1
|
Qiu W, Zheng Z, Wang J, Cai Y, Zou J, Huang Z, Yang P, Ye W, Jin M, Zhang D, Little PJ, Zhou Q, Liu Z. Targeting mitochondrial DNA-STING-NF-κB Axis-mediated microglia activation by cryptotanshinone alleviates ischemic retinopathy. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156779. [PMID: 40279967 DOI: 10.1016/j.phymed.2025.156779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Ischemic retinopathy, a leading cause of vision impairment, involves oxidative stress and dysregulated inflammation, with microglia playing a key role. Cryptotanshinone (CTS), a bioactive compound from Salvia miltiorrhiza, exhibits anti-inflammatory and antioxidant properties and thus has the potential for development as a therapeutic agent. However, the actual mechanism of action of CTS in ischemic retinopathy is not known. Overactivation of the STING pathway in microglia is critical in ischemic retinopathy pathogenesis and a potential target of CTS. PURPOSE This study aimed to explore whether CTS alleviates ischemic retinopathy by modulating microglial STING signaling. METHODS Oxygen-induced retinopathy (OIR) mice and hypoxia-induced microglial cells were used. CTS efficacy in ischemic retinopathy was evaluated at multiple stages using fluorescein fundus angiography, electroretinogram, H&E staining, and Western blotting of relevant proteins. Network pharmacology and RNA sequencing identified STING as a key target. Furthermore, surface plasmon resonance (SPR), molecular docking, and site-directed mutagenesis were systematically employed to elucidate the precise binding interface between CTS and the STING protein. STING activation and knockout models were employed to further investigate the mechanisms of action of CTS. RESULTS CTS treatment reduced microglial activation and pathological retinal angiogenesis, and protected both retinal function and structure in OIR mice. Network pharmacology, RNA sequencing, and experimental validation demonstrated a significant link between the protective effect of CTS and the inhibition of STING signaling. Mechanistically, CTS suppressed cytosolic mtDNA release, blocked STING translocation from the ER to the Golgi, and enhanced lysosomal STING degradation. These CTS-mediated effects were abolished by STING activation and absent in Sting-deficient OIR mice. Notably, CTS combined with anti-VEGF therapy showed synergistic efficacy in suppressing pathological retinal neovascularization. CONCLUSION CTS, a natural inhibitor of STING, alleviated ischemic retinopathy by inhibiting the mtDNA-STING-NF-κB signaling pathway via multifaceted mechanisms in microglia.
Collapse
Affiliation(s)
- Wanlu Qiu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China
| | - Zhihua Zheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; The Affiliated Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Traditional Chinese Medicine, School of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Jiaojiao Wang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Youran Cai
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China; Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China
| | - Jiami Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ziqing Huang
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China
| | - Pinglian Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Weile Ye
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Mei Jin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Dongmei Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Peter J Little
- School of Pharmacy, Pharmacy Australia Centre of Excellence, The University of Queensland, Woolloongabba, QLD 4102, Australia; Department of Pharmacy, Guangzhou Xinhua University, Guangzhou, 510520, China
| | - Qing Zhou
- Department of Ophthalmology, the First Affiliated Hospital, Jinan University, Guangzhou 510006, China.
| | - Zhiping Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education (MOE), College of Pharmacy, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
2
|
Huang K, Zhang Q, Wan H, Ban X, Chen X, Wan X, Lu R, He Y, Xiong K. TAK1 at the crossroads of multiple regulated cell death pathways: from molecular mechanisms to human diseases. FEBS J 2025. [DOI: 10.1111/febs.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 02/14/2025] [Indexed: 05/03/2025]
Abstract
Regulated cell death (RCD), the form of cell death that can be genetically controlled by multiple signaling pathways, plays an important role in organogenesis, tissue remodeling, and maintenance of organism homeostasis and is closely associated with various human diseases. Transforming growth factor‐beta‐activated kinase 1 (TAK1) is a member of the serine/threonine protein kinase family, which can respond to different internal and external stimuli and participate in inflammatory and immune responses. Emerging evidence suggests that TAK1 is an important regulator at the crossroad of multiple RCD pathways, including apoptosis, necroptosis, pyroptosis, and PANoptosis. The regulation of TAK1 affects disease progression through multiple signaling pathways, and therapeutic strategies targeting TAK1 have been proposed for inflammatory diseases, central nervous system diseases, and cancers. In this review, we provide an overview of the downstream signaling pathways regulated by TAK1 and its binding proteins. Their critical regulatory roles in different forms of cell death are also summarized. In addition, we discuss the potential of targeting TAK1 in the treatment of human diseases, with a specific focus on neurological disorders and cancer.
