealed a significant association of genetically proxied metformin effects with increased prostate cancer risk. Mol Carcinog 2024; 63:849-858. [PMID: 38517045 PMCID: PMC11014764 DOI: 10.1002/mc.23692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/04/2024] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
The association between metformin use and risk of prostate cancer remains controversial, while data from randomized trials is lacking. We aim to evaluate the association of genetically proxied metformin effects with prostate cancer risk using a drug-target Mendelian randomization (MR) approach. Summary statistics for prostate cancer were obtained from the Prostate Cancer Association Group to Investigate Cancer Associated Alterations in the Genome Consortium (79,148 cases and 61,106 controls). Cis-expression quantitative trait loci (cis-eQTL) variants in the gene targets of metformin were identified in the GTEx project and eQTLGen consortium. We also obtained male-specific genome-wide association study data for type 2 diabetes, body mass index (BMI), total testosterone, bioavailable testosterone, estradiol, and sex hormone binding globulin for mediation analysis. Inverse-variance weighted (IVW) regression, weighted median, MR-Egger regression, and MR-PRESSO were performed in the main MR analysis. Multivariable MR was used to identify potential mediators and genetic colocalization analysis was performed to assess any shared genetic basis between two traits of interest. We found that genetically proxied metformin effects (1-SD HbA1c reduction, equivalent to 6.75 mmol/mol) were associated with higher risk of prostate cancer (odds ratioIVW [ORIVW]: 1.55, 95% confidence interval, CI: 1.23-1.96, p = 3.0 × 10-3). Two metformin targets, mitochondrial complex I (ORIVW: 1.48, 95% CI: 1.07-2.03, p = 0.016) and gamma-secretase complex (ORIVW: 2.58, 95%CI :1.47-4.55, p = 0.001), showed robust associations with prostate cancer risk, and their effects were partly mediated through BMI (16.4%) and total testosterone levels (34.3%), respectively. These results were further supported by colocalization analysis that expressions of NDUFA13 and BMI, APH1A, and total testosterone may be influenced by shared genetic factors, respectively. In summary, our study indicated that genetically proxied metformin effects may be associated with an increased risk of prostate cancer. Repurposing metformin for prostate cancer prevention in general populations is not supported by our findings.
Collapse
Affiliation(s)
- Xiaohui Sun
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
- Department of Epidemiology, Zhejiang Chinese Medical University, Zhejiang, China
| | - Jie Ping
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xingyi Guo
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jirong Long
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Qiuyin Cai
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Xiang Shu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York, USA
| |
Collapse
|
16
|
Alhajahjeh A, Al-Faouri R, Bahmad HF, Bader T, Dobbs RW, Abdulelah AA, Abou-Kheir W, Davicioni E, Lee DI, Shahait M. From Diabetes to Oncology: Glucagon-like Peptide-1 (GLP-1) Receptor Agonist's Dual Role in Prostate Cancer. Cancers (Basel) 2024; 16:1538. [PMID: 38672620 PMCID: PMC11048615 DOI: 10.3390/cancers16081538] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/09/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Glucagon-like peptide-1 (GLP-1), an incretin hormone renowned for its role in post-meal blood sugar regulation and glucose-dependent insulin secretion, has gained attention as a novel treatment for diabetes through GLP-1 receptor agonists (GLP-1-RA). Despite their efficacy, concerns have been raised regarding the potential associations between GLP-1-RA and certain malignancies, including medullary thyroid cancer. However, evidence of its association with prostate cancer (PCa) remains inconclusive. This review delves into the intricate relationship between GLP-1-RA and PCa, exploring the mechanisms through which GLP-1-Rs may impact PCa cells. We discuss the potential pathways involving cAMP, ERK, AMPK, mTOR, and P27. Furthermore, we underscore the imperative for additional research to elucidate the impact of GLP-1-RA treatment on PCa progression, patient outcomes, and potential interactions with existing therapies. Translational studies and clinical trials are crucial for a comprehensive understanding of the role of GLP-1-RA in PCa management.
