1
|
Jing Q, Wu Y, Li Y, Zhou C, Zhang J, Xia J, Li K, Shen Y, Yao H, Tong X, Du J, Yu L, Wang Y. Bi-targeting of thioredoxin 1 and telomerase by thiotert promotes cell death of myelodysplastic syndromes and lymphoma. Biol Direct 2025; 20:7. [PMID: 39815362 PMCID: PMC11734572 DOI: 10.1186/s13062-025-00594-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Thioredoxin1 (TRX1) and telomerase are both attractive oncology targets that are tightly implicated in tumor initiation and development. Here, we reported that the 6-dithio-2-deoxyguanosine analog thiotert exhibits an effective cytotoxic effect on myelodysplastic syndromes (MDS) cell SKM-1 and lymphoma cell U-937. Further studies confirmed that thiotert effectively disrupts cellular redox homeostasis, as evidenced by elevated intracellular reactive oxygen species (ROS) levels, increased MnSOD, accelerated DNA impairment, and activated apoptosis signal. Mechanistically, our present study revealed that thiotert treatment effectively inhibited the function of the TRX1/TRXR1 system and telomerase reverse transcriptase (TERT), rendering oxidative damage and impairment of telomeres. Meanwhile, pharmacological administration of glutathione (GSH), N-acetylcysteine (NAC), and mitoquinone (MitoQ), or genetic overexpression of TRX1 or TERT in MDS and cells could dampen the toxicity caused by thiotert. Remarkably, the in vivo mouse model of MDS demonstrated that thiotert administration exhibited greater efficacy in tumor reduction compared to the conventional chemotherapy drug cytarabine. Collectively, these results provide experimental insights into the mechanism of thiotert-induced MDS and lymphoma cell death and unveil that thiotert may be an effective and promising new drug for future MDS and lymphoma treatment.
Collapse
Affiliation(s)
- Qiangan Jing
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yunyi Wu
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yanchun Li
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Chaoting Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Junyu Zhang
- Department of Hematology, Lishui Central Hospital, Lishui, Zhejiang, 323000, China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Keyi Li
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Yuhuan Shen
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Hongfeng Yao
- Department of Clinical Laboratory, Zhuji People's Hospital of Zhejiang Province, Zhuji, Zhejiang, 311800, China
| | - Xiangmin Tong
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| | - Jing Du
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital(Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China.
- Westlake Laboratory of Life Sciences and Biomedicine of Zhejiang Province, Hangzhou, 310024, China.
| | - Ying Wang
- Department of Clinical Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Zhong M, Chen L, Tao Y, Zhao J, Chang B, Zhang F, Tu J, Cai W, Zhang B. Synthesis and evaluation of Piperine analogs as thioredoxin reductase inhibitors to cause oxidative stress-induced cancer cell apoptosis. Bioorg Chem 2023; 138:106589. [PMID: 37320912 DOI: 10.1016/j.bioorg.2023.106589] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/18/2023] [Accepted: 05/01/2023] [Indexed: 06/17/2023]
Abstract
Inhibiting thioredoxin reductase (TrxR) to disrupt the redox equilibrium and induce tumor cell apoptosis is a significant tumor therapeutic strategy. Piperine, a natural product from black pepper, has been demonstrated to suppress tumor cell proliferation by enhancing reactive oxygen species (ROS), subsequently leading to cell death. However, the development of Piperine as an active molecule is hampered by its weak cytotoxicity. To develop a compound with higher activity, we synthesized 22 Piperine analogs and evaluated their pharmacological properties. Ultimately, B5 was screened by the results of cytotoxicity and inhibition of TrxR activity. In contrast to Piperine, B5 had significant cytotoxicity with a 4-fold increase. The structure-activity relationship demonstrated that the introduction of an electron-withdrawing group into the benzene ring adjacent to the amino group, particularly in the meta-position, was positive and that shortening the olefin double bond had no appreciable impact on cytotoxicity. Further investigating the physiological activity of B5 in HeLa cells, we found that B5 selectively inhibits the activity of TrxR by binding to Sec residues on TrxR. B5 then induces cellular oxidative stress and finally leads to apoptosis. As a result, the study of B5 paved the way for further investigation into the modification and function of Piperine analogs as TrxR inhibitors.