Collapse
Affiliation(s)
- Kun Huang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Xiangya School of Medicine Central South University Changsha China
| | - Qi Zhang
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Department of Ophthalmology Stanford University School of Medicine Palo Alto CA USA
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
| | - Hao Wan
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xiao‐Xia Ban
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Yu Chen
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
| | - Xin‐Xing Wan
- Department of Endocrinology Third Xiangya Hospital, Central South University Changsha China
| | - Rui Lu
- Department of Molecular and Cellular Physiology Stanford University Stanford CA USA
| | - Ye He
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Changsha Aier Eye Hospital China
| | - Kun Xiong
- Department of Human Anatomy and Neurobiology, School of Basic Medical Science Central South University Changsha China
- Key Laboratory of Emergency and Trauma of Ministry of Education, College of Emergency and Trauma Hainan Medical University Haikou China
- Hunan Key Laboratory of Ophthalmology Changsha China
| |
Collapse
|
3
|
Wang Y, Ma H, Yang Q, Chen K, Ye H, Wang X, Xia J, Chen X, Wang X, Shen Y, Cui H. Senescent retinal pigment epithelial cells promote angiogenesis in choroidal neovascularization via the TAK1/p38 MAPK pathway. Exp Eye Res 2025; 251:110232. [PMID: 39778673 DOI: 10.1016/j.exer.2025.110232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 07/16/2024] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
Senescent retinal pigment epithelial cells play a key role in neovascular age-related macular degeneration (nAMD); however, the mechanisms underlying the angiogenic ability of these cells remain unclear. Herein, we investigated the effects of the senescent adult retinal pigment epithelial cell line-19 (ARPE-19) on wound healing, cell migration and survival, and tube formation abilities of human umbilical vein endothelial cells (HUVECs). Additionally, we used Brown Norway rats to establish a laser-induced choroidal neovascularization (CNV) model for further nAMD-related studies. We found that the wound healing, cell migration, and tube formation abilities of HUVECs were significantly enhanced following culture in conditioned media from senescent ARPE-19 cells; this was attributed to the activation of the transforming growth factor β-activated kinase 1 (TAK1)/p38 MAPK pathway. Consistently, we found that the TAK1 inhibitors 5Z-7-oxozeaenol and takinib reversed the effects of conditioned media from senescent ARPE-19 cells on the wound healing, migration, survival, and tube formation abilities of HUVECs. We further investigated the therapeutic effects of 5Z-7-oxozeaenol on the laser-induced CNV rat model. We found that TAK1 was activated in IB4+ areas in laser-induced CNV lesions; inhibiting the activity of TAK1 using 5Z-7-oxozeaenol significantly alleviated CNV lesion formation and fluorescein leakage in fundus fluorescein angiography and greatly improved a-waves, b-waves, and OP values, as recorded by electroretinography. Thus, senescent RPE cells may promote angiogenesis via the TAK1/p38 MAPK pathway. Further, inhibiting TAK1 expression alleviates pathological neovascularization and improves retinal function in a laser-induced CNV rat model, highlighting the therapeutic potential of this approach for treating nAMD.
Collapse
Affiliation(s)
- Yinhao Wang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Huiling Ma
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Qianjie Yang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Kuangqi Chen
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Hui Ye
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Xinglin Wang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Jianhua Xia
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Xiaodan Chen
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Xiawei Wang
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China.
| | - Hongguang Cui
- Department of Ophthalmology, First Affiliated Hospital, Zhejiang University School of Medicine, 310003, China.
| |
Collapse
|
4
|
Wang Y, Gao S, Cao F, Yang H, Lei F, Hou S. Ocular immune-related diseases: molecular mechanisms and therapy. MedComm (Beijing) 2024; 5:e70021. [PMID: 39611043 PMCID: PMC11604294 DOI: 10.1002/mco2.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/05/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
Ocular immune-related diseases, represent a spectrum of conditions driven by immune system dysregulation, include but not limit to uveitis, diabetic retinopathy, age-related macular degeneration, Graves' ophthalmopathy, etc. The molecular and cellular mechanisms underlying these diseases are typically dysfunctioned immune responses targeting ocular tissues, resulting in inflammation and tissue damage. Recent advances have further elucidated the pivotal role of different immune responses in the development, progression, as well as management of various ocular immune diseases. However, there is currently a relative lack of connection between the cellular mechanisms and treatments of several immune-related ocular diseases. In this review, we discuss recent findings related to the immunopathogenesis of above-mentioned diseases. In particular, we summarize the different types of immune cells, inflammatory mediators, and associated signaling pathways that are involved in the pathophysiology of above-mentioned ophthalmopathies. Furthermore, we also discuss the future directions of utilizing anti-inflammatory regime in the management of these diseases. This will facilitate a better understanding of the pathogenesis of immune-related ocular diseases and provide new insights for future treatment approaches.
