1
|
Eswaran S, Mascarenhas R, Kabekkodu SP. The ester derivative Palmitoylcarnitine abrogates cervical cancer cell survival by enhancing lipotoxicity and mitochondrial dysfunction. Cell Commun Signal 2025; 23:213. [PMID: 40319292 PMCID: PMC12048960 DOI: 10.1186/s12964-025-02218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 04/25/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND In cervical cancer (CC), Double C2 Like Domain Beta (DOC2B) functions as a metastatic suppressor. The present study aims to determine whether ectopic expression of DOC2B causes global metabolomic changes in extracellular vesicles (EVs) and corresponds with its tumor suppressive properties. METHODS Using a retroviral method, we first ectopically expressed DOC2B in SiHa cells, which do not normally express DOC2B. RESULTS We observed that ectopically expressed DOC2B significantly altered the global metabolite profile of EVs. Metabolomics identified significant enrichment of palmitoylcarnitine (PC) in EVs upon ectopic expression of DOC2B. We identified that SiHa and HeLa cells exhibited greater cytotoxicity to PC than gingival fibroblast, HaCaT, Cal27, and MCF7. PC treatment reduced the growth, proliferation, and migration of SiHa and HeLa cells, via increasing apoptosis and decreasing S-Phase cells. PC treatment resulted in morphological alterations, decreased length and number of filopodia, and expression of proteins related to cell cycle progression, proliferation, and the epithelial-to-mesenchymal transition. Further, PC treatment caused mitochondrial morphological changes, increased mitochondrial membrane potential, and decreased mtDNA content. The decreased GSH activity, glucose consumption rate, and lactate production upon PC treatment suggest that PC can induce metabolic reprogramming in CC cells. Increased oxidative stress, calcium overload, lipid droplet accumulation, mitochondrial lipotoxicity, and mitophagy suggest that PC can cause mitochondrial dysfunction. N-acetyl cysteine (NAC) treatment reversed the cytotoxic effect of PC, via decreasing lipid peroxidation rate and increasing GSH activity. PC treatment enhanced the cytotoxic effect of cisplatin in CC. CONCLUSION DOC2B restoration or the use of PC may be employed as a novel therapeutic approach for CC.
Collapse
Affiliation(s)
- Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Roshan Mascarenhas
- Faculty of Medical Sciences, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
- Newcastle University Medicine Malaysia (NUMed), 1, Jalan Sarjana 1, Kota Ilmu, Educity@Iskandar, Iskandar Puteri, Johor, 79200, Malaysia
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Yang XY, Li F, Zhang G, Foster PS, Yang M. The role of macrophages in asthma-related fibrosis and remodelling. Pharmacol Ther 2025; 269:108820. [PMID: 39983844 DOI: 10.1016/j.pharmthera.2025.108820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/06/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Airway remodelling significantly contributes to the progressive loss of lung function and heightened symptom severity in chronic asthma. Additionally, it often persists and demonstrates reduced responsiveness to the mainstay treatments. The excessive deposition of collagen and extracellular matrix proteins leads to subepithelial fibrosis and airway remodelling, resulting in increased stiffness and decreased elasticity in the airway. Studies have emphasized the crucial role of subepithelial fibrosis in the pathogenesis of asthma. Fibrotic processes eventually cause airway narrowing, reduced lung function, and exacerbation of asthma symptoms. Macrophages play a crucial role in this process by producing pro-fibrotic cytokines, growth factors, and enzymes such as matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs). Additionally, identification of novel genetic markers has provided evidence for a strong genetic component in fibrosis within macrophage regulated fibrosis. Although macrophages contribute to the progression of airway remodelling and subepithelial fibrosis, interventions targeting macrophage-driven fibrotic changes have not yet been developed. This review synthesizes research on the intricate pathways through which macrophages contribute to subepithelial fibrosis in chronic asthma and its' pathological features. Understanding the interplay between macrophages, fibrosis, and asthma pathogenesis is essential for developing effective therapeutic strategies to manage severe asthma and improve patient outcomes.
Collapse
Affiliation(s)
- Xin Yuan Yang
- The School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Fuguang Li
- Department of Immunology & Microbiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Guojun Zhang
- Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China
| | - Paul S Foster
- Woolcock Institute of Medical Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2113, Australia
| | - Ming Yang
- Department of Immunology & Microbiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, PR China; Department of Respiratory Medicine, The First Affiliated Hospital, Zhengzhou University, Zhengzhou, Henan 450052, PR China; Deparment of Respiratory Medicine and Intensive Care Unit, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan 471009, PR China; School of Biomedical Sciences & Pharmacy, Faculty of Health. Medicine and Wellbeing & Hunter Medical Research Institute, University of Newcastle, Lot 1 Kookaburra Circuit, New Lambton Heights, NSW 2305, Australia.
