1
|
Obalola AA, Abrahamse H, Dhilip Kumar SS. Enhanced therapeutic precision using dual drug-loaded nanomaterials for targeted cancer photodynamic therapy. Biomed Pharmacother 2025; 184:117909. [PMID: 39938348 DOI: 10.1016/j.biopha.2025.117909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/21/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025] Open
Abstract
Combination therapy has expanded significantly, including dual drug-loaded nanomaterials in drug delivery systems. Cancer therapy can be developed by targeting cancer cells and lessening the adverse consequences of anticancer drugs, which are just two of the numerous intriguing possibilities in this research field. Dual-drug delivery nanosystems that utilize nanotechnology to combine dual-drug administration may overcome the limitations of free drugs, the properties of nanomaterials, and the combined action of two drugs work together to overcome several drug-resistant systems within cancerous cells. It is essential to design dual-drug delivery nanosystems that use various multidrug-resistant techniques to overcome drug resistance mechanisms and enhance the effectiveness of clinical antitumor therapy. In this study, we discuss the use of photosensitizers in cancer photodynamic therapy, nanomaterials with dual-drug loading for targeted drug delivery, and the function and impact of nanomaterials in cancer photodynamic therapy. Furthermore, an overview of the drug-loaded nanomaterials in vitro and in vivo activity for cancer photodynamic treatment is discussed. The commercial and clinical applications of photosensitizer-loaded nanoparticles in cancer photodynamic therapy are also briefly discussed in the study. A key finding of the study is the importance of nanomaterials and dual drugs as effective drug delivery systems in cancer treatment.
Collapse
Affiliation(s)
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
2
|
Jiang Y. Photosynthetic Bacteria: Light-Responsive Biomaterials for Anti-Tumor Photodynamic Therapy. Int J Nanomedicine 2025; 20:465-482. [PMID: 39811429 PMCID: PMC11730521 DOI: 10.2147/ijn.s500314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Photodynamic therapy (PDT) is a promising noninvasive tumor treatment modality that relies on generating reactive oxygen species (ROS) and requires an adequate oxygen supply to the target tissue. However, hypoxia is a common feature of solid tumors and profoundly restricts the anti-tumor efficacy of PDT. In recent years, scholars have focused on exploring nanomaterial-based strategies for oxygen supplementation and integrating non-oxygen-consuming treatment approaches to overcome the hypoxic limitations of PDT. Some scholars have harnessed the photosynthetic oxygen production of cyanobacteria under light irradiation to overcome tumor hypoxia and engineered them as carriers of photosensitizers instead of inorganic nanomaterials, resulting in photosynthetic bacteria (PSB) attracting significant attention. Recent studies have shown that light-triggered PSB can exhibit additional properties, such as photosynthetic hydrogen production, ROS generation, and photothermal conversion, facilitating their use as promising light-responsive biomaterials for enhancing the anti-tumor efficacy of PDT. Therefore, understanding PSB can provide new insights and ideas for future research. This review mainly introduces the characteristics of PSB and recent research on light-triggered PSB in anti-tumor PDT to enrich our knowledge in this area. Finally, the challenges and prospects of using PSB to enhance the anti-tumor efficacy of PDT were also discussed.
Collapse
Affiliation(s)
- Yuan Jiang
- Department of Rehabilitation Medicine, School of Clinical Medicine and The First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, People’s Republic of China
| |
Collapse
|
3
|
Wang S, Chi Y, Wang D, Zhao K, Wang L. Regulation of Oxygen in the Tumor Microenvironment Synergizes with Immunotherapy to Suppress Tumor Progression. J Funct Biomater 2024; 15:357. [PMID: 39728157 PMCID: PMC11727667 DOI: 10.3390/jfb15120357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/22/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Hypoxia represents a crucial characteristic of the tumor microenvironment, which is closely related to cell proliferation, angiogenesis, and metabolic responses. These factors will further promote tumor progression, increase tumor invasion, and enhance tumor metastasis potential. A hypoxic microenvironment will also inhibit the activity of infiltrated immune cells in the tumor microenvironment, leading to the failure of cancer immunotherapy. Additionally, the hypoxic tumor microenvironment contributes to resistance to conventional therapies and leads to unfavorable prognoses. This review discusses advancements in strategies aimed at ameliorating tumor hypoxia within the microenvironment and modulating immune cell responses against tumors.