Collapse
Affiliation(s)
- Abdulrahman Alhajahjeh
- School of Medicine, The University of Jordan, Amman 11190, Jordan;
- King Hussein Cancer Center (KHCC), Internal Medicine Department, Amman 11190, Jordan;
| | - Raad Al-Faouri
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02120, USA;
| | - Hisham F. Bahmad
- Arkadi M. Rywlin Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach, FL 33140, USA;
| | - Taima’ Bader
- King Hussein Cancer Center (KHCC), Internal Medicine Department, Amman 11190, Jordan;
| | - Ryan W. Dobbs
- Cook County Health and Hospitals System, Chicago, IL 60612, USA;
| | - Ahmed A. Abdulelah
- Edinburgh Medical School, The University of Edinburgh, Edinburgh EH8 9YL, UK;
| | - Wassim Abou-Kheir
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon;
| | | | - David I. Lee
- Department of Urology, University of California, Irvine, CA 92868, USA;
| | - Mohammed Shahait
- School of Medicine, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| |
Collapse
|
17
|
Sayour NV, Paál ÁM, Ameri P, Meijers WC, Minotti G, Andreadou I, Lombardo A, Camilli M, Drexel H, Grove EL, Dan GA, Ivanescu A, Semb AG, Savarese G, Dobrev D, Crea F, Kaski JC, de Boer RA, Ferdinandy P, Varga ZV. Heart failure pharmacotherapy and cancer: pathways and pre-clinical/clinical evidence. Eur Heart J 2024; 45:1224-1240. [PMID: 38441940 PMCID: PMC11023004 DOI: 10.1093/eurheartj/ehae105] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/08/2024] [Accepted: 02/07/2024] [Indexed: 04/08/2024] Open
Abstract
Heart failure (HF) patients have a significantly higher risk of new-onset cancer and cancer-associated mortality, compared to subjects free of HF. While both the prevention and treatment of new-onset HF in patients with cancer have been investigated extensively, less is known about the prevention and treatment of new-onset cancer in patients with HF, and whether and how guideline-directed medical therapy (GDMT) for HF should be modified when cancer is diagnosed in HF patients. The purpose of this review is to elaborate and discuss the effects of pillar HF pharmacotherapies, as well as digoxin and diuretics on cancer, and to identify areas for further research and novel therapeutic strategies. To this end, in this review, (i) proposed effects and mechanisms of action of guideline-directed HF drugs on cancer derived from pre-clinical data will be described, (ii) the evidence from both observational studies and randomized controlled trials on the effects of guideline-directed medical therapy on cancer incidence and cancer-related outcomes, as synthetized by meta-analyses will be reviewed, and (iii) considerations for future pre-clinical and clinical investigations will be provided.
Collapse
Affiliation(s)
- Nabil V Sayour
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
| | - Ágnes M Paál
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
| | - Pietro Ameri
- Cardiovascular Disease Unit, IRCCS Ospedale Policlinico San Martino, Italian IRCCS Cardiology Network, Genova, Italy
- Department of Internal Medicine, University of Genova, Genova, Italy
| | - Wouter C Meijers
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Giorgio Minotti
- University Campus Bio-Medico, Via Álvaro del Portillo, 21, 00128 Rome, Italy
| | - Ioanna Andreadou
- Laboratory of Pharmacology, School of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonella Lombardo
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Massimiliano Camilli
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Heinz Drexel
- Vorarlberg Institute for Vascular Investigation & Treatment (VIVIT), Carinagasse 47, A-6800 Feldkirch, Austria
| | - Erik Lerkevang Grove
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Gheorghe Andrei Dan
- Carol Davila University of Medicine and Pharmacy, Colentina University Hospital, Bucharest, Romania
- Cardiology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Andreea Ivanescu
- Carol Davila University of Medicine and Pharmacy, Colentina University Hospital, Bucharest, Romania
- Cardiology Department, Colentina Clinical Hospital, Bucharest, Romania
| | - Anne Grete Semb
- Division of Research and Innovation, REMEDY-Centre for Treatment of Rheumatic and Musculoskeletal Diseases, Diakonhjemmet Hospital, Oslo, Norway
| | - Gianluigi Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden
- Heart and Vascular and Neuro Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX, USA
| | - Filippo Crea
- Department of Cardiovascular and Pulmonary Sciences, Catholic University of the Sacred Heart, Rome, Italy
- Department of Cardiovascular Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Juan-Carlos Kaski
- Molecular and Clinical Sciences Research Institute, St. George’s University of London, London, United Kingdom
| | - Rudolf A de Boer
- Department of Cardiology, Thorax Center, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Péter Ferdinandy