| |
Collapse
|
3
|
Chen S, Zhang C, Huang H, Wang Y, Lian M, Hong G. Activation of the WNT4/ β-catenin/FOXO1 pathway by PDK1 promotes cervical cancer metastasis and EMT process. J Mol Histol 2025; 56:68. [PMID: 39779500 DOI: 10.1007/s10735-024-10342-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/16/2024] [Indexed: 01/11/2025]
Abstract
OBJECTIVE This study aimed to elucidate the role of pyruvate dehydrogenase kinase-1 (PDK1) in cervical cancer (CC) by investigating its impact on cell proliferation, migration, and epithelial-mesenchymal transition (EMT) under hypoxic conditions. METHODS PDK1-silenced CC cell lines were established using lentiviral shRNA technology. Cell migration and invasion were assessed through scratch and Transwell assays, respectively. Cellular activity and apoptosis-related protein expression levels were evaluated using MTT assays and western blotting. Transcriptome sequencing elucidates the regulatory pathways impacted by PDK1 silencing, and rescue experiments confirmed the underlying mechanisms. Xenograft models with nude mice were used to validate the effects of PDK1 silencing on CC progression. RESULTS PDK1 silencing reduced migration, invasion, and cellular activity under hypoxic conditions while promoting apoptosis. Transcriptomic analysis revealed that PDK1 suppression downregulated the WNT4/β-catenin/FOXO1 pathway, decreasing EMT-related protein expression. Mechanistically, PDK1 enhanced β-catenin stability by inhibiting its phosphorylation through AKT-mediated GSK3β inactivation, promoting EMT and anti-apoptotic gene transcription. CONCLUSIONS Targeting PDK1 may provide novel therapeutic strategies specifically for CC by modulating the WNT4/β-catenin/FOXO1 pathway and associated EMT and apoptotic processes.
Collapse
Affiliation(s)
- Shidong Chen
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Cuixia Zhang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Honglang Huang
- Xiamen Key Laboratory of Cardiac Electrophysiology, Xiamen Institute of Cardiovascular Diseases, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yuhuan Wang
- Department of Pathology, Xiamen Pathology Quality Control Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Mingjian Lian
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China
| | - Guolin Hong
- Department of Laboratory Medicine, Xiamen Key Laboratory of Genetic Testing, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, 55 Zhenhai Road, Siming District, Xiamen, 361003, Fujian, China.
| |
Collapse
|
4
|
Eswaran S, Bhat S, Upadhya D, Mascarenhas R, Kabekkodu SP. Biological functions of extracellular vesicle double C2-like domain beta in cervical cancer. Sci Rep 2025; 15:477. [PMID: 39747389 PMCID: PMC11695970 DOI: 10.1038/s41598-024-84643-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/25/2024] [Indexed: 01/04/2025] Open
Abstract
Double C-2 Like Domain Beta (DOC2B) located at 17q13.3 prevents metastasis by senescence induction and epithelial to mesenchymal transition inhibition in cervical cancer (CC). The extracellular vesicle (EV) mediated trafficking of DOC2B and its impact on tumor suppressive activity are not investigated in CC. Using a retroviral method, we first ectopically expressed DOC2B in SiHa, which do not normally express DOC2B. DOC2B-SiHa and vector-SiHa EVs were co-incubated separately with recipient cell and subjected to various cellular and biochemical experiments. For the first time, we demonstrated that DOC2B localizes to EVs, and its transfer to EV may require intracellular calcium. Co-culture of SiHa and HeLa cells with DOC2B-SiHa derived EVs induced morphological changes and suppressed their growth and migration, possibly by induction of G0/G1 to S phase arrest and anoikis. DOC2B-SiHa EVs elevated intracellular reactive oxygen species (ROS) and calcium levels and promoted lipid droplet accumulation and lipid peroxidation rate in recipient cells. DOC2B-SiHa EVs reduced active AKT1 and ERK1/2 levels and EMT marker expression and enhanced cellular senescence and cytotoxic effects of cisplatin. Re-expression of DOC2B significantly altered the global metabolite profile of EVs. Finally, we demonstrated that intracellular calcium chelation significantly reduces DOC2B localization to EVs and impacts its tumor-suppressive properties. Altogether, EV-mediated DOC2B transfer may reduce the aggressive behavior of CC cells.
