1
|
Zhang J, Wei J, Lai W, Sun J, Bai Y, Cao H, Guo J, Su Z. Focus on Glucagon-like Peptide-1 Target: Drugs Approved or Designed to Treat Obesity. Int J Mol Sci 2025; 26:1651. [PMID: 40004115 PMCID: PMC11855704 DOI: 10.3390/ijms26041651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity is closely related to metabolic diseases, which brings a heavy burden to the health care system. It is urgent to formulate and implement effective treatment strategies. Glucagon-like peptide-1 (GLP-1) is a protein with seven transmembrane domains connected by type B and G proteins, which is widely distributed and expressed in many organs and tissues. GLP-1 analogues can reduce weight, lower blood pressure, and improve blood lipids. Obesity, diabetes, cardiovascular diseases, and other diseases have caused scientists' research and development boom. Among them, GLP-1R agonist drugs have developed rapidly in weight-loss drugs. In this paper, based on the target of GLP-1, the mechanism of action of GLP-1 in obesity treatment was deeply studied, and the drugs approved and designed for obesity treatment based on GLP-1 target were elaborated in detail. Innovatively put forward and summarized the double and triple GLP-1 targeted drugs in the treatment of obesity with better effects and less toxic and side effects, and this can make full use of multi-target methods to treat other diseases in the future. Finally, it is pointed out that intestinal flora and microorganisms have many benefits in the treatment of obesity, and fecal bacteria transplantation may be a potential treatment for obesity with less harm to the body. This article provides some promising methods to treat obesity, which have strong practical value.
Collapse
Affiliation(s)
- Jiahua Zhang
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jintao Wei
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Weiwen Lai
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiawei Sun
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yan Bai
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, China;
| | - Hua Cao
- School of Chemistry and Chemical Engineering, Guangdong Pharmaceutical University, Zhongshan 528458, China;
| | - Jiao Guo
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zhengquan Su
- Guangdong Engineering Research Center of Natural Products and New Drugs, Guangdong Provincial University Engineering Technology Research Center of Natural Products and Drugs, Guangdong Pharmaceutical University, Guangzhou 510006, China; (J.Z.); (J.W.); (W.L.); (J.S.)
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Key Laboratory of Glucolipid Metabolic Disorder, Ministry of Education of China, Guangdong TCM Key Laboratory for Metabolic Diseases, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
2
|
Luo J, Luo J, Wu Y, Fu Y, Fang Z, Han B, Du B, Yang Z, Xu B. Anti-Obesity Effects of Adzuki Bean Saponins in Improving Lipid Metabolism Through Reducing Oxidative Stress and Alleviating Mitochondrial Abnormality by Activating the PI3K/Akt/GSK3β/β-Catenin Signaling Pathway. Antioxidants (Basel) 2024; 13:1380. [PMID: 39594522 PMCID: PMC11591031 DOI: 10.3390/antiox13111380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 11/28/2024] Open
Abstract
Obesity is a chronic and complex disease defined by the excessive deposition of fat and is highly associated with oxidative stress. Adzuki bean saponins (ABS) showed anti-obesity activity in our previous in vivo study; however, the active saponins of adzuki beans and potential mechanisms are still unclear. This research aims to elucidate the anti-obesity effects of ABS in improving lipid metabolism and oxidative stress, exploring the effective ingredients and potential molecular mechanisms through UHPLC-QE-MS analysis, network pharmacology, bioinformatics, and in vitro experiments both in the 3T3-L1 cell line and HepG2 cell line. The results indicate that ABS can improve intracellular lipid accumulation, adipogenesis, oxidative stress, and mitochondrial damage caused by lipid accumulation including ROS generation, abnormal mitochondrial membrane potential, and ATP disorder. Fifteen saponin components were identified with the UHPLC-QE-MS analysis. The network pharmacology and bioinformatics analyses indicated that the PI3K/Akt signaling pathway is associated with the bioactive effect of ABS. Through Western blotting and immunofluorescence analysis, the anti-obesity effect of ABS is achieved through regulation of the PI3K/Akt/GSK3β/β-catenin signaling pathway and activation of downstream transcription factor c-Myc in the lipid accumulation cell model, and regulation of β-catenin signaling and inhibition of downstream transcription factor C/EBPα in the adipocyte cell model. These results illustrate the biological activity of ABS in improving fat metabolism and oxidative stress by restoring mitochondrial function through β-catenin signaling, the PI3K/Akt/GSK3β/β-catenin signaling pathway, laying the foundation for its further development.