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
- Pharmahungary Group, Szeged, Hungary
- MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, Hungary
| | - Zoltán V Varga
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1085 Budapest, Üllői út 26, Hungary
- HCEMM-SU Cardiometabolic Immunology Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
- MTA-SE Momentum Cardio-Oncology and Cardioimmunology Research Group, H-1089 Budapest, Nagyvárad tér 4, Hungary
| |
Collapse
|
18
|
Sung HL, Hung CY, Tung YC, Lin CC, Tsai TH, Huang KH. Comparison between sodium-glucose cotransporter 2 inhibitors and dipeptidyl peptidase 4 inhibitors on the risk of incident cancer in patients with diabetes mellitus: A real-world evidence study. Diabetes Metab Res Rev 2024; 40:e3784. [PMID: 38402457 DOI: 10.1002/dmrr.3784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/15/2023] [Accepted: 01/16/2024] [Indexed: 02/26/2024]
Abstract
AIMS Sodium-glucose cotransporter 2 inhibitors (SGLT-2is) have been demonstrated to be associated with cancer cell mechanisms. However, whether they increase the risk of cancer remains unclear. Thus, this study aimed to determine the association between SGLT-2i use and the incidence of cancer in patients with diabetes mellitus (DM) in Taiwan. MATERIALS AND METHODS This retrospective cohort study was based on the Taiwan National Health Insurance database. The study population comprised patients with DM, and those who first used SGLT-2is during 2016-2018 were assigned to the study group. Greedy propensity score matching was performed to select patients who first used dipeptidyl peptidase 4 inhibitors (DPP-4is), and these patients were assigned to the control group. A Cox proportional hazards model was used to estimate the adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for cancer risk in the study and control groups; this model was adjusted for demographic characteristics, DM severity, comorbidities and concomitant medication use. RESULTS After controlling for relevant variables, the SGLT-2i cohort (aHR = 0.90, 95% CI = 0.87-0.93) had a significantly lower risk of developing cancer than the DPP-4i cohort, particularly when the SGLT-2i was dapagliflozin (aHR = 0.91, 95% CI = 0.87-0.95) or empagliflozin (aHR = 0.90, 95% CI = 0.86-0.94). Regarding cancer type, the SGLT-2i cohort's risk of cancer was significantly lower than that of the DPP-4i cohort for leukaemia, oesophageal, colorectal, liver, pancreatic, lung, skin and bladder cancer. CONCLUSIONS SGLT-2i use was associated with a significantly lower risk of cancer than DPP-4i use.
Collapse
Affiliation(s)
- Hui-Lin Sung
- Department of Pharmacy, Puli Branch, Taichung Veteran General Hospital, Nantou, Taiwan
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Chuan-Yu Hung
- Department of Pharmacy, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Yu-Chun Tung
- Department of Pharmacy, Puli Branch, Taichung Veteran General Hospital, Nantou, Taiwan
| | - Chih-Chung Lin
- Department of Pharmacy, Puli Branch, Taichung Veteran General Hospital, Nantou, Taiwan
| | - Tung-Han Tsai
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| | - Kuang-Hua Huang
- Department of Health Services Administration, China Medical University, Taichung, Taiwan
| |
Collapse
|
19
|
Cui H, Zhang W, Zhang L, Qu Y, Xu Z, Tan Z, Yan P, Tang M, Yang C, Wang Y, Chen L, Xiao C, Zou Y, Liu Y, Zhang L, Yang Y, Yao Y, Li J, Liu Z, Yang C, Jiang X, Zhang B. Risk factors for prostate cancer: An umbrella review of prospective observational studies and mendelian randomization analyses. PLoS Med 2024; 21:e1004362. [PMID: 38489391 PMCID: PMC10980219 DOI: 10.1371/journal.pmed.1004362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 03/29/2024] [Accepted: 02/16/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND The incidence of prostate cancer is increasing in older males globally. Age, ethnicity, and family history are identified as the well-known risk factors for prostate cancer, but few modifiable factors have been firmly established. The objective of this study was to identify and evaluate various factors modifying the risk of prostate cancer reported in meta-analyses of prospective observational studies and mendelian randomization (MR) analyses. METHODS AND FINDINGS We searched PubMed, Embase, and Web of Science from the inception to January 10, 2022, updated on September 9, 2023, to identify meta-analyses and MR studies on prostate cancer. Eligibility criteria for meta-analyses were (1) meta-analyses including prospective observational studies or studies that declared outcome-free at baseline; (2) evaluating the factors of any category associated with prostate cancer incidence; and (3) providing effect estimates for further data synthesis. Similar criteria were applied to MR studies. Meta-analysis was repeated using the random-effects