Collapse
Affiliation(s)
- Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
- Manipal Center for Biotherapeutics Research, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Dinesh Upadhya
- Centre for Molecular Neurosciences, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Roshan Mascarenhas
- Newcastle University Medicine Malaysia (NUMed), 79200, Johor Bahru, Malaysia
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
5
|
He Y, Qiu Y, Yang X, Lu G, Zhao SS. Remodeling of tumor microenvironment by cellular senescence and immunosenescence in cervical cancer. Semin Cancer Biol 2025; 108:17-32. [PMID: 39586414 DOI: 10.1016/j.semcancer.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/16/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
Cellular senescence is a response to various stress signals, which is characterized by stable cell cycle arrest, alterations in cellular morphology, metabolic reprogramming and production of senescence-associated secretory phenotype (SASP). When it occurs in the immune system, it is called immunosenescence. Cervical cancer is a common gynecological malignancy, and cervical cancer screening is generally recommended before the age of 65. Elderly women (≥65 years) are more often diagnosed with advanced disease and have poorer prognosis compared to younger patients. Despite extensive research, the tumor microenvironment requires more in-depth exploration, particularly in elderly patients. In cervical cancer, senescent cells have a double-edged sword effect on tumor progression. Induction of preneoplastic cell senescence prevents tumor initiation, and several treatment approaches of cervical cancer act in part by inducing cancer cell senescence. However, senescent immune cell populations within the tumor microenvironment facilitate tumor development, recurrence, treatment resistance, etc. Amplification of beneficial effects and inhibition of aging-related pro-tumorigenic pathways contribute to improving antitumor effects. This review discusses senescent cancer and immune cells present in the tumor microenvironment of cervical cancer and how these senescent cells and their SASP remodel the tumor microenvironment, influence antitumor immunity and tumor initiation and development. Moreover, we discuss the significance of senotherapeutics that enable to eliminate senescent cells and prevent tumor progression and development through improving antitumor immunity and affecting the tumor microenvironment.
Collapse
Affiliation(s)
- Yijiang He
- Abdominal Radiation Oncology Ward II, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Xiansong Yang
- Department of Day Chemotherapy Ward, Qingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital), Qingdao, Shandong 266042, China
| | - Guimei Lu
- Department of Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Shan-Shan Zhao
- Department of Gynecology Surgery 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
6
|
Vastrad B, Vastrad C. Screening and identification of key biomarkers associated with endometriosis using bioinformatics and next-generation sequencing data analysis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2024; 25:116. [DOI: 10.1186/s43042-024-00572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/23/2024] [Indexed: 01/04/2025] Open
Abstract
Abstract
Background
Endometriosis is a common cause of endometrial-type mucosa outside the uterine cavity with symptoms such as painful periods, chronic pelvic pain, pain with intercourse and infertility. However, the early diagnosis of endometriosis is still restricted. The purpose of this investigation is to identify and validate the key biomarkers of endometriosis.
Methods
Next-generation sequencing dataset GSE243039 was obtained from the Gene Expression Omnibus database, and differentially expressed genes (DEGs) between endometriosis and normal control samples were identified. After screening of DEGs, gene ontology (GO) and REACTOME pathway enrichment analyses were performed. Furthermore, a protein–protein interaction (PPI) network was constructed and modules were analyzed using the Human Integrated Protein–Protein Interaction rEference database and Cytoscape software, and hub genes were identified. Subsequently, a network between miRNAs and hub genes, and network between TFs and hub genes were constructed using the miRNet and NetworkAnalyst tool, and possible key miRNAs and TFs were predicted. Finally, receiver operating characteristic curve analysis was used to validate the hub genes.
Results
A total of 958 DEGs, including 479 upregulated genes and 479 downregulated genes, were screened between endometriosis and normal control samples. GO and REACTOME pathway enrichment analyses of the 958 DEGs showed that they were mainly involved in multicellular organismal process, developmental process, signaling by GPCR and muscle contraction. Further analysis of the PPI network and modules identified 10 hub genes, including vcam1, snca, prkcb, adrb2, foxq1, mdfi, actbl2, prkd1, dapk1 and actc1. Possible target miRNAs, including hsa-mir-3143 and hsa-mir-2110, and target TFs, including tcf3 (transcription factor 3) and clock (clock circadian regulator), were predicted by constructing a miRNA-hub gene regulatory network and TF-hub gene regulatory network.
Conclusions
This investigation used bioinformatics techniques to explore the potential and novel biomarkers. These biomarkers might provide new ideas and methods for the early diagnosis, treatment and monitoring of endometriosis.