Collapse
Affiliation(s)
- Jinhai Luo
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (J.L.); (Y.W.); (B.H.)
| | - Jincan Luo
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.L.); (Z.F.)
- Guangzhou National Laboratory, International Bio-Island, Guangzhou 510005, China;
| | - Yingzi Wu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (J.L.); (Y.W.); (B.H.)
| | - Yu Fu
- Guangzhou National Laboratory, International Bio-Island, Guangzhou 510005, China;
| | - Zhonghao Fang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.L.); (Z.F.)
- Guangzhou National Laboratory, International Bio-Island, Guangzhou 510005, China;
| | - Bincheng Han
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (J.L.); (Y.W.); (B.H.)
| | - Bin Du
- Hebei Key Laboratory of Natural Products Activity Components and Function, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China;
| | - Zifeng Yang
- National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China; (J.L.); (Z.F.)
- Guangzhou National Laboratory, International Bio-Island, Guangzhou 510005, China;
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, Guangzhou 511436, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR 999078, China
| | - Baojun Xu
- Guangdong Provincial Key Laboratory IRADS and Department of Life Sciences, BNU-HKBU United International College, Zhuhai 519087, China; (J.L.); (Y.W.); (B.H.)
| |
Collapse
|
3
|
Du S, Zhou N, Zheng W, Zhu X, Ling R, Zhou W, Li X. Prepuberty is a window period for curcumin to prevent obesity in postnatal overfed rats. Pediatr Res 2024; 96:104-114. [PMID: 38548969 DOI: 10.1038/s41390-024-03154-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 07/20/2024]
Abstract
BACKGROUND Overnutrition in early life increases the risk of obesity and metabolic diseases. We investigated the effects and the window period of a curcumin (CUR) diet on postnatal overfed rats. METHODS Male rats aged 3 days were randomly divided into normal litters (NL, 10 pups/litter) and small litters (SL, 3 pups/litter). After weaning (Week 3, W3), NL rats were fed a normal diet (NL) and SL rats were fed a normal diet (SL) or 2% CUR diet from weaning (W3) (SL-CURW13), beginning of puberty (W6) (SL-CURW16), or end of puberty (W8) (SL-CURW18) for 10 weeks. RESULTS Body weight, glucose intolerance and hyperlipidemia in the SL rats were higher than in the NL rats, especially after puberty. After the CUR intervention, SL-CURW13 and SL-CURW16 rats showed lower body weight gain, adipose tissue weight and mRNA level of C/EBPα in SAT, along with higher mRNA levels of β-catenin. There was no difference between SL and SL-CURW18 rats. Glucose tolerance, serum lipids and hepatic lipids recovered to normal in the SL-CURW13 rats, but only partially in the SL-CURW16 and SL-CURW18 rats. CONCLUSION Prepuberty is a window period for CUR intervention to improve programmed outcomes in postnatal overfed rats. IMPACT Overnutrition during the first 1000 days of life has persistent negative effects on metabolism. Strategies should be taken to prevent overnutrition in early life to reduce the risk of obesity and metabolic disease in later life. A small-litter rat model was utilized to simulate early-life overnutrition in humans. We investigated the different effects and critical period for curcumin intervention on postnatal overfed rats. Dietary curcumin intervention before puberty could effectively transform nutritional programming to reduce obesity and metabolic disorders caused by early-life overnutrition, and an earlier intervention might predict a better outcome.