Collapse
Affiliation(s)
- Yakun Wang
- The First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shangze Gao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fan Cao
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Hui Yang
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Fengyang Lei
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| | - Shengping Hou
- Beijing Institute of OphthalmologyBeijing Tongren Eye CenterBeijing Tongren Hospital, Beijing Ophthalmology & Visual Sciences Key Laboratory, Capital Medical UniversityBeijingChina
| |
Collapse
|
5
|
Fan G, Lu J, Zha J, Guo W, Zhang Y, Liu Y, Zhang L. TAK1 in Vascular Signaling: "Friend or Foe"? J Inflamm Res 2024; 17:3031-3041. [PMID: 38770174 PMCID: PMC11104388 DOI: 10.2147/jir.s458948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/16/2024] [Indexed: 05/22/2024] Open
Abstract
The maintenance of normal vascular function and homeostasis is largely dependent on the signaling mechanisms that occur within and between cells of the vasculature. TGF-β-activated kinase 1 (TAK1), a multifaceted signaling molecule, has been shown to play critical roles in various tissue types. Although the precise function of TAK1 in the vasculature remains largely unknown, emerging evidence suggests its potential involvement in both physiological and pathological processes. A comprehensive search strategy was employed to identify relevant studies, PubMed, Web of Science, and other relevant databases were systematically searched using keywords related to TAK1, TABs and MAP3K7.In this review, we discussed the role of TAK1 in vascular signaling, with a focus on its function, activation, and related signaling pathways. Specifically, we highlight the TA1-TABs complex is a key factor, regulating vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) involved in the processes of inflammation, vascular proliferation and angiogenesis. This mini review aims to elucidate the evidence supporting TAK1 signaling in the vasculature, in order to better comprehend its beneficial and potential harmful effects upon TAK1 activation in vascular tissue.
Collapse
Affiliation(s)
- Gang Fan
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People’s Republic of China
| | - Jingfen Lu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, 510006, People’s Republic of China
| | - Jinhui Zha
- Shenzhen University, Shenzhen, 518000, People’s Republic of China
| | - Weiming Guo
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People’s Republic of China
| | - Yifei Zhang
- The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, People’s Republic of China
| | - Yuxin Liu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Liyuan Zhang
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, 518052, People’s Republic of China
| |
Collapse
|
6
|
Zhao J, Chen C, Ge L, Jiang Z, Hu Z, Yin L. TAK1 inhibition mitigates intracerebral hemorrhage-induced brain injury through reduction of oxidative stress and neuronal pyroptosis via the NRF2 signaling pathway. Front Immunol 2024; 15:1386780. [PMID: 38756773 PMCID: PMC11096530 DOI: 10.3389/fimmu.2024.1386780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Introduction Intracerebral hemorrhage (ICH) often triggers oxidative stress through reactive oxygen species (ROS). Transforming growth factor-β-activated kinase 1 (TAK1) plays a pivotal role in regulating oxidative stress and inflammation across various diseases. 5Z-7-Oxozeaenol (OZ), a specific inhibitor of TAK1, has exhibited therapeutic effects in various conditions. However, the impact of OZ following ICH and its underlying molecular mechanisms remain elusive. This study aimed to explore the possible role of OZ in ICH and its underlying mechanisms by inhibiting oxidative stress-mediated pyroptosis. Methods Adult male Sprague-Dawley rats were subjected to an ICH model, followed by treatment with OZ. Neurobehavioral function, blood-brain barrier integrity, neuronal pyroptosis, and oxidative stress markers were assessed using various techniques including behavioral tests, immunofluorescence staining, western blotting, transmission electron microscopy, and biochemical assays. Results Our study revealed that OZ administration significantly inhibited phosphorylated TAK1 expression post-ICH. Furthermore, TAK1 blockade by OZ attenuated blood-brain barrier (BBB) disruption, neuroinflammation, and oxidative damage while enhancing neurobehavioral function. Mechanistically, OZ administration markedly reduced ROS production and oxidative stress by facilitating nuclear factor-erythroid 2-related factor 2 (NRF2) nuclear translocation. This was accompanied by a subsequent suppression of the NOD-like receptor protein 3 (NLRP3) activation-mediated inflammatory cascade and neuronal pyroptosis. Discussion Our findings highlight that OZ alleviates brain injury and oxidative stress-mediated pyroptosis via the NRF2 pathway. Inhibition of TAK1 emerges as a promising approach for managing ICH.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chunli Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lite Ge
