1
|
Feng R, Liu J, Yao T, Yang Z, Jiang H. Neurotoxicity of Realgar: Crosstalk Between UBXD8-DRP1-Regulated Mitochondrial Fission and PINK1-Parkin-Mediated Mitophagy. Mol Neurobiol 2025; 62:7041-7053. [PMID: 39570499 DOI: 10.1007/s12035-024-04635-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 11/12/2024] [Indexed: 11/22/2024]
Abstract
Realgar is a toxic mineral medicine containing arsenic that is present in many traditional Chinese medicines. It has been reported that the abuse of drugs containing realgar has potential neurotoxicity, but its mechanism of toxicity has not been fully clarified. In this study, we demonstrated that arsenic in realgar promoted mitochondrial fission via UBXD8-mediated DRP1 translocation to the mitochondria and activated mitophagy via PINK1-Parkin, resulting in mitochondrial dysfunction and nerve cell death in the rat cortex. We used PC12 cells and treated them with inorganic arsenic (iAs). Mdivi-1, a mitochondrial fission inhibitor, and the siRNA UBXD8 or PINK1 were used as interventions to verify the precise mechanism by which arsenic affects realgar-induced mitochondrial instability. The results revealed that the arsenic in realgar accumulated in the brain and led to neurobehavioral abnormalities in the rats. We demonstrated that arsenic in realgar-induced high expression of UBXD8 promoted the translocation of DRP1 to the mitochondria, where it underwent phosphorylation, which led to the over-fission of the mitochondria and mitochondria-mediated apoptosis. Moreover, the over-fission of the mitochondria activates mitophagy, which is self-protective but only partially alleviates apoptosis and mitochondria dysfunction. Our findings revealed the crosstalk between mitochondrial fission and mitophagy in realgar-induced neurotoxicity. These results highlight the role of the transposition of DRP1 by UBXD8 in realgar-induced mitochondrial dysfunction and provide new ideas and data for the study of the mechanism of realgar-induced neurotoxicity.
Collapse
Affiliation(s)
- Rui Feng
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Tiantian Yao
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Zhao Yang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China
| | - Hong Jiang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.
- Key Laboratory of Liaoning Province On Toxic and Biological Effects of Arsenic, Shengyang, 110122, China.
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shengyang, 110122, China.
| |
Collapse
|
2
|
Rahmani S, Roohbakhsh A, Hasani Nourian Y, Karimi G. The Protective Effect of Ellagic Acid and Its Metabolites Against Organ Injuries: A Mitochondrial Perspective. Food Sci Nutr 2025; 13:e70077. [PMID: 40206693 PMCID: PMC11979624 DOI: 10.1002/fsn3.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/10/2025] [Accepted: 02/15/2025] [Indexed: 04/11/2025] Open
Abstract
Mitochondria are essential for maintaining health, and dysfunction of them leads to various diseases. Their role is not limited to energy production but serves multiple mechanisms varying from calcium hemostasis, reactive oxygen species production, and regulation of apoptotic cell death. In recent years, several strategies have been developed to preserve mitochondria. Ellagic acid (EA) is a polyphenol extracted from many plants. The intestinal microflora converts EA to urolithins with high bioavailability. EA and urolithins exhibit mitochondrial-protective effects by regulating mitochondrial complexes, sirtuins, mitophagy, and mitochondrial antioxidant enzymes. This review highlights the mito-protective effects of EA and urolithins on mitochondrial injuries induced by various drugs and toxic compounds.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Institute of Pharmaceutical Technology, Pharmaceutical Research CenterMashhad University of Medical SciencesMashhadIran
| | - Yazdan Hasani Nourian
- Chemical Injuries Research Center, Systems Biology and Poisonings InstituteBaqiyatallah University of Medical SciencesTehranIran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Institute of Pharmaceutical Technology, Pharmaceutical Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
3
|
Cai WW, Qin YY, Ge F, Zhou Q, Huang L, Yang PB, Xia J, Li KK, Hou YF, Wu JM, Wang DY, You Y, Lu WJ, Gao S. Xin-Ji-Er-Kang balances mitochondrial fusion and fission to protect cardiomyocytes in mice with heart failure by regulating the ERα/SIRT3 pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156420. [PMID: 39914067 DOI: 10.1016/j.phymed.2025.156420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Mitochondrial dynamics imbalance is an essential pathological mechanism in heart failure (HF). The Chinese herbal formula Xin-Ji-Er-Kang (XJEK) has demonstrated good therapeutic effects in various cardiovascular disease models. However, whether XJEK treats HF by regulating mitochondrial dynamics homeostasis and its specific molecular mechanisms remain elusive. PURPOSE To investigate the effect of XJEK on restoring the disrupted mitochondrial dynamics homeostasis in HF and elucidate the