Collapse
Affiliation(s)
- Susu Du
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Nan Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Wen Zheng
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xiaolei Zhu
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Ru Ling
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Wei Zhou
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China
| | - Xiaonan Li
- Department of Child Health Care, Children's Hospital of Nanjing Medical University, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
4
|
Mamun MAA, Rakib A, Mandal M, Kumar S, Singla B, Singh UP. Polyphenols: Role in Modulating Immune Function and Obesity. Biomolecules 2024; 14:221. [PMID: 38397458 PMCID: PMC10887194 DOI: 10.3390/biom14020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/02/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Polyphenols, long-used components of medicinal plants, have drawn great interest in recent years as potential therapeutic agents because of their safety, efficacy, and wide range of biological effects. Approximately 75% of the world's population still use plant-based medicinal compounds, indicating the ongoing significance of phytochemicals for human health. This study emphasizes the growing body of research investigating the anti-adipogenic and anti-obesity functions of polyphenols. The functions of polyphenols, including phenylpropanoids, flavonoids, terpenoids, alkaloids, glycosides, and phenolic acids, are distinct due to changes in chemical diversity and structural characteristics. This review methodically investigates the mechanisms by which naturally occurring polyphenols mediate obesity and metabolic function in immunomodulation. To this end, hormonal control of hunger has the potential to inhibit pro-obesity enzymes such as pancreatic lipase, the promotion of energy expenditure, and the modulation of adipocytokine production. Specifically, polyphenols affect insulin, a hormone that is essential for regulating blood sugar, and they also play a role, in part, in a complex web of factors that affect the progression of obesity. This review also explores the immunomodulatory properties of polyphenols, providing insight into their ability to improve immune function and the effects of polyphenols on gut health, improving the number of commensal bacteria, cytokine production suppression, and immune cell mediation, including natural killer cells and macrophages. Taken together, continuous studies are required to understand the prudent and precise mechanisms underlying polyphenols' therapeutic potential in obesity and immunomodulation. In the interim, this review emphasizes a holistic approach to health and promotes the consumption of a wide range of foods and drinks high in polyphenols. This review lays the groundwork for future developments, indicating that the components of polyphenols and their derivatives may provide the answer to urgent worldwide health issues. This compilation of the body of knowledge paves the way for future discoveries in the global treatment of pressing health concerns in obesity and metabolic diseases.
Collapse
Affiliation(s)
| | | | | | | | | | - Udai P. Singh
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, 881 Madison Avenue, Memphis, TN 38163, USA; (M.A.A.M.); (A.R.); (M.M.); (S.K.); (B.S.)
| |
Collapse
|
5
|
Bu S, Xiong A, Yang Z, Aissa-Brahim F, Chen Y, Zhang Y, Zhou X, Cao F. Bilobalide Induces Apoptosis in 3T3-L1 Mature Adipocytes through ROS-Mediated Mitochondria Pathway. Molecules 2023; 28:6410. [PMID: 37687239 PMCID: PMC10489643 DOI: 10.3390/molecules28176410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Bilobalide exhibits numerous beneficial bioactivities, including neuroprotective, anti-inflammatory, and antioxidant activity. Our previous study demonstrated that bilobalide inhibits adipogenesis and promotes lipolysis. The dose-dependent cytotoxicity was found to be specific to the mature adipocytes only, indicating the potential for regulating apoptosis in them. Herein, we aimed to investigate the apoptotic effects of bilobalide on 3T3-L1 mature adipocytes and elucidate the underlying mechanisms thereof. Flow cytometry analysis (FACS) revealed the pro-apoptotic effects of bilobalide on these cells. Bilobalide induced early apoptosis by reducing the mitochondrial membrane potential (MMP). DNA fragmentation was confirmed using TUNEL staining. Additionally, bilobalide increased the intracellular reactive oxygen species (ROS) levels and activities of Caspases 3/9. Pre-treatment with NAC (an ROS scavenger) confirmed the role of ROS in inducing apoptosis. Moreover, bilobalide up- and down-regulated the expression of Bax and Bcl-2, respectively, at the mRNA and protein expression levels; upregulated the Bax/Bcl-2 ratio; triggered the release of cytochrome c from the mitochondria; and increased the protein expression of cleaved Caspase 3, cleaved Caspase 9, and PARP cleavage. These results support the conclusion that bilobalide induces apoptosis in mature 3T3-L1 adipocytes through the ROS-mediated mitochondrial pathway, and offers potential novel treatment for obesity.