Collapse
Affiliation(s)
- Shoucheng Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (D.W.)
| | - Yongjie Chi
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (D.W.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Danyang Wang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (D.W.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150500, China;
- Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin 150080, China
- Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou 318000, China
| | - Lianyan Wang
- Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; (Y.C.); (D.W.)
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Huang J, Wang X, Li Z. Dissolving microneedles: standing out in melanoma treatment. J Mater Chem B 2024; 12:11573-11595. [PMID: 39431729 DOI: 10.1039/d4tb01142b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Melanoma is one of the most significant and dangerous superficial skin tumors with a high fatality rate, thanks to its high invasion rate, drug resistance and frequent metastasis properties. Unfortunately, researchers for decades have demonstrated that the outcome of using conventional therapies like chemotherapy and immunotherapy with normal drug delivery routes, such as an oral route to treat melanoma was not satisfactory. The severe adverse effects, slow drug delivery efficiency and low drug accumulation at targeted malignancy sites all lead to poor anti-cancer efficacy and terrible treatment experience. As a novel transdermal drug delivery system, microneedles (MNs) have emerged as an effective solution to help improve the low cure rate of melanoma. The excellent characteristics of MNs make it easy to penetrate the stratum corneum (SC) and then locally deliver the drug towards the lesion without drug leakage to mitigate the occurrence of side effects and increase the drug accumulation. Therefore, loading chemotherapeutic drugs or immunotherapy drugs in MNs can address the problems mentioned above, and MNs play a crucial role in improving the curative effect of conventional treatment methods. Notably, novel tumor therapies like photothermal therapy (PTT), photodynamic therapy (PDT) and chemodynamic therapy (CDT) have shown good application prospects in the treatment of melanoma, and MNs provide a valid platform for the combination of conventional therapies and novel therapies by encompassing different therapeutic materials in the matrix of MNs. The synergistic effect of multiple therapies can enhance the therapeutic efficacy compared to single therapies, showing great potential in melanoma treatment. Dissolving MNs have been the most commonly used microneedles in the treatment of melanoma in recent years, mainly because of their simple fabrication procedure and enough drug loading. So, considering the increasing use of dissolving MNs, this review collects research studies published in the last four years (2020-2024) that have rarely been included in other reviews to update the progress of applications of dissolving MNs in anti-melanoma treatment, especially in synergistic therapies. This review also presents current design and fabrication methods of dissolving MNs; the limitations of microneedle technology in the treatment of melanoma are comprehensively discussed. This review can provide valuable guidance for their future development.
Collapse
Affiliation(s)
- Jingting Huang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Xihao Wang
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| | - Zhengyong Li
- Department of Burn and Plastic Surgery, Sichuan University West China Hospital, Chengdu, China.
| |
Collapse
|
5
|
Han Z, Liang Y, Li Y, Yuan M, Zhan X, Yan J, Sun Y, Luo K, Zhao B, Li F. Programmed Cascade Polydopamine Nanoclusters for Pyroptosis-Based Tumor Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401397. [PMID: 38898735 DOI: 10.1002/smll.202401397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/30/2024] [Indexed: 06/21/2024]
Abstract
Pyroptosis, an inflammatory cell death, plays a pivotal role in activating inflammatory response, reversing immunosuppression and enhancing anti-tumor immunity. However, challenges remain regarding how to induce pyroptosis efficiently and precisely in tumor cells to amplify anti-tumor immunotherapy. Herein, a pH-responsive polydopamine (PDA) nanocluster, perfluorocarbon (PFC)@octo-arginine (R8)-1-Hexadecylamine (He)-porphyrin (Por)@PDA-gambogic acid (GA)-cRGD (R-P@PDA-GC), is rationally design to augment phototherapy-induced pyroptosis and boost anti-tumor immunity through a two-input programmed cascade therapy. Briefly, oxygen doner PFC is encapsulated within R8 linked photosensitizer Por and He micelles as the core, followed by incorporation of GA and cRGD peptides modified PDA shell, yielding the ultimate R-P@PDA-GC nanoplatforms (NPs). The pH-responsive NPs effectively alleviate hypoxia by delivering oxygen via PFC and mitigate heat resistance in tumor cells through GA. Upon two-input programmed irradiation, R-P@PDA-GC NPs significantly enhance reactive oxygen species production within tumor cells, triggering pyroptosis via the Caspase-1/GSDMD pathway and releasing numerous inflammatory factors into the TME. This leads to the maturation of dendritic cells, robust infiltration of cytotoxic CD8+ T and NK cells, and diminution of immune suppressor Treg cells, thereby amplifying anti-tumor immunity.