inverse-variance model with DerSimonian-Laird method. Quality assessment was then conducted for included meta-analyses using AMSTAR-2 tool and for MR studies using STROBE-MR and assumption evaluation. Subsequent evidence grading criteria for significant associations in meta-analyses contained sample size, P values and 95% confidence intervals, 95% prediction intervals, heterogeneity, and publication bias, assigning 4 evidence grades (convincing, highly suggestive, suggestive, or weak). Significant associations in MR studies were graded as robust, probable, suggestive, or insufficient considering P values and concordance of effect directions. Finally, 92 selected from 411 meta-analyses and 64 selected from 118 MR studies were included after excluding the overlapping and outdated studies which were published earlier and contained fewer participants or fewer instrument variables for the same exposure. In total, 123 observational associations (45 significant and 78 null) and 145 causal associations (55 significant and 90 null) were categorized into lifestyle; diet and nutrition; anthropometric indices; biomarkers; clinical variables, diseases, and treatments; and environmental factors. Concerning evidence grading on significant associations, there were 5 highly suggestive, 36 suggestive, and 4 weak associations in meta-analyses, and 10 robust, 24 probable, 4 suggestive, and 17 insufficient causal associations in MR studies. Twenty-six overlapping factors between meta-analyses and MR studies were identified, with consistent significant effects found for physical activity (PA) (occupational PA in meta: OR = 0.87, 95% CI: 0.80, 0.94; accelerator-measured PA in MR: OR = 0.49, 95% CI: 0.33, 0.72), height (meta: OR = 1.09, 95% CI: 1.06, 1.12; MR: OR = 1.07, 95% CI: 1.01, 1.15, for aggressive prostate cancer), and smoking (current smoking in meta: OR = 0.74, 95% CI: 0.68, 0.80; smoking initiation in MR: OR = 0.91, 95% CI: 0.86, 0.97). Methodological limitation is that the evidence grading criteria could be expanded by considering more indices. CONCLUSIONS In this large-scale study, we summarized the associations of various factors with prostate cancer risk and provided comparisons between observational associations by meta-analysis and genetically estimated causality by MR analyses. In the absence of convincing overlapping evidence based on the existing literature, no robust associations were identified, but some effects were observed for height, physical activity, and smoking.
Collapse
Affiliation(s)
- Huijie Cui
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenqiang Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Qu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhengxing Xu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixin Tan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Peijing Yan
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingshuang Tang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yutong Wang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chenghan Xiao
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Yanqiu Zou
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunjie Liu
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ling Zhang
- Department of Iatrical Polymer Material and Artificial Apparatus, School of Polymer Science and Engineering, Sichuan University, Chengdu, China
| | - Yanfang Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuqin Yao
- Department of Occupational and Environmental Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Jiayuan Li
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhenmi Liu
- Department of Maternal, Child and Adolescent Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Chunxia Yang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xia Jiang
- Department of Epidemiology and Biostatistics, Institute of Systems Epidemiology, and West China-PUMC C. C. Chen Institute of Health, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Nutrition and Food Hygiene, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ben Zhang
- Hainan General Hospital and Hainan Affiliated Hospital, Hainan Medical University, Haikou, China; West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Goodwin PJ, Chen BE, Gelmon KA, Whelan TJ, Ennis M, Lemieux J, Ligibel JA, Hershman DL, Mayer IA, Hobday TJ, Bliss JM, Rastogi P, Rabaglio-Poretti M, Thompson AM, Rea DW, Stos PM, Shepherd LE, Stambolic V, Parulekar WR. Effect of Metformin Versus Placebo on New Primary Cancers in Canadian Cancer Trials Group MA.32: A Secondary Analysis of a Phase III Randomized Double-Blind Trial in Early Breast Cancer. J Clin Oncol 2023; 41:5356-5362. [PMID: 37695982 PMCID: PMC10713140 DOI: 10.1200/jco.23.00296] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/28/2023] [Accepted: 07/20/2023] [Indexed: 09/13/2023] Open
Abstract