Collapse
|
7
|
Gan L, Wu X, Song J. Comprehensive Analysis of Crucial m 6A-Related Differentially Expressed Genes in Psoriasis. FRONT BIOSCI-LANDMRK 2024; 29:311. [PMID: 39344312 DOI: 10.31083/j.fbl2909311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/11/2024] [Accepted: 05/27/2024] [Indexed: 10/01/2024]
Abstract
BACKGROUND Psoriasis is a common, chronic, and multifactorial inflammatory cutaneous disorder that involves genetic and epigenetic factors. N6-methyladenosine methylation (m6A) is the most prevalent RNA modification implicated in various diseases; however, its role in psoriasis still needs to be further explored. We aimed to explore the mechanisms underlying the effects of m6A in psoriasis pathogenesis, prompting new therapeutic targets. METHODS Three psoriasis-related datasets, including GSE155702, GSE109248, and GSE142582, were collected. Differentially m6A methylated genes (DMGs) between psoriasis lesions of psoriasis patients and healthy skin controls were identified from the GSE155702 dataset, and corresponding Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were performed. Differentially expressed genes (DEGs) and the common DEGs between the two groups were screened from the GSE109248 and GSE142582 datasets; the expression and interactions of the m6A regulators were analyzed. The m6A levels of total RNAs and the protein expression levels of METTL3, WTAP, ALKBH5, FTO, and METTL14 in imiquimod (IMQ)-induced psoriasiform lesions were evaluated. RESULTS 66 significantly upregulated and 381 significantly downregulated m6A peaks were identified, corresponding to 414 genes which were particularly associated with cell and tissue development processes and cell cycle related items. 271 common DEGs were identified, associating with keratinocyte differentiation, epidermis development, cytokine-cytokine receptor interaction, and fatty acid metabolic processes. 15 crucial m6A related differentially expressed genes were obtained after the intersection of the DMGs and common DEGs, including NEU2, GALNT6, MTCL1, DOC2B, CAMK2N1, SNTB1, RNF150, CGNL1, CCDC102A, MEOX2, EEF2K, OBSCN, SLC46A2, CCDC85A, and DACH1. In addition, we found that m6A methylation and these five m6A regulators were both upregulated in psoriatic lesions. CONCLUSIONS It revealed that psoriasis pathophysiological processes encompass m6A epigenetic alterations, and that m6A alterations may specifically influence cell proliferation and neural regulation, and closely associated with osteoarticular involvement and metabolic syndrome in psoriasis.
Collapse
Affiliation(s)
- Lu Gan
- Department of Dermatology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Xuejingzi Wu
- Department of Dermatology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| | - Jiquan Song
- Department of Dermatology, Zhongnan Hospital of Wuhan University, 430071 Wuhan, Hubei, China
| |
Collapse
|
8
|
Srinath S, Jishnu PV, Varghese VK, Shukla V, Adiga D, Mallya S, Chakrabarty S, Sharan K, Pandey D, Chatterjee A, Kabekkodu SP. Regulation and tumor-suppressive function of the miR-379/miR-656 (C14MC) cluster in cervical cancer. Mol Oncol 2024; 18:1608-1630. [PMID: 38400534 PMCID: PMC11161731 DOI: 10.1002/1878-0261.13611] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/05/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Cervical cancer (CC) is a key contributor to cancer-related mortality in several countries. The identification of molecular markers and the underlying mechanism may help improve CC management. We studied the regulation and biological function of the chromosome 14 microRNA cluster (C14MC; miR-379/miR-656) in CC. Most C14MC members exhibited considerably lower expression in CC tissues and cell lines in The Cancer Genome Atlas (TCGA) cervical squamous cell carcinoma and endocervical adenocarcinoma patient cohorts. Bisulfite Sanger sequencing revealed hypermethylation of the C14MC promoter in CC tissues and cell lines. 5-aza-2 deoxy cytidine treatment reactivated expression of the C14MC members. We demonstrated that C14MC is a methylation-regulated miRNA cluster via artificial methylation and luciferase reporter assays. C14MC downregulation correlated with poor overall survival and may promote metastasis. C14MC activation via the lentiviral-based CRISPRa approach inhibited growth, proliferation, migration, and invasion; enhanced G2/M arrest; and induced senescence. Post-transcriptional regulatory network analysis of C14MC transcriptomic data revealed enrichment of key cancer-related pathways, such as metabolism, the cell cycle, and phosphatidylinositol 3-kinase (PI3K)-AKT signaling. Reduced cell proliferation, growth, migration, invasion, and senescence correlated with the downregulation of active AKT, MYC, and cyclin E1 (CCNE1) and the overexpression of p16, p21, and p27. We showed that C14MC miRNA activation increases reactive oxygen species (ROS) levels, intracellular Ca2+ levels, and lipid peroxidation rates, and inhibits epithelial-mesenchymal transition (EMT). C14MC targets pyruvate dehydrogenase kinase-3 (PDK3) according to the luciferase reporter assay. PDK3 is overexpressed in CC and is inversely correlated with C14MC. Both miR-494-mimic transfection and C14MC activation inhibited PDK3 expression. Reduced glucose uptake and lactate production, and upregulation of PDK3 upon C14MC activation suggest the potential role of these proteins in metabolic reprogramming. Finally, we showed that C14MC activation may inhibit EMT signaling. Thus, C14MC is a tumor-suppressive and methylation-regulated miRNA cluster in CC. Reactivation of C14MC can be useful in the management of CC.