Collapse
Affiliation(s)
- Zeyu Han
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yan Liang
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yan Li
- Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Mujie Yuan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Xin Zhan
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Jianqin Yan
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Yong Sun
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Baodong Zhao
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Fan Li
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
- Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
6
|
Zhai S, Wang R, Wang J, Xu X, Niu L, Guo M, Zhang Y, Shi Y, Tang X. Curcumol: a review of its pharmacology, pharmacokinetics, drug delivery systems, structure-activity relationships, and potential applications. Inflammopharmacology 2024; 32:1659-1704. [PMID: 38520574 DOI: 10.1007/s10787-024-01447-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/25/2024]
Abstract
Curcumol (Cur), a guaiane-type sesquiterpenoid hemiketal, is an important and representative bioactive component extracted from the essential oil of the rhizomes of Curcumae rhizoma which is also known as "Ezhu" in traditional Chinese medicine. Recently, Cur has received considerable attention from the research community due to its favorable pharmacological activities, including anti-cancer, hepatoprotective, anti-inflammatory, anti-viral, anti-convulsant, and other activities, and has also exerted therapeutic effect on various cancers, liver diseases, inflammatory diseases, and infectious diseases. Pharmacokinetic studies have shown that Cur is rapidly distributed in almost all organs of rats after intragastric administration with high concentrations in the small intestine and colon. Several studies focusing on structure-activity relationship (SAR) of Cur have shown that some Cur derivatives, chemically modified at C-8 or C-14, exhibited more potent anti-cancer activity and lower toxicity than Cur itself. This review aims to comprehensively summarize the latest advances in the pharmacological and pharmacokinetic properties of Cur in the last decade with a focus on its anti-cancer and hepatoprotective potentials, as well as the research progress in drug delivery system and potential applications of Cur to date, to provide researchers with the latest information, to highlighted the limitations of relevant research at the current stage and the aspects that should be addressed in future research. Our results indicate that Cur and its derivatives could serve as potential novel agents for the treatment of a variety of diseases, particularly cancer and liver diseases.
Collapse
Affiliation(s)
- Sicheng Zhai
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Rui Wang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Jingyuan Wang
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, School of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Xiangdong Xu
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Le Niu
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Min Guo
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Yongling Zhang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research in Chinese Medicine, School of Pharmacy, Shaanxi University of Chinese Medicine, Shiji Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China.
| | - Xuexue Tang
- School of Medical Engineering, Haojing College of Shaanxi University of Science & Technology, Tongyi Avenue, Xi Xian New District, Xianyang City, 712046, Shaanxi Province, People's Republic of China.