potential regulatory mechanism. STUDY-DESIGN/METHODS A mouse model of myocardial ischemia-reperfusion (MIR)-induced HF was established to assess the cardioprotection of XJEK. Subsequently, network pharmacology was employed to predict the mechanism by which XJEK treated HF. Moreover, gene silencing was employed to explore the potential mechanisms behind the cardioprotective effects of XJEK in AC16 cells subjected to hypoxia/reoxygenation (H/R). RESULTS XJEK treatment significantly attenuated myocardial fibrosis and ameliorated ventricular remodeling in post-MIR-induced HF mice. Network pharmacology analysis identified the estrogen receptor α (ERα) as a key regulator of XJEK-mediated cardioprotection. XJEK disordered mitochondrial dynamics in the hearts of MIR-induced HF mice. In addition, XJEK restored mitochondrial fusion-fission imbalance and facilitated ERα nuclear translocation to up-regulate sirtuin 3 (SIRT3) expression in the hearts of MIR-induced HF mice and H/R-induced AC16 cells. Notably, ERα depletion in cardiomyocytes completely abrogated the cardioprotective effects of XJEK. CONCLUSION XJEK safeguards the hearts in mice with MIR-induced HF by facilitating ERα nuclear translocation to up-regulate SIRT3 expression to rescue the mitochondrial fusion-fission imbalance. This study establishes a new theoretical basis for treating HF with XJEK.
Collapse
Affiliation(s)
- Wei-Wei Cai
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Yuan-Yuan Qin
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Fei Ge
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Qing Zhou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Lei Huang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Pang-Bo Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Jie Xia
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Ke-Ke Li
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Yi-Fan Hou
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Jia-Min Wu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Ding-Yan Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China
| | - Ya You
- Department of Cardiology, the Second Affiliated Hospital of Anhui Medical University, Hefei City 230601, PR China.
| | - Wen-Jie Lu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China.
| | - Shan Gao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, PR China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei 230032, PR China.
| |
Collapse
|
4
|
Su S, Wu X, Li B, Zhang F, Zhang K, Wang H, Lin Y, Chen J. Inhibition of ERK1/2 mediated activation of Drp1 alleviates intervertebral disc degeneration via suppressing pyroptosis and apoptosis in nucleus pulposus cells. J Orthop Translat 2025; 51:163-175. [PMID: 40160807 PMCID: PMC11952795 DOI: 10.1016/j.jot.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/15/2024] [Accepted: 01/12/2025] [Indexed: 04/02/2025] Open
Abstract
Objective Dynamin-related protein 1 (Drp1) plays a crucial role in various inflammatory and degenerative diseases, yet its involvement in intervertebral disc degeneration (IVDD) remains poorly understood. This study aims to elucidate the mechanism by which Drp1 contributes to IVDD and to identify the efficacy of the Drp1 inhibitor Mdivi-1 on IVDD. Methods Tert-butyl hydroperoxide (TBHP) is utilized to induce an oxidative stress microenvironment in vitro. In vivo, IVDD model is constructed in 8-week old rats through puncture operation. The therapeutic effect of Mdivi-1 is evaluated through X-ray, MRI and histological analysis. A comprehensive set of experiments, including single-cell sequencing analysis, western blot, flow cytometry and immunofluorescence staining, are conducted to investigate the role and underlying mechanisms of Drp1 in vitro. Results Our study demonstrates that the expression of Drp1 and phosphorylated Drp1 (p-Drp1) are up-regulated in degenerative nucleus pulposus cells (NPCs), which are accompanied with increased pyroptosis and apoptosis. In vivo, both si-Drp1-mediated Drp1 knockdown and the pharmacological inhibitor Mdivi-1 alleviate puncture-induced IVDD in rats. In vitro, si-Drp1 or Mdivi-1 inhibits mitochondria-dependent apoptosis and pyroptosis triggered by TBHP. Mechanistically, Mdivi-1 reduces p-Drp1 levels, inhibits excessive mitochondrial fission, and mitigates mitochondrial dysfunction. Drp1 phosphorylation-based Drp1 mitochondrial translocation and subsequent apoptosis and pyroptosis are regulated by ERK1/2 phosphorylation in NPCs under oxidative stress condition. Conclusion This study highlights the involvement of Drp1 in the pathological progression of degenerative NPCs in IVDD, which is regulated by ERK1/2. Pharmacological inhibition of Drp1 with Mdivi-1 protects NPCs by promoting mitochondrial function and attenuating apoptosis and pyroptosis. These findings suggest that Mdivi-1 is a promising therapeutic candidate for IVDD treatment. Translational Potential By offering experimental evidence on the role and mechanism of Drp1 in IVDD, this study underscores the potential of Mdivi-1 as a therapeutic strategy for IVDD.