Collapse
Affiliation(s)
- Miao Zhong
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Lingzhen Chen
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yue Tao
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jintao Zhao
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Bingbing Chang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Fang Zhang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Tu
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Wenqing Cai
- Regor Therapeutics Inc, 1206 Zhangjiang Road, Building C, Pu Dong New District, Shanghai 201210, China.
| | - Baoxin Zhang
- The State Key Laboratory of Applied Organic Chemistry and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
3
|
Song Z, Fan C, Zhao J, Wang L, Duan D, Shen T, Li X. Fluorescent Probes for Mammalian Thioredoxin Reductase: Mechanistic Analysis, Construction Strategies, and Future Perspectives. BIOSENSORS 2023; 13:811. [PMID: 37622897 PMCID: PMC10452626 DOI: 10.3390/bios13080811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/06/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023]
Abstract
The modulation of numerous signaling pathways is orchestrated by redox regulation of cellular environments. Maintaining dynamic redox homeostasis is of utmost importance for human health, given the common occurrence of altered redox status in various pathological conditions. The cardinal component of the thioredoxin system, mammalian thioredoxin reductase (TrxR) plays a vital role in supporting various physiological functions; however, its malfunction, disrupting redox balance, is intimately associated with the pathogenesis of multiple diseases. Accordingly, the dynamic monitoring of TrxR of live organisms represents a powerful direction to facilitate the comprehensive understanding and exploration of the profound significance of redox biology in cellular processes. A number of classic assays have been developed for the determination of TrxR activity in biological samples, yet their application is constrained when exploring the real-time dynamics of TrxR activity in live organisms. Fluorescent probes offer several advantages for in situ imaging and the quantification of biological targets, such as non-destructiveness, real-time analysis, and high spatiotemporal resolution. These benefits facilitate the transition from a poise to a flux understanding of cellular targets, further advancing scientific studies in related fields. This review aims to introduce the progress in the development and application of TrxR fluorescent probes in the past years, and it mainly focuses on analyzing their reaction mechanisms, construction strategies, and potential drawbacks. Finally, this study discusses the critical challenges and issues encountered during the development of selective TrxR probes and proposes future directions for their advancement. We anticipate the comprehensive analysis of the present TrxR probes will offer some glitters of enlightenment, and we also expect that this review may shed light on the design and development of novel TrxR probes.
Collapse
Affiliation(s)
- Zilong Song
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Chengwu Fan
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Jintao Zhao
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| | - Lei Wang
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China;
| | - Tong Shen
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou 730070, China; (Z.S.); (C.F.); (L.W.)
| | - Xinming Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing 210094, China; (J.Z.); (X.L.)
| |
Collapse
|
4
|
Co-Targeting of BTK and TrxR as a Therapeutic Approach to the Treatment of Lymphoma. Antioxidants (Basel) 2023; 12:antiox12020529. [PMID: 36830087 PMCID: PMC9952695 DOI: 10.3390/antiox12020529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is a haematological malignancy representing the most diagnosed non-Hodgkin's lymphoma (NHL) subtype. Despite the approved chemotherapies available in clinics, some patients still suffer from side effects and relapsed disease. Recently, studies have reported the role of the Trx system and the BCR signalling pathway in cancer development and drug resistance. In this regard, we assessed a potential link between the two systems and evaluated the effects of [Au(d2pype)2]Cl (TrxR inhibitor) and ibrutinib (BTK inhibitor) alone and in combination on the cell growth of two DLBCL lymphoma cell lines, SUDHL2 and SUDHL4. In this study, we show higher expression levels of the Trx system and BCR signalling pathway in the DLBCL patient samples compared to the healthy samples. The knockdown of TrxR using siRNA reduced BTK mRNA and protein expression. A combination treatment with [Au(d2pype)2]Cl and ibrutinib had a synergistic effect on the inhibition of lymphoma cell proliferation, the activation of apoptosis, and, depending on lymphoma cell subtype, ferroptosis. Decreased BTK expression and the cytoplasmic accumulation of p65 were observed after the combination treatment in the DLBCL cells, indicating the inhibition of the NF-κB pathway. Thus, the co-targeting of BTK and TrxR may be an effective therapeutic strategy to consider for DLBCL treatment.
Collapse
|
5
|
He YL, Zhong M, Song ZL, Shen YK, Zhao L, Fang J. Synthesis and discovery of Baylis-Hillman adducts as potent and selective thioredoxin reductase inhibitors for cancer treatment. Bioorg Med Chem 2023; 79:117169. [PMID: 36657375 DOI: 10.1016/j.bmc.2023.117169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 12/15/2022] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
The selenoprotein thioredoxin reductase (TrxR) is of paramount importance in maintaining cellular redox homeostasis, and aberrant upregulation of TrxR is frequently observed in various cancers due to their elevated oxidative stress in cells. Thus, it seems promising and feasible to target the ablation of intracellular TrxR for the treatment of cancers. We report herein the design and synthesis of a series of Baylis-Hillman adducts, and identified a typical adduct that possesses the superior cytotoxicity against HepG2 cells over other types of cancer cells. The biological investigation shows the selected typical adduct selectively targets TrxR in HepG2 cells, which thereafter results in the collapse of intracellular redox homeostasis. Further mechanistic studies reveal that the selected typical adduct arrests the cell cycle in G1/G0 phase. Importantly, the malignant metastasis of HepG2 cells is significantly restrained by the selected typical adduct. With well-defined molecular target and mechanism of action, the selected typical adduct, even other Baylis-Hillman skeleton-bearing compounds, merits further development as candidate or ancillary agent for the treatment of various cancers.