| |
Collapse
|
7
|
Zhang Y, Ye S, Zhou Y, Zhou Z, Yao Y, Liu W, Wu L. Salvianolic acid B as a potent nano-agent for enhanced ALA-PDT of oral cancer and leukoplakia cells. Oral Dis 2024; 30:1091-1099. [PMID: 36705399 DOI: 10.1111/odi.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) relies on the light activation of a photosensitizers to generate reactive oxygen species such as singlet oxygen, but its effect on cancer therapy is limited dramatically by hypoxia in the tumor microenvironment. OBJECTIVES To determine the potential of a nano-photosensitizer loaded salvianolic acid B (SalB) and 5-aminolevulinic acid (ALA) for enhancing the efficacy of PDT in oral squamous cell carcinoma Cal27 cells and leukoplakia Leuk1 cells. RESULTS Singlet oxygen sensor green (SOSG) assay showed that nano-SalB-ALA generated higher levels of singlet oxygen, compared to nano-SalB and nano-ALA. Cellular uptake assay showed that nano-SalB-ALA effectively absorbed by Leuk1 cells. Importantly, cell counting kit-8 and flow cytometry revealed that PDT with nano-SalB-ALA effectively inhibited the viability and induced the apoptosis of Cal27 and Leuk1 cells, respectively. Moreover, the tumor xenograft study revealed that PDT with nano-SalB-ALA had a stronger inhibitory effect on tumor growth of nude mice, compared to control groups. CONCLUSIONS The novel photosensitizer nano-SalB-ALA remarkably enhanced the efficacy of PDT by improving singlet oxygen production, inhibiting cell proliferation, promoting cell apoptosis, and suppressing tumor growth. These suggest PDT with nano-SalB-ALA could be a clinically significant and potent treatment for oral cancer and leukoplakia.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Sai Ye
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yongmei Zhou
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zengtong Zhou
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yilin Yao
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wei Liu
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Wu
- Department of Oral Mucosal Diseases, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
8
|
Zuo T, Li X, Ma X, Zhang Y, Li X, Fan X, Gao M, Xia D, Cheng H. Engineering tumor-oxygenated nanomaterials: advancing photodynamic therapy for cancer treatment. Front Bioeng Biotechnol 2024; 12:1383930. [PMID: 38544975 PMCID: PMC10965730 DOI: 10.3389/fbioe.2024.1383930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024] Open
Abstract
Photodynamic therapy (PDT), a promising treatment modality, employs photosensitizers to generate cytotoxic reactive oxygen species (ROS) within localized tumor regions. This technique involves administering a photosensitizer followed by light activation in the presence of oxygen (O2), resulting in cytotoxic ROS production. PDT's spatiotemporal selectivity, minimally invasive nature, and compatibility with other treatment modalities make it a compelling therapeutic approach. However, hypoxic tumor microenvironment (TME) poses a significant challenge to conventional PDT. To overcome this hurdle, various strategies have been devised, including in-situ O2 generation, targeted O2 delivery, tumor vasculature normalization, modulation of mitochondrial respiration, and photocatalytic O2 generation. This review aims to provide a comprehensive overview of recent developments in designing tumor-oxygenated nanomaterials to enhance PDT efficacy. Furthermore, we delineate ongoing challenges and propose strategies to improve PDT's clinical impact in cancer treatment.
Collapse
Affiliation(s)
- Tingting Zuo
- College of Biological Sciences and Technology, Yili Normal University, Yining, China
| | - Xiaodie Li
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Xuan Ma
- No. 1 Traditional Chinese Medicine Hospital in Changde, Changde, China
| | - Ye Zhang
- College of Biological Sciences and Technology, Yili Normal University, Yining, China
| | - Xueru Li
- College of Biological Sciences and Technology, Yili Normal University, Yining, China
| | - Xuehai Fan
- College of Biological Sciences and Technology, Yili Normal University, Yining, China
| | - Mingze Gao
- No. 1 Traditional Chinese Medicine Hospital in Changde, Changde, China
| | - Donglin Xia
- School of Public Health of Nantong University, Nantong, China
| | - Huijun Cheng
- College of Biological Sciences and Technology, Yili Normal University, Yining, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yining, China
| |
Collapse
|
9
|
Wang M, Fu Q. Nanomaterials for Disease Treatment by Modulating the Pyroptosis Pathway. Adv Healthc Mater 2024; 13:e2301266. [PMID: 37354133 DOI: 10.1002/adhm.202301266] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/06/2023] [Indexed: 06/26/2023]
Abstract
Pyroptosis differs significantly from apoptosis and cell necrosis as an alternative mode of programmed cell death. Its occurrence is mediated by the gasdermin protein, leading to characteristic outcomes including cell swelling, membrane perforation, and release of cell contents. Research underscores the role of pyroptosis in the etiology and progression of many diseases, making it a focus of research intervention as scientists explore ways to regulate pyroptosis pathways in disease management. Despite numerous reviews detailing the relationship between pyroptosis and disease mechanisms, few delve into recent advancements in nanomaterials as a mechanism for modulating the pyroptosis pathway to mitigate disease effects. Therefore, there is an urgent need to fill this gap and elucidate the path for the use of this promising technology in the field of disease treatment. This review article delves into recent developments in nanomaterials for disease management through pyroptosis modulation, details the mechanisms by which drugs interact with pyroptosis pathways, and highlights the promise that nanomaterial research holds in driving forward disease treatment.