Collapse
Affiliation(s)
- Shenkai Su
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Xuanzhang Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Bin Li
- Department of Orthopaedics, Yuhuan People’s Hospital, Taizhou, Zhejiang Province, China
| | - Fengyu Zhang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Kaiying Zhang
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Hui Wang
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- Institute of Autoimmune Diseases, School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
| |
Collapse
|
5
|
Zhang W, Ding F, Rong X, Ren Q, Hasegawa T, Liu H, Li M. Aβ -induced excessive mitochondrial fission drives type H blood vessels injury to aggravate bone loss in APP/PS1 mice with Alzheimer's diseases. Aging Cell 2025; 24:e14374. [PMID: 39411913 PMCID: PMC11822656 DOI: 10.1111/acel.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 02/14/2025] Open
Abstract
Alzheimer's diseases (AD) patients suffer from more serious bone loss than cognitively normal subjects at the same age. Type H blood vessels were tightly associated with bone homeostasis. However, few studies have concentrated on bone vascular alteration and its role in AD-related bone loss. In this study, APP/PS1 mice (4- and 8-month-old) and age-matched wild-type mice were used to assess the bone vascular alteration and its role in AD-related bone loss. Transmission electron microscopy, immunofluorescence staining and iGPS 1.0 software database were utilized to investigate the molecular mechanism. Mitochondrial division inhibitor (Mdivi-1) and GSK-3β inhibitor (LiCl) were used to rescue type H blood vessels injury and verify the molecular mechanism. Our results revealed that APP/PS1 mice exhibited more serious bone blood vessels injury and bone loss during ageing. The bone blood vessel injury, especially in type H blood vessels, was accompanied by impaired vascularized osteogenesis in APP/PS1 mice. Further exploration indicated that beta-amyloid (Aβ) promoted the apoptosis of vascular endothelial cells (ECs) and resulted in type H blood vessels injury. Mechanistically, Aβ-induced excessive mitochondrial fission was found to be essential for the apoptosis of ECs. GSK-3β was identified as a key regulatory target of Aβ-induced excessive mitochondrial fission and bone loss. The findings delineated that Aβ-induced excessive mitochondrial fission drives type H blood vessels injury, leading to aggravate bone loss in APP/PS1 mice and GSK-3β inhibitor emerges as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Weidong Zhang
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Fan Ding
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Xing Rong
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Qinghua Ren
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Tomoka Hasegawa
- Developmental Biology of Hard Tissue, Graduate School of Dental Medicine, Faculty of Dental MedicineHokkaido UniversitySapporoJapan
| | - Hongrui Liu
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
| | - Minqi Li
- Department of Bone MetabolismSchool and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral DiseasesJinanChina
- Center of Osteoporosis and Bone Mineral ResearchShandong UniversityJinanChina
- School of Clinical Medicine, Jining Medical UniversityJiningChina
| |
Collapse
|
6