Collapse
Affiliation(s)
- Su Bu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Anran Xiong
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Zhiying Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Faycal Aissa-Brahim
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Ying Chen
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; (A.X.); (Z.Y.); (F.A.-B.); (Y.C.)
| | - Yichun Zhang
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
| | - Xunyong Zhou
- HC Enzyme (Shenzhen) Biotech Co., Ltd., Shenzhen 518001, China;
| | - Fuliang Cao
- College of Forestry, Nanjing Forestry University, Nanjing 210037, China;
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Lathigara D, Kaushal D, Wilson RB. Molecular Mechanisms of Western Diet-Induced Obesity and Obesity-Related Carcinogenesis-A Narrative Review. Metabolites 2023; 13:metabo13050675. [PMID: 37233716 DOI: 10.3390/metabo13050675] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
The present study aims to provide a narrative review of the molecular mechanisms of Western diet-induced obesity and obesity-related carcinogenesis. A literature search of the Cochrane Library, Embase and Pubmed databases, Google Scholar and the grey literature was conducted. Most of the molecular mechanisms that induce obesity are also involved in the twelve Hallmarks of Cancer, with the fundamental process being the consumption of a highly processed, energy-dense diet and the deposition of fat in white adipose tissue and the liver. The generation of crown-like structures, with macrophages surrounding senescent or necrotic adipocytes or hepatocytes, leads to a perpetual state of chronic inflammation, oxidative stress, hyperinsulinaemia, aromatase activity, activation of oncogenic pathways and loss of normal homeostasis. Metabolic reprogramming, epithelial mesenchymal transition, HIF-1α signalling, angiogenesis and loss of normal host immune-surveillance are particularly important. Obesity-associated carcinogenesis is closely related to metabolic syndrome, hypoxia, visceral adipose tissue dysfunction, oestrogen synthesis and detrimental cytokine, adipokine and exosomal miRNA release. This is particularly important in the pathogenesis of oestrogen-sensitive cancers, including breast, endometrial, ovarian and thyroid cancer, but also 'non-hormonal' obesity-associated cancers such as cardio-oesophageal, colorectal, renal, pancreatic, gallbladder and hepatocellular adenocarcinoma. Effective weight loss interventions may improve the future incidence of overall and obesity-associated cancer.
Collapse
Affiliation(s)
- Dhruvi Lathigara
- Department General Surgery, UWS, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Devesh Kaushal
- Department General Surgery, UWS, Campbelltown Hospital, Campbelltown, NSW 2560, Australia
| | - Robert Beaumont Wilson
- Department Upper Gastrointestinal Surgery, UNSW, Liverpool Hospital, Liverpool, NSW 2170, Australia
| |
Collapse
|
7
|
Wilson RB, Lathigara D, Kaushal D. Systematic Review and Meta-Analysis of the Impact of Bariatric Surgery on Future Cancer Risk. Int J Mol Sci 2023; 24:ijms24076192. [PMID: 37047163 PMCID: PMC10094585 DOI: 10.3390/ijms24076192] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/29/2023] Open
Abstract
The study aimed to perform a systematic review and meta-analysis of the evidence for the prevention of future cancers following bariatric surgery. A systematic literature search of the Cochrane Library, Embase, Scopus, Web of Science and PubMed databases (2007–2023), Google Scholar and grey literature was conducted. A meta-analysis was performed using the inverse variance method and random effects model. Thirty-two studies involving patients with obesity who received bariatric surgery and control patients who were managed with conventional treatment were included. The meta-analysis suggested bariatric surgery was associated with a reduced overall incidence of cancer (RR 0.62, 95% CI 0.46–0.84, p < 0.002), obesity-related cancer (RR 0.59, 95% CI 0.39–0.90, p = 0.01) and cancer-associated mortality (RR 0.51, 95% CI 0.42–0.62, p < 0.00001). In specific cancers, bariatric surgery was associated with reduction in the future incidence of hepatocellular carcinoma (RR 0.35, 95% CI 0.22–0.55, p < 0.00001), colorectal cancer (RR 0.63, CI 0.50–0.81, p = 0.0002), pancreatic cancer (RR 0.52, 95% CI 0.29–0.93, p = 0.03) and gallbladder cancer (RR 0.41, 95% CI 0.18–0.96, p = 0.04), as well as female specific cancers, including breast cancer (RR 0.56, 95% CI 0.44–0.71, p < 0.00001), endometrial cancer (RR 0.38, 95% CI 0.26–0.55, p < 0.00001) and ovarian cancer (RR 0.45, 95% CI 0.31–0.64, p < 0.0001). There was no significant reduction in the incidence of oesophageal, gastric, thyroid, kidney, prostate cancer or multiple myeloma after bariatric surgery as compared to patients with morbid obesity who did not have bariatric surgery. Obesity-associated carcinogenesis is closely related to metabolic syndrome; visceral adipose dysfunction; aromatase activity and detrimental cytokine, adipokine and exosomal miRNA release. Bariatric surgery results in long-term weight loss in morbidly obese patients and improves metabolic syndrome. Bariatric surgery may decrease future overall cancer incidence and mortality, including the incidence of seven obesity-related cancers.