Collapse
Affiliation(s)
- Mengzhen Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| | - Qinrui Fu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, P. R. China
| |
Collapse
|
10
|
Chen CY, Chen CY. Targeted and Oxygen-Enriched Nanoplatform for Enhanced Photodynamic Therapy: In Vitro 2D Cell and 3D Spheroid Model Evaluation. Macromol Biosci 2023; 23:e2300196. [PMID: 37565670 DOI: 10.1002/mabi.202300196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/05/2023] [Indexed: 08/12/2023]
Abstract
Hypoxic microenvironment and limited penetration of photosensitizers within solid tumors are two crucial factors that restrict photodynamic therapy (PDT) efficacy. Herein, a new fluorinated mixed micelle (M60@PFC-Ce6) is developed as a tumor-penetrating and oxygen-enriching nanoplatform, which consists of chlorin e6 (Ce6) and perfluorocarbons (PFCs) co-loaded into fluorinated micelles to relieve hypoxia conditions as well as folate as targeting ligand that facilitates the selective biodistribution within tumor solids. The incorporation of fluorinated copolymers into mixed micelles exhibits not only a great increase in the oxygen-loading capacity, but also improves the stability of liquid PFCs emulsion within micelles without leakage. M60@PFC-Ce6 shows excellent oxygen delivery capability, good intracellular reactive oxygen species (ROS) generation, and superior phototoxicity in vitro for both 2D monolayer of cells and 3D multicellular spheroid model. These results indicate the enriched oxygen delivery and increased cellular uptake resulting from folate-targeted ability to enhance ROS production and PDT efficacy. The penetration study of M60@PFC-Ce6 into a 3D spheroid confirms that small micellar size and folate-conjugation are beneficial for micelles to penetrate and accumulate within spheroids. Thus, a new nanoplatform with enriched oxygen-carrying amounts, better drug penetration, and stable micellar properties that relieve tumor hypoxia and improve PDT efficacy is provided.
Collapse
Affiliation(s)
- Chieh-Yu Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| | - Ching-Yi Chen
- Department of Chemical Engineering, National Chung Cheng University, Chia-Yi County, 62102, Taiwan
| |
Collapse
|
11
|
Lai CM, Xu J, Zhang BC, Li DM, Shen JW, Yu SJ, Shao JW. Three-pronged attacks by hybrid nanoassemblies involving a natural product, carbon dots, and Cu 2+ for synergistic HCC therapy. J Colloid Interface Sci 2023; 650:526-540. [PMID: 37423180 DOI: 10.1016/j.jcis.2023.06.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023]
Abstract
Tumor microenvironment (TME) stimuli-responsive nanoassemblies are emerging as promising drug delivery systems (DDSs), which acquire controlled release by structural transformation under exogenous stimulation. However, the design of smart stimuli-responsive nanoplatforms integrated with nanomaterials to achieve complete tumor ablation remains challenging. Therefore, it is of utmost importance to develop TME-based stimuli-responsive DDSs to enhance drug-targeted delivery and release at tumor sites. Herein, we proposed an appealing strategy to construct fluorescence-mediated TME stimulus-responsive nanoplatforms for synergistic cancer therapy by assembling photosensitizers (PSs) carbon dots (CDs), chemotherapeutic agent ursolic acid (UA), and copper ions (Cu2+). First, UA nanoparticles (UA NPs) were prepared by self-assembly of UA, then UA NPs were assembled with CDs via hydrogen bonding force to obtain UC NPs. After combining with Cu2+, the resulting particles (named UCCu2+ NPs) exhibited quenched fluorescence and photosensitization due to the aggregation of UC NPs. Upon entering the tumor tissue, the photodynamic therapy (PDT) and the fluorescence function of UCCu2+ were recovered in response to TME stimulation. The introduction of Cu2+ triggered the charge reversal of UCCu2+ NPs, thereby promoting lysosomal escape. Furthermore, Cu2+ resulted in additional chemodynamic therapy (CDT) capacity by reacting with hydrogen peroxide (H2O2) as well as by consuming glutathione (GSH) in cancer cells through a redox reaction, hence magnifying intracellular oxidative stress and enhancing the therapeutic efficacy due to reactive oxygen species (ROS) therapy. In summary, UCCu2+ NPs provided an unprecedented novel approach for improving the therapeutic efficacy through the three-pronged (chemotherapy, phototherapy, and heat-reinforced CDT) attacks to achieve synergistic therapy.