Collapse
Grants
- Fund for Improvement of S&T Infrastructure (FIST), Department of Science and Technology, Government of India
- Karnataka Fund for Infrastructure Strengthening in Science and Technology (K-FIST), the Government of Karnataka
- MTR/2021/000182 Department of Science and Technology, Ministry of Science and Technology, India
- EMR/2016/002314 Science and Engineering Research Board (SERB)
- Manipal Academy of Higher Education, Manipal
- IA/I/22/1/506240 DBT-Wellcome Trust India Alliance
- SPARC/2019-2020/P2297/SL SPARC
- IA/I/22/1/506240 Wellcome Trust DBT India Alliance, Government of India
- Builder Grant, Department of Biotechnology, Government of India
- Technology Information Forecasting and Assessment Council (TIFAC) Core in Pharmacogenomics at MAHE, the Manipal
- Wellcome Trust
- Science and Engineering Research Board (SERB)
- Department of Science and Technology, Ministry of Science and Technology, India
- SPARC
- Technology Information Forecasting and Assessment Council (TIFAC) Core in Pharmacogenomics at MAHE, the Manipal
Collapse
Affiliation(s)
- Sriharikrishnaa Srinath
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Padacherri Vethil Jishnu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Vinay Koshy Varghese
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Sandeep Mallya
- Department of Bioinformatics, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
- Center for DNA Repair and Genome Stability (CDRGS)Manipal Academy of Higher EducationIndia
| | - Krishna Sharan
- Department of Radiotherapy OncologyKasturba Medical CollegeManipalIndia
| | - Deeksha Pandey
- Department of Obstetrics & GynecologyKasturba Medical CollegeManipalIndia
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of MedicineUniversity of OtagoDunedinNew Zealand
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life SciencesManipal Academy of Higher EducationIndia
- Center for DNA Repair and Genome Stability (CDRGS)Manipal Academy of Higher EducationIndia
| |
Collapse
|
9
|
Khan NG, Adiga D, Rai PS, Kabekkodu SP. Integrated In-Silico and In Vitro analysis to Decipher the contribution of bisphenol-A in cervical cancer. Toxicology 2024; 504:153791. [PMID: 38555994 DOI: 10.1016/j.tox.2024.153791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Bisphenol A (BPA) is a synthetic chemical widely used as a monomer for producing polycarbonate plastics. The present investigation employed an in-silico approach to identify BPA-responsive genes and comprehend the biological functions affected using in vitro studies. A Comparative Toxicogenomics Database search identified 29 BPA-responsive genes in cervical cancer (CC). Twenty-nine genes were screened using published datasets, and thirteen of those showed differential expression between normal and CC samples. Protein-Protein Interaction Networks (PPIN) analysis identified BIRC5, CASP8, CCND1, EGFR, FGFR3, MTOR, VEGFA, DOC2B, WNT5A, and YY1 as hub genes. KM-based survival analysis identified that CCND, EGFR, VEGFA, FGFR3, DOC2B, and YY1 might affect CC patient survival. SiHa and CaSki cell proliferation, migration, and invasion were all considerably accelerated by BPA exposure. Changes in cell morphology, remodeling of the actin cytoskeleton, increased number and length of filopodia, elevated intracellular reactive oxygen species and calcium, and lipid droplet accumulation were noted upon BPA exposure. BPA treatment upregulated the expression of epithelial to mesenchymal transition pathway members and enhanced the nuclear translocation of CTNNB1. We showed that the enhanced migration and nuclear translocation of CTNNB1 upon BPA exposure is a calcium-dependent process. The present study identified potential BPA-responsive genes and provided novel insights into the biological effects and mechanisms affected by BPA in CC. Our study raises concern over the use of BPA.
Collapse
Affiliation(s)
- Nadeem Ghani Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Padmalatha Satwadi Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
| |
Collapse
|
10
|
Xu Z, Guo Y, Wang L, Cui J. HECW1 restrains cervical cancer cell growth by promoting DVL1 ubiquitination and downregulating the activation of Wnt/β-catenin signaling. Exp Cell Res 2024; 435:113949. [PMID: 38266865 DOI: 10.1016/j.yexcr.2024.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
HECW1 belongs to ubiquitin ligase (E3) HECT family, and is found to be involved in tumorigenesis and tumor progression. However, the function of HECW1 in cervical cancer (CC) remains unknown. Clinical analysis showed that HECW1 is significantly decreased in CC tumor tissues. Ectopic expression of HECW1 suppressed cell growth, promoting cell cycle arrest and apoptosis in CC cells, while downregulation of HECW1 reversed these trends, impeded proliferation and accelerated cell cycle progression of CC cells. Overexpressing of HECW1 reduced mitochondrial membrane potential and the protein expression of voltage-dependent anion channel 1 (VDAC1). In addition, upregulation of HECW1 inhibited nuclear β-catenin accumulation, downregulated β-catenin/TCF/LEF-mediated transcriptional activity and the expression of downstream gene c-Myc, whereas inhibition of HECW1 received opposite results. Further results confirmed HECW1 affects the protein expression of dishevelled-1 (DVL1), a potent activator of Wnt/β-catenin, and inhibition of HECW1 inhibited the ubiquitination of DVL1, upregulating its expression. Inhibition of DVL1 restrained the promotion effect of HECW1 suppression on cell proliferation. In vivo experiments also verified that HECW1 suppression promoted the tumor formation of CC cells. Summary, we demonstrated that HECW1 inhibits CC cell proliferation and tumor formation by downregulating DVL1 induced Wnt/β-catenin signaling pathway activation.