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Karimi G. The Cardiovascular Protective Function of Natural Compounds Through AMPK/SIRT1/PGC-1α Signaling Pathway. Food Sci Nutr 2024; 12:9998-10009. [PMID: 39723061 PMCID: PMC11666815 DOI: 10.1002/fsn3.4553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 12/28/2024] Open
Abstract
Cardiovascular disease (CVD) poses a major risk to human health and exert a heavy burden on individuals, society, and healthcare systems. Therefore, it is critical to identify CVD's underlying mechanism(s) and target them using effective agents. Natural compounds have shown promise as antioxidants with cardioprotective functions against CVD injuries due to their antioxidative solid capacity and high safety profile. Several CVDs, such as heart failure, ischemia/reperfusion, atherosclerosis, and cardiomyopathies, are closely linked to mitochondrial dysfunction. It is well established that activating the AMPK/SIRT1/PGC-1α pathway during CVD promotes mitochondrial function. Therefore, targeting the AMPK/SIRT1/PGC-1α pathway provides a foundation for novel therapeutic strategies to combat CVD. A key goal of our search was to find natural compounds that target this biological pathway and have beneficial effects on CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| | - Vahid Pourbarkhordar
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research Center, Institute of Pharmaceutical TechnologyMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
7
|
Pourbarkhordar V, Rahmani S, Roohbakhsh A, Hayes AW, Karimi G. Melatonin effect on breast and ovarian cancers by targeting the PI3K/Akt/mTOR pathway. IUBMB Life 2024; 76:1035-1049. [PMID: 39212097 DOI: 10.1002/iub.2900] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Melatonin, the hormone of the pineal gland, possesses a range of physiological functions, and recently, its anticancer effect has become more apparent. A more thorough understanding of molecular alterations in the components of several signaling pathways as new targets for cancer therapy is needed because of current innate restrictions such as drug toxicity, side effects, and acquired or de novo resistance. The PI3K/Akt/mTOR pathway is overactivated in many solid tumors, such as breast and ovarian cancers. This pathway in normal cells is essential for growth, proliferation, and survival. However, it is an undesirable characteristic in malignant cells. We have reviewed multiple studies about the effect of melatonin on breast and ovarian cancer, focusing on the PI3K/Akt/mTOR pathway. Melatonin exerts its inhibitory effects via several mechanisms. A: Downregulation of downstream or upstream components of the signaling pathway such as phosphatase and tensin homolog (PTEN), phosphatidylinositol (3,4,5)-trisphosphate kinase (PI3K), p-PI3K, Akt, p-Akt, mammalian target of rapamycin (mTOR), and mTOR complex1 (mTORC1). B: Apoptosis induction by decreasing MDM2 expression, a downstream target of Akt, and mTOR, which leads to Bad activation in addition to Bcl-XL and p53 inhibition. C: Induction of autophagy in cancer cells via activating ULK1 after mTOR inhibition, resulting in Beclin-1 phosphorylation. Beclin-1 with AMBRA1 and VPS34 promotes PI3K complex I activity and autophagy in cancer cells. The PI3K/Akt/mTOR pathway overlaps with other intracellular signaling pathways and components such as AMP-activated protein kinase (AMPK), Wnt/β-catenin, mitogen-activated protein kinase (MAPK), and other similar pathways. Cancer therapy can benefit from understanding how these pathways interact and how melatonin affects these pathways.