Collapse
Affiliation(s)
- Chun-Mei Lai
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jia Xu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bing-Chen Zhang
- Dongguan Institute of Clinical Cancer Research, Dongguan Key Laboratory of Precision Diagnosis and Treatment for Tumors, Affiliated Dongguan Hospital, Southern Medical University, Dongguan, China
| | - Dong-Miao Li
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jiang-Wen Shen
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Shi-Jing Yu
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jing-Wei Shao
- Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
12
|
Jin H, Liu X, Liu HX. Biological function, regulatory mechanism, and clinical application of mannose in cancer. Biochim Biophys Acta Rev Cancer 2023; 1878:188970. [PMID: 37657682 DOI: 10.1016/j.bbcan.2023.188970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023]
Abstract
Studies examining the regulatory roles and clinical applications of monosaccharides other than glucose in cancer have been neglected. Mannose, a common type of monosaccharide found in human body fluids and tissues, primarily functions in protein glycosylation rather than carbohydrate metabolism. Recent research has demonstrated direct anticancer effects of mannose in vitro and in vivo. Simply supplementing cell culture medium or drinking water with mannose achieved these effects. Moreover, mannose enhances the effectiveness of current cancer treatments including chemotherapy, radiotherapy, targeted therapy, and immune therapy. Besides the advancements in basic research on the anticancer effects of mannose, recent studies have reported its application as a biomarker for cancer or in the delivery of anticancer drugs using mannose-modified drug delivery systems. This review discusses the progress made in understanding the regulatory roles of mannose in cancer progression, the mechanisms underlying its anticancer effects, and its current application in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Haoyi Jin
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Xi Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China
| | - Hong-Xu Liu
- Department of Thoracic Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China; Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, Liaoning, China.
| |
Collapse
|
13
|
He R, Yang P, Liu A, Zhang Y, Chen Y, Chang C, Lu B. Cascade strategy for glucose oxidase-based synergistic cancer therapy using nanomaterials. J Mater Chem B 2023; 11:9798-9839. [PMID: 37842806 DOI: 10.1039/d3tb01325a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Nanomaterial-based cancer therapy faces significant limitations due to the complex nature of the tumor microenvironment (TME). Starvation therapy is an emerging therapeutic approach that targets tumor cell metabolism using glucose oxidase (GOx). Importantly, it can provide a material or environmental foundation for other diverse therapeutic methods by manipulating the properties of the TME, such as acidity, hydrogen peroxide (H2O2) levels, and hypoxia degree. In recent years, this cascade strategy has been extensively applied in nanoplatforms for ongoing synergetic therapy and still holds undeniable potential. However, only a few review articles comprehensively elucidate the rational designs of nanoplatforms for synergetic therapeutic regimens revolving around the conception of the cascade strategy. Therefore, this review focuses on innovative cascade strategies for GOx-based synergetic therapy from representative paradigms to state-of-the-art reports to provide an instructive, comprehensive, and insightful reference for readers. Thereafter, we discuss the remaining challenges and offer a critical perspective on the further advancement of GOx-facilitated cancer treatment toward clinical translation.