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zheng Jiang
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Lihong Yin
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- Clinical Medical Research Center for Stroke Prevention and Treatment of Hunan Province, Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
7
|
Wei H, Wang G, Tian Q, Liu C, Han W, Wang J, He P, Li M. Low shear stress induces macrophage infiltration and aggravates aneurysm wall inflammation via CCL7/CCR1/TAK1/ NF-κB axis. Cell Signal 2024; 117:111122. [PMID: 38417634 DOI: 10.1016/j.cellsig.2024.111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/18/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
BACKGROUND This study aimed to elucidate the mechanism by which wall shear stress (WSS) influences vascular walls, accounting for the susceptibility of intracranial aneurysms (IAs) to rupture. METHOD We collected blood samples from the sacs of 24 ruptured and 28 unruptured IAs and analyzed the expression of chemokine CCL7 using enzyme-linked immunosorbent assay (ELISA). Univariate and multivariate logistic regression analyses were employed to assess clinical data, aneurysm morphology, and hemodynamics in both groups. Pearson correlation analysis investigated the relationship between CCL7 expression in aneurysm sac blood and WSS. Additionally, we established a bionic cell parallel plate co-culture shear stress model and a mouse low shear stress (LSS) model. The model was modulated using CCL7 recombinant protein, CCR1 inhibitor, and TAK1 inhibitor. We further evaluated CCL7 expression in endothelial cells and the levels of TAK1, NF-κB, IL-1β, and TNF-α in macrophages. Subsequently, the intergroup differences in expression were calculated. RESULTS CCL7 expression was significantly higher in the ruptured group compared to the unruptured group. Hemodynamic analysis indicated that WSS was an independent predictor of the risk of aneurysm rupture. A negative linear correlation was observed between CCL7 expression and WSS. Upon addition of CCL7 recombinant protein, upregulation of CCR1 expression and increased levels of p-TAK1 and p-p65 were observed. Treatment with CCR1 and TAK1 inhibitors reduced inflammatory cytokine expression in macrophages under LSS conditions. Overexpression of TAK1 significantly alleviated the inhibitory effects of CCR1 inhibitors on p-p65 and inflammatory cytokines. CONCLUSION LSS prompts endothelial cells to secrete CCL7, which, upon binding to the macrophage surface receptor CCR1, stimulates the release of macrophage inflammatory factors via the TAK1/NF-κB signaling pathway. This process exacerbates aneurysm wall inflammation and increases the risk of aneurysm rupture.
Collapse
Affiliation(s)
- Heng Wei
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Jianfeng Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Peibang He
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
8
|
Han N, Xu X, Liu Y, Luo G. AAV2-antiVEGFscFv gene therapy for retinal neovascularization. Mol Ther Methods Clin Dev 2023; 31:101145. [PMID: 38027065 PMCID: PMC10679950 DOI: 10.1016/j.omtm.2023.101145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Retinal neovascularization (NV) may lead to irreversible vision impairment, the main treatment for which is the inhibition of vascular endothelial growth factor (VEGF). Existing drugs show limited clinical benefits because of their high prices and short half-lives, which increase the financial burden and medical risks to patients. Gene therapy on the basis of adeno-associated viruses is a promising approach to overcome these limitations because of the nonintegrative nature, low immunogenicity, and potential long-term gene expression of adeno-associated viruses. In this study, we constructed a novel recombinant adeno-associated virus with the single-chain fragment variable (scFv) fragment of the anti-VEGF antibody, AAV2-antiVEGFscFv, consisting of the VH and VL structural domains of IgG. AAV2-antiVEGFscFv effectively inhibited NV, retinal leakage, and retinal detachment in oxygen-induced retinopathy (OIR) mice, Tet/opsin/VEGF double-transgenic mice, and VEGF-induced rabbit NV models. AAV2-antiVEGFscFv also significantly suppressed VEGF-induced inflammation. Furthermore, we showed that AAV2-antiVEGFscFv could be sustainably expressed for a prolonged period and exhibited low immunotoxicity in vivo. This study indicates that AAV2-antiVEGFscFv could be a potential approach for NV treatment and provides strong support for preclinical research.