Clinical trials frequently include multiple end points that mature at different times. The initial report, typically based on the primary end point, may be published when key planned coprimary or secondary analyses are not yet available. Clinical trial updates provide an opportunity to disseminate additional results from studies, published in JCO or elsewhere, for which the primary end point has already been reported.Metformin has been associated with lower cancer risk in epidemiologic and preclinical research. In the MA.32 randomized adjuvant breast cancer trial, metformin (v placebo) did not affect invasive disease-free or overall survival. Here, we report metformin effects on the risk of new cancer. Between 2010 and 2013, 3,649 patients with breast cancer younger than 75 years without diabetes with high-risk T1-3, N0-3 M0 breast cancer (any estrogen receptor, progesterone receptor, human epidermal growth factor receptor 2) were randomly assigned to metformin 850 mg orally twice a day or placebo twice a day for 5 years. New primary invasive cancers (outside the ipsilateral breast) developing as a first event were identified. Time to events was described by the competing risks method; two-sided likelihood ratio tests adjusting for age, BMI, smoking, and alcohol intake were used to compare metformin versus placebo arms. A total of 184 patients developed new invasive cancers: 102 metformin and 82 placebo, hazard ratio (HR), 1.25; 95% CI, 0.94 to 1.68; P = .13. These included 48 contralateral invasive breast cancers (27 metformin v 21 placebo), HR, 1.29; 95% CI, 0.72 to 2.27; P = .40 and 136 new nonbreast primary cancers (75 metformin v 61 placebo), HR, 1.24; 95% CI, 0.88 to 1.74; P = .21. Metformin did not reduce the risk of new cancer development in these nondiabetic patients with breast cancer.
Collapse
Affiliation(s)
- Pamela J. Goodwin
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Bingshu E. Chen
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Karen A. Gelmon
- University of British Columbia, BC Cancer Agency, Vancouver, BC, Canada
| | | | | | | | | | - Dawn L. Hershman
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY
| | | | | | - Judith M. Bliss
- ICR-CTSU, Institute of Cancer Research (UK), London, United Kingdom
| | - Priya Rastogi
- NRG Oncology and University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Manuela Rabaglio-Poretti
- IBCSG and Department of Oncology, Bern University Hospital, University of Bern, Berne, Switzerland
| | | | - Daniel W. Rea
- Cancer Research UK Clinical Trials Unit (CRCTU), Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, UK
| | - Paul M. Stos
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Lois E. Shepherd
- Canadian Cancer Trials Group, Queen's University, Kingston, ON, Canada
| | - Vuk Stambolic
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | | |
Collapse
|
21
|
Skriver C, Friis S, Knudsen LB, Catarig AM, Clark AJ, Dehlendorff C, Mørch LS. Potential preventive properties of GLP-1 receptor agonists against prostate cancer: a nationwide cohort study. Diabetologia 2023; 66:2007-2016. [PMID: 37532786 DOI: 10.1007/s00125-023-05972-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 06/02/2023] [Indexed: 08/04/2023]
Abstract
AIMS/HYPOTHESIS Glucagon-like peptide-1 receptor agonists (GLP-1RAs) have been suggested to possess antineoplastic properties against prostate cancer. We examined the association between GLP-1RA use and prostate cancer risk in a real-world setting. METHODS We performed a nationwide register-based cohort study using an active-comparator, new-user design. We included all men in Denmark aged ≥50 years who commenced use of GLP-1RAs or basal insulin during 2007-2019. HRs and 95% CIs for incident prostate cancer were estimated using multivariable Cox regression in 'intention-to-treat' (ITT)- and 'per-protocol'-like analyses. RESULTS Among 14,206 initiators of GLP-1RAs and 21,756 initiators of basal insulin, we identified 697 patients with prostate cancer during a mean follow-up period of about 5 years from initiation of the study drugs. In comparison with basal insulin use, GLP-1RA use was associated with an adjusted HR of 0.91 (95% CI 0.73, 1.14) in the 'ITT' analysis and 0.80 (95% CI 0.64, 1.01) in the 'per-protocol' analysis. Stronger inverse associations were seen among older men (≥70 years) ('ITT' HR 0.56; 95% CI 0.38, 0.82; 'per-protocol' HR 0.47; 95% CI 0.30, 0.74), and in patients with CVD ('ITT' HR 0.75; 95% CI 0.53, 1.06; 'per-protocol' HR 0.60; 95% CI 0.39, 0.91). CONCLUSIONS/INTERPRETATION GLP-1RA use was inversely associated with prostate cancer risk compared with use of basal insulin in the 'per-protocol' analysis. Older men and patients with CVD exhibited stronger inverse associations in both the 'ITT' and 'per-protocol' analyses. Our results may indicate that GLP-1RA use could protect against prostate cancer.