Collapse
Affiliation(s)
- Ruixuan He
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Peida Yang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Aoxue Liu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yueli Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Yuqi Chen
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| | - Cong Chang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, People's Republic of China.
| | - Bo Lu
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China.
| |
Collapse
|
14
|
Zhou W, Chen S, Ouyang Y, Huang B, Zhang H, Zhang W, Tian J. A supramolecular nanoplatform for imaging-guided phototherapies via hypoxia tumour microenvironment remodeling. Chem Sci 2023; 14:11481-11489. [PMID: 37886080 PMCID: PMC10599481 DOI: 10.1039/d3sc03797e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Photodynamic therapy (PDT) has emerged as an invasive and promising antitumour treatment, however, the hypoxia in deep tumour tissues and the poor water-solubility of photosensitizers as bottlenecks greatly hinder PDT efficiency. Herein, a tumour microenvironment (TME) activated supramolecular nanoplatform consisting of the pillar[5]arene-based amphiphilic polymer POPD, the phototherapeutic agent Cy7-CN, respiratory medication atovaquone (ATO) and chemotherapeutic drug pyridinyl camptothecin (CPT-Py) was constructed for imaging-guided hypoxia-ameliorated phototherapies. Owing to host-guest interaction, the photochemical and photophysical properties of cyanine were improved exceedingly due to the suppression of π-π stacking. Triggered by the acidic microenvironment in tumour sites, the supramolecular nanoplatform would dissociate and release CPT-Py and ATO which inhibits mitochondria-associated oxidative phosphorylation (OXPHOS) and encourages more oxygen to be used in enhanced PDT. In vitro and in vivo studies verified that the rational combination of ATO-enhanced PDT and PTT overcame the disadvantages of single phototherapy and formed mutual promotion, and simultaneously sensitized chemotherapeutic drugs, which resulted in high tumour inhibition. It is hoped that the supramolecular nanoplatform could shed light on the development of phototherapeutic agents.
Collapse
Affiliation(s)
- Weijie Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Suwen Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Yingjie Ouyang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Baoxuan Huang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Hongman Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| | - Jia Tian
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology 130 Meilong Road Shanghai 200237 China
| |
Collapse
|
15
|
Zhang Y, Dong P, Yang L. The role of nanotherapy in head and neck squamous cell carcinoma by targeting tumor microenvironment. Front Immunol 2023; 14:1189323. [PMID: 37292204 PMCID: PMC10244756 DOI: 10.3389/fimmu.2023.1189323] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) refers to a group of highly malignant and pathogenically complex tumors. Traditional treatment methods include surgery, radiotherapy, and chemotherapy. However, with advancements in genetics, molecular medicine, and nanotherapy, more effective and safer treatments have been developed. Nanotherapy, in particular, has the potential to be an alternative therapeutic option for HNSCC patients, given its advantageous targeting capabilities, low toxicity and modifiability. Recent research has highlighted the important role of the tumor microenvironment (TME) in the development of HNSCC. The TME is composed of various cellular components, such as fibroblasts, vascular endothelial cells, and immune cells, as well as non-cellular agents such as cytokines, chemokines, growth factors, extracellular matrix (ECM), and extracellular vesicles (EVs). These components greatly influence the prognosis and therapeutic efficacy of HNSCC, making the TME a potential target for treatment using nanotherapy. By regulating angiogenesis, immune response, tumor metastasis and other factors, nanotherapy can potentially alleviate HNSCC symptoms. This review aims to summarize and discuss the application of nanotherapy that targets HNSCC's TME. We highlight the therapeutic value of nanotherapy for HNSCC patients.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Radiation Oncology, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Pengbo Dong
- School of Energy and Power Engineering, Dalian University of Technology, Dalian, China
| | - Lu Yang