Collapse
|
8
|
Karadeniz F, Oh JH, Jang MS, Seo Y, Kong CS. Libanoridin Isolated from Corydalis heterocarpa Inhibits Adipogenic Differentiation of Bone Marrow-Derived Mesenchymal Stromal Cells. Int J Mol Sci 2022; 24:ijms24010254. [PMID: 36613696 PMCID: PMC9820566 DOI: 10.3390/ijms24010254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/15/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Bone marrow adiposity is a complication in osteoporotic patients. It is a result of the imbalance between adipogenic and osteogenic differentiation of bone marrow cells. Phytochemicals can alleviate osteoporotic complications by hindering bone loss and decreasing bone marrow adiposity. Corydalis heterocarpa is a biennial halophyte with reported bioactivities, and it is a source of different coumarin derivatives. Libanoridin is a coumarin isolated from C. heterocarpa, and the effect of libanoridin on adipogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) was evaluated in the present study. Cells were induced to undergo adipogenesis, and their intracellular lipid accumulation and expression of adipogenic markers were observed under libanoridin treatment. Results showed that 10 μM libanoridin-treated adipocytes accumulated 44.94% less lipid compared to untreated adipocytes. In addition, mRNA levels of PPARγ, C/EBPα, and SREBP1c were dose-dependently suppressed with libanoridin treatment, whereas only protein levels of PPARγ were decreased in the presence of libanoridin. Fluorescence staining of adipocytes also revealed that cells treated with 10 μM libanoridin expressed less PPARγ compared to untreated adipocytes. Protein levels of perilipin and leptin, markers of mature adipocytes, were also suppressed in adipocytes treated with 10 μM libanoridin. Analysis of MAPK phosphorylation levels showed that treatment with libanoridin inhibited the activation of p38 and JNK MAPKs observed by decreased levels of phosphorylated p38 and JNK protein. It was suggested that libanoridin inhibited adipogenic differentiation of hBM-MSCs via suppressing MAPK-mediated PPARγ signaling. Future studies revealing the anti-adipogenic effects of libanoridin in vivo and elucidating its action mechanism will pave the way for libanoridin to be utilized as a nutraceutical with anti-osteoporotic properties.
Collapse
Affiliation(s)
- Fatih Karadeniz
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
| | - Jung Hwan Oh
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Nutritional Education, Graduate School of Education, Silla University, Busan 46958, Republic of Korea
| | - Mi Soon Jang
- Food Safety and Processing Research Division, National Institute of Fisheries Science, Busan 46083, Republic of Korea
| | - Youngwan Seo
- Division of Convergence on Marine Science, College of Ocean Science and Technology, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Chang-Suk Kong
- Marine Biotechnology Center for Pharmaceuticals and Foods, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Department of Food and Nutrition, College of Medical and Life Sciences, Silla University, Busan 46958, Republic of Korea
- Correspondence: ; Tel.: +82-51-999-5429
| |
Collapse
|