Collapse
Affiliation(s)
- Charlotte Skriver
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Søren Friis
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | | | | | - Christian Dehlendorff
- Statistics and Data Analysis, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lina S Mørch
- Cancer Surveillance and Pharmacoepidemiology, Danish Cancer Society Research Center, Copenhagen, Denmark.
| |
Collapse
|
22
|
Bergengren O, Pekala KR, Matsoukas K, Fainberg J, Mungovan SF, Bratt O, Bray F, Brawley O, Luckenbaugh AN, Mucci L, Morgan TM, Carlsson SV. 2022 Update on Prostate Cancer Epidemiology and Risk Factors-A Systematic Review. Eur Urol 2023; 84:191-206. [PMID: 37202314 PMCID: PMC10851915 DOI: 10.1016/j.eururo.2023.04.021] [Citation(s) in RCA: 295] [Impact Index Per Article: 147.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/29/2023] [Accepted: 04/20/2023] [Indexed: 05/20/2023]
Abstract
CONTEXT Prostate cancer (PCa) is one of the most common cancers worldwide. Understanding the epidemiology and risk factors of the disease is paramount to improve primary and secondary prevention strategies. OBJECTIVE To systematically review and summarize the current evidence on the descriptive epidemiology, large screening studies, diagnostic techniques, and risk factors of PCa. EVIDENCE ACQUISITION PCa incidence and mortality rates for 2020 were obtained from the GLOBOCAN database of the International Agency for Research on Cancer. A systematic search was performed in July 2022 using PubMed/MEDLINE and EMBASE biomedical databases. The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines and was registered in PROSPERO (CRD42022359728). EVIDENCE SYNTHESIS Globally, PCa is the second most common cancer, with the highest incidence in North and South America, Europe, Australia, and the Caribbean. Risk factors include age, family history, and genetic predisposition. Additional factors may include smoking, diet, physical activity, specific medications, and occupational factors. As PCa screening has become more accepted, newer approaches such as magnetic resonance imaging (MRI) and biomarkers have been implemented to identify patients who are likely to harbor significant tumors. Limitations of this review include the evidence being derived from meta-analyses of mostly retrospective studies. CONCLUSIONS PCa remains the second most common cancer among men worldwide. PCa screening is gaining acceptance and will likely reduce PCa mortality at the cost of overdiagnosis and overtreatment. Increasing use of MRI and biomarkers for the detection of PCa may mitigate some of the negative consequences of screening. PATIENT SUMMARY Prostate cancer (PCa) remains the second most common cancer among men, and screening for PCa is likely to increase in the future. Improved diagnostic techniques can help reduce the number of men who need to be diagnosed and treated to save one life. Avoidable risk factors for PCa may include factors such as smoking, diet, physical activity, specific medications, and certain occupations.