Collapse
Affiliation(s)
- Zhen Xu
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China; Henan Gynecological Diseases (Gynecology Oncology) Clinical Research Center, Zhengzhou, Henan, China
| | - Yilin Guo
- Henan Gynecological Diseases (Gynecology Oncology) Clinical Research Center, Zhengzhou, Henan, China
| | - Lu Wang
- Henan Gynecological Diseases (Gynecology Oncology) Clinical Research Center, Zhengzhou, Henan, China
| | - Jinquan Cui
- Department of Gynecology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
11
|
Li Z, Wei R, Yao S, Meng F, Kong L. HIF-1A as a prognostic biomarker related to invasion, migration and immunosuppression of cervical cancer. Heliyon 2024; 10:e24664. [PMID: 38298716 PMCID: PMC10828096 DOI: 10.1016/j.heliyon.2024.e24664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Background The incidence of cervical cancer ranks second among malignant tumors in women, exerting a significant impact on their quality of life and overall well-being. The hypoxic microenvironment plays a pivotal role in the initiation and progression of tumorigenesis. The present study aims to investigate the fundamental genes and pathways associated with the hypoxia-inducible factor (HIF-1A) in cervical cancer, aiming to identify potential downstream targets for diagnostic and therapeutic purposes. Methods We obtained dataset GSE63514 from the Comprehensive Gene Expression Database (GEO). The dataset comprised of 24 patients in the normal group and 28 patients in the tumor group. Gene set difference analysis (GSVA) and gene set enrichment analysis (GSEA) were used to identify the genes related to HIF-1A expression and the specific signaling pathways involved.The association between HIF-1A and tumor immune infiltration was examined in the TCGA dataset. The WGCAN network was constructed to identify key genes within the blue module, and subsequent gene ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were conducted to determine the pathways and functional annotations associated with HIF-1A. The protein interaction network of the HIF-1A gene was obtained from the STRING database and visualized using Cytoscape in the meantime.The function of HIF-1A and its related gene expression were verified in vivo. Results HIF-1A was a risk factor in both univariate and multivariate Cox regression analysis of cervical cancer patients. A total of 344 genes significantly correlated with the expression of HIF-1A were identified through correlation analysis, and the genes exhibiting the strongest correlation were obtained. The major signaling pathways involved in HIF-1A encompass TNF-α/NF-κB, PI3K/AKT/MTOR, TGF-β, JAK-STAT, and various other signaling cascades. Reinforced by qRT-PCR, we identified Integrin beta-1 (ITGB1), C-C motif chemokine ligand 2 (CCL2), striatin 3 (STRN3), and endothelin-1 (EDN1) as pivotal downstream genes influenced by HIF-1A. HIF-1A is associated with immune infiltration of natural killer (NK) cells, mast cells, CD4+T cells, M0 macrophages, neutrophils, follicular helper T cells, CD8+T cells, and regulatory T cells (Treg). HIF-1A is associated with sensitivity to chemotherapy drugs. The identification of the HIF-1A pathway and its function primarily focuses on cytoplasmic translation, aerobic respiration, cellular respiration, oxidative phosphorylation, thermogenesis, among others. The results of in vivo experiments have confirmed that HIF-1A plays a crucial role in promoting the migration and invasion of cervical cancer cells. Moreover, the overexpression of HIF-1A led to an upregulation in the expressions of ITGB1, CCL2, STRN3, and EDN1. Conclusions The role of HIF-1A in cervical cancer was determined through a combination of bioinformatics analysis and experimental validation. The genes potentially implicated in the tumorigenesis mechanism of HIF-1A were identified. These findings has the potential to enhance our comprehension of the progression of cervical cancer and offer promising therapeutic targets for its clinical management.