Collapse
Affiliation(s)
- Vahid Pourbarkhordar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Lan X, Wang Q, Liu Y, You Q, Wei W, Zhu C, Hai D, Cai Z, Yu J, Zhang J, Liu N. Isoliquiritigenin alleviates cerebral ischemia-reperfusion injury by reducing oxidative stress and ameliorating mitochondrial dysfunction via activating the Nrf2 pathway. Redox Biol 2024; 77:103406. [PMID: 39454290 PMCID: PMC11546133 DOI: 10.1016/j.redox.2024.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024] Open
Abstract
Cerebral ischemia-reperfusion injury (CIRI) refers to a secondary brain injury that occurs when blood supply is restored to ischemic brain tissue and is one of the leading causes of adult disability and mortality. Multiple pathological mechanisms are involved in the progression of CIRI, including neuronal oxidative stress and mitochondrial dysfunction. Isoliquiritigenin (ISL) has been preliminarily reported to have potential neuroprotective effects on rats subjected to cerebral ischemic insult. However, the protective mechanisms of ISL have not been elucidated. This study aims to further investigate the effects of ISL-mediated neuroprotection and elucidate the underlying molecular mechanism. The findings indicate that ISL treatment significantly alleviated middle cerebral artery occlusion (MCAO)-induced cerebral infarction, neurological deficits, histopathological damage, and neuronal apoptosis in mice. In vitro, ISL effectively mitigated the reduction of cell viability, Na+-K+-ATPase, and MnSOD activities, as well as the degree of DNA damage induced by oxygen-glucose deprivation (OGD) injury in PC12 cells. Mechanistic studies revealed that administration of ISL evidently improved redox homeostasis and restored mitochondrial function via inhibiting oxidative stress injury and ameliorating mitochondrial biogenesis, mitochondrial fusion-fission balance, and mitophagy. Moreover, ISL facilitated the dissociation of Keap1/Nrf2, enhanced the nuclear transfer of Nrf2, and promoted the binding activity of Nrf2 with ARE. Finally, ISL obviously inhibited neuronal apoptosis by activating the Nrf2 pathway and ameliorating mitochondrial dysfunction in mice. Nevertheless, Nrf2 inhibitor brusatol reversed the mitochondrial protective properties and anti-apoptotic effects of ISL both in vivo and in vitro. Overall, our findings revealed that ISL exhibited a profound neuroprotective effect on mice following CIRI insult by reducing oxidative stress and ameliorating mitochondrial dysfunction, which was closely related to the activation of the Nrf2 pathway.
Collapse
Affiliation(s)
- Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qing Wang
- Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yue Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Qing You
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Wei Wei
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Chunhao Zhu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dongmei Hai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Zhenyu Cai
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Jianqiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Ning Liu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China; Ningxia Characteristic Traditional Chinese Medicine Modern Engineering Research Center, Ningxia Medical University, Yinchuan, 750004, China.
| |
Collapse
|
9
|
Helli B, Navabi SP, Hosseini SA, Sabahi A, Khorsandi L, Amirrajab N, Mahdavinia M, Rahmani S, Dehghani MA. The Protective Effects of Syringic Acid on Bisphenol A-Induced Neurotoxicity Possibly Through AMPK/PGC-1α/Fndc5 and CREB/BDNF Signaling Pathways. Mol Neurobiol 2024; 61:7767-7784. [PMID: 38430353 DOI: 10.1007/s12035-024-04048-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/06/2024] [Indexed: 03/03/2024]
Abstract
Bisphenol A (BPA), an endocrine disruptor, is commonly used to produce epoxy resins and polycarbonate plastics. Continuous exposure to BPA may contribute to the development of diseases in humans and seriously affect their health. Previous research suggests a significant relationship between the increased incidence of neurological diseases and the level of BPA in the living environment. Syringic acid (SA), a natural derivative of gallic acid, has recently considered much attention due to neuromodulator activity and its anti-oxidant, anti-apoptotic, and anti-inflammatory effects. Therefore, in this study, we aimed to investigate the effects of SA on oxidative stress, apoptosis, memory and locomotor disorders, and mitochondrial function, and to identify the mechanisms related to Alzheimer's disease (AD) in the brain of rats receiving high doses of BPA. For this purpose, male Wistar rats received BPA (50, 100, and 200 mg/kg) and SA (50 mg/kg) for 21 days. The results showed that BPA exposure significantly altered the rats' neurobehavioral responses. Additionally, BPA, by increasing the level of ROS, and MDA level, increased the level of oxidative stress while reducing the level of antioxidant enzymes, such as SOD, CAT, GPx, and mitochondrial GSH. The administration of BPA at 200 mg/kg significantly decreased the expression of ERRα, TFAM, irisin, PGC-1α, Bcl-2, and FNDC5, while it increased the expression of TrkB, cytochrome C, caspase 3, and Bax. Moreover, the Western blotting results showed that BPA increased the levels of P-AMPK, GSK3b, p-tau, and Aβ, while it decreased the levels of PKA, P-PKA, Akt, BDNF, CREB, P-CREB, and PI3K. Meanwhile, SA at 50 mg/kg reversed the behavioral, biochemical, and molecular changes induced by high doses of BPA. Overall, BPA could lead to the development of AD by affecting the mitochondria-dependent apoptosis pathway, as well as AMPK/PGC-1α/FNDC5 and CREB/BDNF/TrkB signaling pathways, and finally, by increasing the expression of tau and Aβ proteins. In conclusion, SA, as an antioxidant, significantly reduced the toxicity of BPA.