Collapse
Affiliation(s)
- Oskar Bergengren
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
| | - Kelly R Pekala
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Jonathan Fainberg
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sean F Mungovan
- Westmead Private Physiotherapy Services and The Clinical Research Institute, Westmead Private Hospital, Sydney, Australia
| | - Ola Bratt
- Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Freddie Bray
- Cancer Surveillance Branch, International Agency for Research on Cancer, Lyon, France
| | - Otis Brawley
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | | | - Lorelei Mucci
- Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Todd M Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Sigrid V Carlsson
- Department of Surgery (Urology Service), Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Urology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
23
|
Tseng CH. Rosiglitazone has a null association with the risk of prostate cancer in type 2 diabetes patients. Front Endocrinol (Lausanne) 2023; 14:1185053. [PMID: 37560306 PMCID: PMC10407244 DOI: 10.3389/fendo.2023.1185053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/10/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND This study investigated the risk of prostate cancer in ever users and never users of rosiglitazone in diabetes patients in Taiwan. METHODS The nationwide database of the National Health Insurance was used to enroll male patients who had a new diagnosis of type 2 diabetes mellitus at an age ≥ 25 years from 1999 to 2005. A total of 11,495 ever users and 11,495 never users of rosiglitazone matched on propensity score were selected and they were followed up for the incidence of prostate cancer from January 1, 2006 until December 31, 2011. Cox proportional hazard model incorporated with the inverse probability of treatment weighting using the propensity score was used to estimate hazard ratios. RESULTS At the end of follow-up, incident cases of prostate cancer were found in 84 never users and 90 ever users of rosiglitazone. The calculated incidence was 173.20 per 100,000 person-years in never users and was 187.59 per 100,000 person-years in ever users. The overall hazard ratio (95% confidence intervals) for ever versus never users was 1.089 (0.808-1.466). The hazard ratios were 0.999 (0.643-1.552) for the first tertile (< 672 mg), 1.147 (0.770-1.709) for the second tertile (672-3584 mg) and 1.116 (0.735-1.695) for the third tertile (> 3584 mg) of cumulative dose. Sensitivity analyses consistently showed a null association between rosiglitazone and prostate cancer risk. CONCLUSION Rosiglitazone has a null effect on the risk of prostate cancer.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
- National Institute of Environmental Health Sciences of the National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
24
|
Ren L, Luo H, Zhao J, Huang S, Zhang J, Shao C. An integrated in vitro/in silico approach to assess the anti-androgenic potency of isobavachin. Food Chem Toxicol 2023; 176:113764. [PMID: 37019376 DOI: 10.1016/j.fct.2023.113764] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/16/2023] [Accepted: 04/01/2023] [Indexed: 04/05/2023]
Abstract
Isobavachin is a dietary flavanone with multiple biological activities. Our previous research has confirmed the estrogenicity of isobavachin, and this work aims to assess the anti-androgenic potency of isobavachin by an integrated in vitro and in silico approach. Isobavachin can limit the proliferation of prostate cancer cells by inducing a distinct G1 cell-cycle arrest. In addition, isobavachin also significantly represses the transcription of androgen receptor (AR)-downstream targets such as prostate specific antigen. Mechanistically, we demonstrated that isobavachin can disrupt the nuclear translocation of AR and promote its proteasomal degradation. The results of computer simulations showed that isobavachin can stably bind to AR, and the amino acid residue Gln711 may play a critical role in AR binding of both AR agonists and antagonists. In conclusion, this work has identified isobavachin as a novel AR antagonist.
Collapse
Affiliation(s)
- Li Ren
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Haoge Luo
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Jingqi Zhao
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Shuqing Huang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun, 130062, China.
| | - Chen Shao
- College of Basic Medical Sciences, Jilin University, Changchun, 130021, China.