Collapse
Affiliation(s)
- Zhenyu Li
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Ran Wei
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Shunyu Yao
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fang Meng
- Department of Oncology &Hematology, Xishan People's Hospital of Wuxi City, Wuxi, China
| | - Lingsuo Kong
- Department of Anesthesiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
12
|
Sheng N, He C, Jin X, Meng Q, Gu P, Ding S, Liu H, Xu Y. A comprehensive study of oxidative stress-related effects on the prognosis and drug therapy of cervical cancer. J Gene Med 2024; 26:e3581. [PMID: 37605936 DOI: 10.1002/jgm.3581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/18/2023] [Accepted: 07/31/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Cervical cancer (CC) is a serious global disease with poor prognoses and a significant recurrence rate in patients with advanced disease. Oxidative stress (OS) greatly influences many types of human cancers, making it crucial to understand the functional mechanisms of OS-related genes in CC. METHODS The transcriptome and clinical data of three normal samples and 306 patients with CC were obtained from The Cancer Genome Atlas dataset. The GSE44001 dataset was acquired from the Gene Expression Omnibus database. OS-related subtypes in the cohort with CC were identified using unsupervised hierarchical clustering, univariate Cox analysis, gene set enrichment analysis (GSEA), and least absolute shrinkage and selection operator regression analysis. Additionally, molecular pathways that differ across subtypes were determined and OS-related genes linked to the prognosis of patients of CC were determined. Finally, a clinical prognostic gene signature was developed and validated. The relative infiltration level of immune cell subpopulations in different risk groups and subtypes was evaluated using the cell-type identification by estimating relative subsets of RNA transcripts (CIBERPORT) algorithm and single-sample GSEA (ssGSEA) techniques. RESULTS The present study established two distinct OS subtypes (OS clusters A and B). Analysis using ssGSEA and CIBERSPORT revealed that OS cluster B exhibited a significant level of immune infiltration. A clinical prognostic gene signature was established using OS-related characteristic genes identified by examining the differentially expressed genes across both subtypes. Furthermore, patients with CC were grouped into high- and low-risk groups, with the low-risk group showing higher survival rates. Additionally, these individuals exhibited significant advantages in terms of survival and immunotherapy. Receiver operating characteristic curve analysis demonstrated the higher predictive value of the clinical prognostic gene signature. The outcomes of the validation group depicted congruence with those recorded in the training group. CONCLUSIONS A new model was constructed based on eight OS-related characteristic genes to aid the prediction of the survival rates of individuals with CC. The present study contributes to the existing literature on the mechanisms of OS genes in CC and offers a fresh perspective for future advancements in immunotherapy for such individuals.
Collapse
Affiliation(s)
- Nan Sheng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Chenyun He
- Department of Gynecology Oncology, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Xiaoxia Jin
- Department of Pathology, Nantong Tumor Hospital, Tumor Hospital Affiliated to Nantong University, Nantong, China
| | - Qi Meng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Panyun Gu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Shu Ding
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| | - Hong Liu
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yunzhao Xu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
13
|
Lou YX, Gu J, Zhu L, Sun SQ, Hao XL, Chen JP, Han F, Wang DD, Jiang X, Liu JY. TC2N Promotes Cell Proliferation and Metastasis in Hepatocellular Carcinoma by Targeting the Wnt/β-Catenin Signaling Pathway. J Transl Med 2023; 103:100260. [PMID: 37839635 DOI: 10.1016/j.labinv.2023.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 09/14/2023] [Accepted: 10/07/2023] [Indexed: 10/17/2023] Open
Abstract
Hepatocellular carcinoma (HCC), one of the most prevalent types of cancer worldwide, has an exceedingly poor prognosis. Tandem C2 domain nuclear protein (TC2N) has been implicated in tumorigenesis and serves as an oncogene or tumor suppressor in different types of cancer. Here, we explore the possible regulatory activities and molecular mechanisms of TC2N in HCC progression. However, TC2N expression was significantly upregulated in HCC tissues and hepatoma cell lines, and this upregulation was positively correlated with tumor progression in HCC patients. The ectopic overexpression of TC2N accelerated the proliferation, migration, and invasion of HCC cells, whereas its knockdown showed the opposite effects. Bioinformatics analysis showed that TC2N participates in the regulation of the Wnt/β-catenin signaling pathway. Mechanistically, TC2N activated the Wnt/β-catenin signaling pathway by regulating the expression levels of β-catenin and its downstream targets CyclinD1, MMP7, c-Myc, c-Jun, AXIN2, and glutamine synthase. Furthermore, the deletion of β-catenin effectively neutralized the regulation of TC2N in HCC proliferation and metastasis. Overall, this study showed that TC2N promotes HCC proliferation and metastasis by activating the Wnt/β-catenin signaling pathway, indicating that TC2N might be a potential molecular target for the treatment of HCC.