Collapse
Affiliation(s)
- Bizhan Helli
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyedeh Parisa Navabi
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Ahmad Hosseini
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Sabahi
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Layasadat Khorsandi
- Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Nasrin Amirrajab
- Department of Laboratory Sciences' School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Masoud Mahdavinia
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sohrab Rahmani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Amin Dehghani
- Nutrition and Metabolic Disease Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
- Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
10
|
Rahmani S, Roohbakhsh A, Pourbarkhordar V, Hayes AW, Karimi G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J Cell Mol Med 2024; 28:e70074. [PMID: 39333694 PMCID: PMC11436317 DOI: 10.1111/jcmm.70074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/27/2024] [Accepted: 08/28/2024] [Indexed: 09/29/2024] Open
Abstract
Despite extensive progress in the knowledge and understanding of cardiovascular diseases and significant advances in pharmacological treatments and procedural interventions, cardiovascular diseases (CVD) remain the leading cause of death globally. Mitochondrial dynamics refers to the repetitive cycle of fission and fusion of the mitochondrial network. Fission and fusion balance regulate mitochondrial shape and influence physiology, quality and homeostasis. Mitophagy is a process that eliminates aberrant mitochondria. Melatonin (Mel) is a pineal-synthesized hormone with a range of pharmacological properties. Numerous nonclinical trials have demonstrated that Mel provides cardioprotection against ischemia/reperfusion, cardiomyopathies, atherosclerosis and cardiotoxicity. Recently, interest has grown in how mitochondrial dynamics contribute to melatonin cardioprotective effects. This review assesses the literature on the protective effects of Mel against CVD via the regulation of mitochondrial dynamics and mitophagy in both in-vivo and in-vitro studies. The signalling pathways underlying its cardioprotective effects were reviewed. Mel modulated mitochondrial dynamics and mitophagy proteins by upregulation of mitofusin, inhibition of DRP1 and regulation of mitophagy-related proteins. The evidence supports a significant role of Mel in mitochondrial dynamics and mitophagy quality control in CVD.
Collapse
Affiliation(s)
- Sohrab Rahmani
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Pourbarkhordar
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Institute of Pharmaceutical Technology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Ding R, Wang Y, Xu L, Sang S, Wu G, Yang W, Zhang Y, Wang C, Qi A, Xie H, Liu Y, Dai A, Jiao L. QiDongNing induces lung cancer cell apoptosis via triggering P53/DRP1-mediated mitochondrial fission. J Cell Mol Med 2024; 28:e18353. [PMID: 38682742 PMCID: PMC11057058 DOI: 10.1111/jcmm.18353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024] Open
Abstract
Non-small-cell lung cancer (NSCLC) is a major cause of worldwide cancer death, posing a challenge for effective treatment. Our previous findings showed that Chinese herbal medicine (CHM) QiDongNing (QDN) could upregulate the expression of p53 and trigger cell apoptosis in NSCLC. Here, our objective was to investigate the mechanisms of QDN-induced apoptosis enhancement. We chose A549 and NCI-H460 cells for validation in vitro, and LLC cells were applied to form a subcutaneous transplantation tumour model for validation in more depth. Our findings indicated that QDN inhibited multiple biological behaviours, including cell proliferation, cloning, migration, invasion and induction of apoptosis. We further discovered that QDN increased the pro-apoptotic BAX while inhibiting the anti-apoptotic Bcl2. QDN therapy led to a decline in adenosine triphosphate (ATP) and a rise in reactive oxygen species (ROS). Furthermore, QDN elevated the levels of the tumour suppressor p53 and the mitochondrial division factor DRP1 and FIS1, and decreased the mitochondrial fusion molecules MFN1, MFN2, and OPA1. The results were further verified by rescue experiments, the p53 inhibitor Pifithrin-α and the mitochondrial division inhibitor Mdivi1 partially inhibited QDN-induced apoptosis and mitochondrial dysfunction, whereas overexpression of p53 rather increased the efficacy of the therapy. Additionally, QDN inhibited tumour growth with acceptable safety in vivo. In conclusion, QDN induced apoptosis via triggering p53/DRP1-mediated mitochondrial fission in NSCLC cells.