| |
Collapse
|
25
|
Kabach I, Bouchmaa N, Zouaoui Z, Ennoury A, El Asri S, Laabar A, Oumeslakht L, Cacciola F, El Majdoub YO, Mondello L, Zyad A, Nhiri N, Nhiri M, Ben Mrid R. Phytochemical profile and antioxidant capacity, α-amylase and α-glucosidase inhibitory activities of Oxalis pes-caprae extracts in alloxan-induced diabetic mice. Biomed Pharmacother 2023; 160:114393. [PMID: 36774725 DOI: 10.1016/j.biopha.2023.114393] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
Diabetes and its complications are closely correlated with chronic hyperglycemia, causing severe oxidative stress and leading to glycation reaction with formation of advanced glycation end products. However, medicinal plants are still a source of inspiration for the discovery of new treatments of several diseases, including diabetes. The present study was aimed to evaluate the antioxidant and antidiabetic properties of Oxalis pes-caprae flowers extract in alloxan-induced diabetic mice. The phytochemical and antioxidant activities of both aqueous and methanolic extracts were assessed by in-vitro testing such as free radical scavenging assays (DPPH and ABTS+), ferrous ions (Fe2+) chelating activity and reducing power assay. Additionally, the detection of Amadori products and advanced glycation end products was used to determine the antiglycation potential. α-glucosidase and α-amylase inhibitory assessment was employed to determine the antidiabetic effect, while alloxan-induced diabetic mice were used to measure the in-vivo activities of antioxidants and carbohydrates enzymes. The effect of the methanolic extract on body weight and blood glucose level of extract-treated diabetic mice were also investigated. Among the tested extract, the methanolic extract was the richest in phenolic compounds which is directly related with their remarkable antioxidant, enzyme inhibitory and antiglycation activity. The oral administration of the two doses of Oxalis pes-caprae flowers (150 mg/kg and 250 mg/kg) daily for 3 weeks resulted in hypoglycemic effect compared to the reference drug, glibenclamide (10 mg/kg). Furthermore, the extract was shown to significantly increase the activities of antioxidants and glycolysis enzymes in the liver, kidney and spleen of diabetic mice, compared to diabetic control group. Therefore, Oxalis pes-caprae extract effectively exhibited hypoglycemic and antidiabetic effects as indicated by in-vitro and in-vivo studies, confirming the protective effects on hyperglycemia and oxidative damage.
Collapse
Affiliation(s)
- Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco; Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Zakia Zouaoui
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Sara El Asri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Abdelmounaim Laabar
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, University Mohammed V of Rabat, Morocco
| | - Loubna Oumeslakht
- Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco
| | - Francesco Cacciola
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy.
| | - Yassine Oulad El Majdoub
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, 98125 Messina, Italy; Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy; Department of Sciences and Technologies for Human and Environment, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Abdelmajid Zyad
- Team of Experimental Oncology and Natural Substances, Cellular and Molecular Immuno-pharmacology, Faculty of Science and Technology, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Naima Nhiri
- Institute for the Chemistry of Natural Substances, CNRS, Paris Saclay University, 91190 Gif-Sur-Yvette, France
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco
| | - Reda Ben Mrid
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Sciences and Technologies of Tangier, BP 416, 90000 Tangier, Morocco; Institute of Biological Sciences (ISSB-P), UM6P-Faculty of Medical Sciences (UM6P-FMS), Mohammed VI Polytechnic University, Ben-Guerir, Morocco.
| |
Collapse
|
26
|
Unraveling the Peculiar Features of Mitochondrial Metabolism and Dynamics in Prostate Cancer. Cancers (Basel) 2023; 15:cancers15041192. [PMID: 36831534 PMCID: PMC9953833 DOI: 10.3390/cancers15041192] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer deaths among men in Western countries. Mitochondria, the "powerhouse" of cells, undergo distinctive metabolic and structural dynamics in different types of cancer. PCa cells experience peculiar metabolic changes during their progression from normal epithelial cells to early-stage and, progressively, to late-stage cancer cells. Specifically, healthy cells display a truncated tricarboxylic acid (TCA) cycle and inefficient oxidative phosphorylation (OXPHOS) due to the high accumulation of zinc that impairs the activity of m-aconitase, the enzyme of the TCA cycle responsible for the oxidation of citrate. During the early phase of cancer development, intracellular zinc levels decrease leading to the reactivation of m-aconitase, TCA cycle and OXPHOS. PCa cells change their metabolic features again when progressing to the late stage of cancer. In particular, the Warburg effect was consistently shown to be the main metabolic feature of late-stage PCa cells. However, accumulating evidence sustains that both the TCA cycle and the OXPHOS pathway are still present and active in these cells. The androgen receptor axis as well as mutations in mitochondrial genes involved in metabolic rewiring were shown to play a key role in PCa cell metabolic reprogramming. Mitochondrial structural dynamics, such as biogenesis, fusion/fission and mitophagy, were also observed in PCa cells. In this review, we focus on the mitochondrial metabolic and structural dynamics occurring in PCa during tumor development and progression; their role as effective molecular targets for novel therapeutic strategies in PCa patients is also discussed.
Collapse
|