- Department of Internal Medicine, Cancer Hospital of Dalian University of Technology/Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
16
|
Feng X, Chen Z, Liu Z, Fu X, Song H, Zhang Q. Self-delivery photodynamic-hypoxia alleviating nanomedicine synergizes with anti-PD-L1 for cancer immunotherapy. Int J Pharm 2023; 639:122970. [PMID: 37084832 DOI: 10.1016/j.ijpharm.2023.122970] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/15/2023] [Indexed: 04/23/2023]
Abstract
The low level of T-lymphocyte infiltration in tumor is a key issue in cancer immunotherapy. Stimulating anti-tumor immune responses and improving the tumor microenvironment are essential for enhancing anti-PD-L1 immunotherapy. Herein, atovaquone (ATO), protoporphyrin IX (PpIX), and stabilizer (ATO/PpIX NPs) were constructed to self-assemble with hydrophobic interaction and passively targeted to tumor for the first time. The studies have indicated that PpIX-mediated photodynamic induction of immunogenic cell death combined with relieving tumor hypoxia by ATO, leading to maturation of dendritic cells, polarization of M2-type tumor-associated macrophages (TAMs) towards M1-type TAMs, infiltration of cytotoxic T lymphocytes, reduction of regulatory T cells, release of pro-inflammatory cytokines, resulting in an effective anti-tumor immune response synergized with anti-PD-L1 against primary tumor and pulmonary metastasis. Taken together, the combined nanoplatform may be a promising strategy to enhance cancer immunotherapy.
Collapse
Affiliation(s)
- Xianquan Feng
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Zhenzhen Chen
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Zhihong Liu
- Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Xiaoling Fu
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China
| | - Hongtao Song
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China; Fuzong Clinical Medical College of Fujian Medical University, Fuzhou 350025, PR China
| | - Qian Zhang
- The School of Pharmacy, Fujian Medical University, Fuzhou 350108, PR China.
| |
Collapse
|
17
|
Henriques J, Pina J, Braga MEM, Dias AMA, Coimbra P, de Sousa HC. Novel Oxygen- and Curcumin-Laden Ionic Liquid@Silica Nanocapsules for Enhanced Antimicrobial Photodynamic Therapy. Pharmaceutics 2023; 15:1080. [PMID: 37111567 PMCID: PMC10140864 DOI: 10.3390/pharmaceutics15041080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/30/2023] Open
Abstract
The efficiency of photodynamic therapy is often limited by the scarcity of oxygen at the target site. To address this problem, this work proposes the development of a new nanosystem for antimicrobial photodynamic therapy applications (aPDT) where the natural-origin photosensitizer curcumin (CUR) is immersed in an oxygen-rich environment. Inspired by the perfluorocarbon-based photosensitizer/O2 nanocarriers reported in the literature, we developed a new type of silica nanocapsule containing curcumin dissolved in three hydrophobic ionic liquids (ILs) with high oxygen dissolving capacities. The nanocapsules (CUR-IL@ncSi), prepared by an original oil-in-water microemulsion/sol-gel method, had a high IL content and exhibited clear capacities to dissolve and release significant amounts of oxygen, as demonstrated by deoxygenation/oxygenation studies. The ability of CUR-IL solutions and of CUR-IL@ncSi to generate singlet oxygen (1O2) upon irradiation was confirmed by the detection of 1O2 phosphorescence at 1275 nm. Furthermore, the enhanced capacities of oxygenated CUR-IL@ncSi suspensions to generate 1O2 upon irradiation with blue light were confirmed by an indirect spectrophotometric method. Finally, preliminary microbiological tests using CUR-IL@ncSi incorporated into gelatin films showed the occurrence of antimicrobial effects due to photodynamic inactivation, with their relative efficiencies depending on the specific IL in which curcumin was dissolved. Considering these results, CUR-IL@ncSi has the potential to be used in the future to develop biomedical products with enhanced oxygenation and aPDT capacities.
Collapse
Affiliation(s)
- Joana Henriques
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - João Pina
- Coimbra Chemistry Centre-Institute of Molecular Sciences, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal
| | - Mara E. M. Braga
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Ana M. A. Dias
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Patrícia Coimbra
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Hermínio C. de Sousa
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|