Collapse
Affiliation(s)
- Yi-Xia Lou
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jing Gu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lei Zhu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Sheng-Qi Sun
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xiang-Lin Hao
- Department of Pathology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jian-Ping Chen
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Fei Han
- Department of Toxicology, School of Public Health, Chongqing Medical University, Chongqing, China
| | - Dan-Dan Wang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China; Laboratory of Cell Signal Transduction, Henan Provincial Engineering Centre for Tumor Molecular Medicine, School of Basic Medicine, Henan University, Kaifeng, China
| | - Xiao Jiang
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jin-Yi Liu
- Institute of Toxicology, College of Preventive Medicine, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
14
|
Adiga D, Bhat S, Shukla V, Shah HV, Kuthethur R, Chakrabarty S, Kabekkodu SP. Double C-2 like domain beta (DOC2B) induces calcium dependent oxidative stress to promote lipotoxicity and mitochondrial dysfunction for its tumor suppressive function. Free Radic Biol Med 2023; 201:1-13. [PMID: 36913987 DOI: 10.1016/j.freeradbiomed.2023.03.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/07/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
Mitochondria are biosynthetic and bioenergetic organelles that regulate many biological processes, including metabolism, oxidative stress, and cell death. Cervical cancer (CC) cells show impairments in mitochondrial structure and function and are linked with cancer progression. DOC2B is a tumor suppressor with anti-proliferative, anti-migratory, anti-invasive, and anti-metastatic function in CC. For the first time, we demonstrated the role of the DOC2B-mitochondrial axis with tumor growth regulatory functions in CC. We used DOC2B overexpression and knockdown model systems to show that DOC2B is localized to mitochondria and induces Ca2+-mediated lipotoxicity. DOC2B expression induced mitochondrial morphological changes with the subsequent reduction in mitochondrial DNA copy number, mitochondrial mass, and mitochondrial membrane potential. Intracellular and mitochondrial Ca2+, intracellular O.-2, and ATP levels were substantially elevated in the presence of DOC2B. DOC2B manipulation reduced glucose uptake, lactate production, and mitochondrial complex-IV activity. The presence of DOC2B significantly reduced the proteins associated with mitochondrial structure and biogenesis with the concomitant activation of AMPK signaling. Augmented lipid peroxidation (LPO) in the presence of DOC2B was a Ca2+-dependent process. Our findings demonstrated that DOC2B promotes lipid accumulation, oxidative stress, and LPO through intracellular Ca2+ overload, which may contribute to mitochondrial dysfunction and tumor-suppressive properties of DOC2B. We propose that the DOC2B-Ca2+-oxidative stress-LPO-mitochondrial axis could be targeted for confining CC. Further, the induction of lipotoxicity in tumor cells by activating DOC2B could serve as a novel therapeutic approach in CC.
Collapse
Affiliation(s)
- Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Samatha Bhat
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vaibhav Shukla
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Henil Vinit Shah
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Raviprasad Kuthethur
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
15
|
Khan NG, Eswaran S, Adiga D, Sriharikrishnaa S, Chakrabarty S, Rai PS, Kabekkodu SP. Integrated bioinformatic analysis to understand the association between phthalate exposure and breast cancer progression. Toxicol Appl Pharmacol 2022; 457:116296. [PMID: 36328110 DOI: 10.1016/j.taap.2022.116296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
Phthalates have been extensively used as plasticizers while manufacturing plastic-based consumer products. Estradiol mimicking properties and association studies suggest phthalates may contribute to breast cancer (BC). We performed an in-silico analysis and functional studies to understand the association between phthalate exposure and BC progression. Search for phthalate-responsive genes using the comparative toxicogenomics database identified 20 genes as commonly altered in response to multiple phthalates exposure. Of the 20 genes, 12 were significantly differentially expressed between normal and BC samples. In BC samples, 9 out of 20 genes showed a negative correlation between promoter methylation and its expression. AHR, BAX, BCL2, CAT, ESR2, IL6, and PTGS2 expression differed significantly between metastatic and non-metastatic BC samples. Gene set enrichment analysis identified metabolism, ATP-binding cassette transporters, insulin signaling, and type II diabetes as highly enriched pathways. The diagnostic assessment based on 20 genes expression suggested a sensitivity and a specificity >0.91. The aberrantly expressed phthalate interactive gene influenced the overall survival of BC patients. Drug-gene interaction analysis identified 14 genes and 523 candidate drugs, including 19 BC treatment-approved drugs. Di(2-ethylhexyl) phthlate (DEHP) exposure increased the growth, proliferation, and migration of MCF-7 and MDA-MB-231 cells in-vitro. DEHP exposure induced morphological changes, actin cytoskeletal remodeling, increased ROS content, reduced basal level lipid peroxidation, and induced epithelial to mesenchymal transition (EMT). The present approach can help to explore the potentially damaging effects of environmental agents on cancer risk and understand the underlined pathways and molecular mechanisms.
Collapse
Affiliation(s)
- Nadeem G Khan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sangavi Eswaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Divya Adiga
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Sriharikrishnaa
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sanjiban Chakrabarty
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre for DNA repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Padmalatha S Rai
- Department of Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India; Centre for DNA repair and Genome Stability (CDRGS), Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|