Collapse
Affiliation(s)
- Ni Han
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Xin Xu
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
| | - Ying Liu
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang 110122, China
| | - Guangzuo Luo
- Institute of Health Sciences, China Medical University, Shenyang 110122, China
- Bionce Biotechnology, Ltd., Nanjing 210061, China
| |
Collapse
|
9
|
Fitriana I, Wu CH, Hsu TJ, Chan YJ, Li CH, Lee CC, Hsiao G, Cheng YW. Activation of aryl hydrocarbon receptor by azatyrosine-phenylbutyric hydroxamide inhibits progression of diabetic retinopathy mice. Biochem Pharmacol 2023; 215:115700. [PMID: 37482199 DOI: 10.1016/j.bcp.2023.115700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Diabetic retinopathy (DR) is a severe consequence of long-term diabetes mellitus and may lead to vision loss. Retinal pigment epithelial (RPE) cells are a diverse group of retinal cells with varied metabolic and functional roles. In hypoxic conditions, RPE cells have been shown to produce angiogenic factors, such as vascular endothelial growth factor (VEGF), which is regulated by hypoxia-inducible factor 1-alpha (HIF1A). VEGF plays a crucial role in angiogenesis in DR. In the present study, we investigated whether azatyrosine-phenylbutyric hydroxamide (AZP) has therapeutic effect on DR therapy. In this study, we treated high glucose-activated human retinal pigment epithelial cells (ARPE-19) with and without AZP. The effector proteins were evaluated using western blotting. In the in vivo study, AZP was administered to the db/db mice as a DR animal model. Moreover, invasive imaging techniques such as optical coherence tomography (OCT), fundus photography, and fundus fluorescein angiography (FFA) were performed on the mice to assess DR progression. We found that treatment of AZP for 12 weeks reversed increasing DR retinal alterations in db/db mice, decreasing vascular density, retinal blood perfusion, retinal thickness, decreasing DR lesion, lipofuscin accumulation, HIF1A, VEGF, and inflammation factor expression. In addition, AZP treatment could activate the aryl hydrocarbon receptor AHR and reverse the high-glucose-induced HIF1A and VEGF in ARPE-19 cells and db/db mice. In conclusion, AZP activated AHR while inhibiting HIF1A and VEGF. This study indicates that AZP may be a promising therapeutic agent for treating DR.
Collapse
Affiliation(s)
- Ida Fitriana
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Department of Pharmacology, Faculty of Veterinary Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Chia-Hua Wu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Tai-Ju Hsu
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Yen-Ju Chan
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Hao Li
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chen-Chen Lee
- Department of Microbiology and Immunology, School of Medicine, China Medical University, Taichung, Taiwan
| | - George Hsiao
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Yu-Wen Cheng
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taiwan.
| |
Collapse
|
10
|
Dai Y, Nasehi F, Winchester CD, Foley AC. Tbx5 overexpression in embryoid bodies increases TAK1 expression but does not enhance the differentiation of sinoatrial node cardiomyocytes. Biol Open 2023; 12:bio059881. [PMID: 37272627 PMCID: PMC10261723 DOI: 10.1242/bio.059881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023] Open
Abstract
Genetic studies place Tbx5 at the apex of the sinoatrial node (SAN) transcriptional program. To understand its role in SAN differentiation, clonal embryonic stem (ES) cell lines were made that conditionally overexpress Tbx5, Tbx3, Tbx18, Shox2, Islet-1, and MAP3k7/TAK1. Cardiac cells differentiated using embryoid bodies (EBs). EBs overexpressing Tbx5, Islet1, and TAK1 beat faster than cardiac cells differentiated from control ES cell lines, suggesting possible roles in SAN differentiation. Tbx5 overexpressing EBs showed increased expression of TAK1, but cardiomyocytes did not differentiate as SAN cells. EBs showed no change in the expression of the SAN transcription factors Shox2 and Islet1 and decreased expression of the SAN channel protein HCN4. EBs constitutively overexpressing TAK1 direct cardiac differentiation to the SAN fate but have reduced phosphorylation of its targets, p38 and Jnk. This opens the possibility that blocking the phosphorylation of TAK1 targets may have the same impact as forced overexpression. To test this, we treated EBs with 5z-7-Oxozeanol (OXO), an inhibitor of TAK1 phosphorylation. Like TAK1 overexpressing cardiac cells, cardiomyocytes differentiated in the presence of OXO beat faster and showed increased expression of SAN genes (Shox2, HCN4, and Islet1). This suggests that activation of the SAN transcriptional network can be accomplished by blocking the phosphorylation of TAK1.
Collapse
Affiliation(s)
- Yunkai Dai
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Fatemeh Nasehi
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Charles D. Winchester
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| | - Ann C. Foley
- Clemson University, Department of Bioengineering, 68 President Street, Charleston, SC 29425, USA
| |
Collapse
|