Collapse
Affiliation(s)
- Yi-Lin He
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Miao Zhong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Zi-Long Song
- Natural Medicine Research & Development Center, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Yu-Kai Shen
- Lizhi College, Xi'an Jiaotong University, No. 28, Xianning West Road, Xi'an, Shaanxi 710049, China
| | - Lanning Zhao
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
6
|
Abstract
Significance: Thioredoxin (Trx) is a powerful antioxidant that reduces protein disulfides to maintain redox stability in cells and is involved in regulating multiple redox-dependent signaling pathways. Recent Advance: The current accumulation of findings suggests that Trx participates in signaling pathways that interact with various proteins to manipulate their dynamic regulation of structure and function. These network pathways are critical for cancer pathogenesis and therapy. Promising clinical advances have been presented by most anticancer agents targeting such signaling pathways. Critical Issues: We herein link the signaling pathways regulated by the Trx system to potential cancer therapeutic opportunities, focusing on the coordination and strengths of the Trx signaling pathways in apoptosis, ferroptosis, immunomodulation, and drug resistance. We also provide a mechanistic network for the exploitation of therapeutic small molecules targeting the Trx signaling pathways. Future Directions: As research data accumulate, future complex networks of Trx-related signaling pathways will gain in detail. In-depth exploration and establishment of these signaling pathways, including Trx upstream and downstream regulatory proteins, will be critical to advancing novel cancer therapeutics. Antioxid. Redox Signal. 38, 403-424.
Collapse
Affiliation(s)
- Junmin Zhang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Xinming Li
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Zhengjia Zhao
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | | | - Jianguo Fang
- State Key Laboratory of Applied Organic Chemistry, School of Pharmacy, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China.,School of Chemistry and Chemical Engineering, Nanjing University of Science & Technology, Nanjing, China
| |
Collapse
|
7
|
Katturajan R, Nithiyanandam S, Parthasarathy M, Valsala Gopalakrishnan A, Sathiyamoorthi E, Lee J, Ramesh T, Iyer M, Prince SE, Ganesan R. Immunomodulatory Role of Thioredoxin Interacting Protein in Cancer's Impediments: Current Understanding and Therapeutic Implications. Vaccines (Basel) 2022; 10:1902. [PMID: 36366411 PMCID: PMC9699629 DOI: 10.3390/vaccines10111902] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 10/30/2023] Open
Abstract
Cancer, which killed ten million people in 2020, is expected to become the world's leading health problem and financial burden. Despite the development of effective therapeutic approaches, cancer-related deaths have increased by 25.4% in the last ten years. Current therapies promote apoptosis and oxidative stress DNA damage and inhibit inflammatory mediators and angiogenesis from providing temporary relief. Thioredoxin-binding protein (TXNIP) causes oxidative stress by inhibiting the function of the thioredoxin system. It is an important regulator of many redox-related signal transduction pathways in cells. In cancer cells, it functions as a tumor suppressor protein that inhibits cell proliferation. In addition, TXNIP levels in hemocytes increased after immune stimulation, suggesting that TXNIP plays an important role in immunity. Several studies have provided experimental evidence for the immune modulatory role of TXNIP in cancer impediments. TXNIP also has the potential to act against immune cells in cancer by mediating the JAK-STAT, MAPK, and PI3K/Akt pathways. To date, therapies targeting TXNIP in cancer are still under investigation. This review highlights the role of TXNIP in preventing cancer, as well as recent reports describing its functions in various immune cells, signaling pathways, and promoting action against cancer.
Collapse
Affiliation(s)
- Ramkumar Katturajan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Sangeetha Nithiyanandam
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Manisha Parthasarathy
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Korea
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam bin Abdulaziz University, P.O. Box 173, Al-Kharj 11942, Saudi Arabia
| | - Mahalaxmi Iyer
- Livestock Farming and Bioresource Technology, Coimbatore 641003, Tamil Nadu, India
| | - Sabina Evan Prince
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632014, Tamil Nadu, India
| | - Raja Ganesan
- Institute for Liver and Digestive Disease, College of Medicine, Hallym University, Chuncheon 24253, Korea
| |
Collapse
|
8
|
Hondal RJ. Flux versus poise: Measuring the dynamic cellular activity of the thioredoxin system with a redox probe. Redox Biol 2022; 54:102376. [PMID: 35777199 PMCID: PMC9253492 DOI: 10.1016/j.redox.2022.102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Robert J Hondal
- University of Vermont, Department of Biochemistry, 89 Beaumont Ave, Given Bldg, Room B413, Burlington, VT, 05405, USA.
| |
Collapse
|