Collapse
Affiliation(s)
- Rongzhen Ding
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan ProvinceHunan University of Chinese MedicineChangshaChina
- Department of Respiratory Diseases, Medical SchoolHunan University of Chinese MedicineChangshaChina
| | - Yichao Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ling Xu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shuliu Sang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Guanjin Wu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Wenxiao Yang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yilu Zhang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Chengyan Wang
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ao Qi
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Haiping Xie
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan ProvinceHunan University of Chinese MedicineChangshaChina
- Department of Respiratory Diseases, Medical SchoolHunan University of Chinese MedicineChangshaChina
| | - Yi Liu
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan ProvinceHunan University of Chinese MedicineChangshaChina
- Department of Respiratory Diseases, Medical SchoolHunan University of Chinese MedicineChangshaChina
| | - Lijing Jiao
- Department of Oncology, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
- Institute of Translational Cancer Research for Integrated Chinese and Western Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western MedicineShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
12
|
Yi Q, Xu Z, Thakur A, Zhang K, Liang Q, Liu Y, Yan Y. Current understanding of plant-derived exosome-like nanoparticles in regulating the inflammatory response and immune system microenvironment. Pharmacol Res 2023; 190:106733. [PMID: 36931541 DOI: 10.1016/j.phrs.2023.106733] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/17/2023]
Abstract
Natural compounds are widely used to prevent and treat various diseases due to their antioxidant and anti-inflammatory effects. As a kind of promising natural compound, plant-derived exosome-like nanoparticles (PELNs) are extracted from multivesicular bodies of various edible plants, including vegetables, foods, and fruits, and mainly regulate the cellular immune response to pathogen attacks. Moreover, PELNs could remarkably interfere with the dynamic imbalance between pro-inflammatory and anti-inflammatory effects, facilitating to maintain the homeostasis of cellular immune microenvironment. PELNs may serve as a better alternative to animal-derived exosomes (ADEs) owing to their widespread sources, cost-effectiveness, and easy accessibility. PELNs can mediate interspecies communication by transferring various cargoes such as proteins, lipids, and nucleic acids from plant cells to mammalian cells. This review summarizes the biogenesis, composition, and classification of exosomes; the common separation, purification, and characterization methods of PELNs, the potential advantages of PELNs over ADEs; and the anti-inflammatory and immunomodulatory functions of PELNs in various diseases including colitis, cancer, and inflammation-associated metabolic diseases. Additionally, the future perspectives of PELNs and the challenges associated with their clinical application are discussed.
Collapse
Affiliation(s)
- Qiaoli Yi
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Abhimanyu Thakur
- Pritzker School of Molecular Engineering, Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Kui Zhang
- State Key Laboratory of Silkworm Genome Biology, Medical Research Institute, Southwest University, Chongqing 400715, China
| | - Qiuju Liang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanhong Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
13
|
Wang P, Zheng SY, Jiang RL, Wu HD, Li YA, Lu JL, Ye X, Han B, Lin L. Necroptosis signaling and mitochondrial dysfunction cross-talking facilitate cell death mediated by chelerythrine in glioma. Free Radic Biol Med 2023; 202:76-96. [PMID: 36997101 DOI: 10.1016/j.freeradbiomed.2023.03.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/06/2023] [Accepted: 03/23/2023] [Indexed: 04/01/2023]
Abstract
Glioma is the most common primary malignant brain tumor with poor survival and limited therapeutic options. Chelerythrine (CHE), a natural benzophenanthridine alkaloid, has been reported to exhibit the anti-tumor effects in a variety of cancer cells. However, the molecular target and the signaling process of CHE in glioma remain elusive. Here we investigated the underlying mechanisms of CHE in glioma cell lines and glioma xenograft mice model. Our results found that CHE-induced cell death is associated with RIP1/RIP3-dependent necroptosis rather than apoptotic cell death in glioma cells at the early time. Mechanism investigation revealed the cross-talking between necroptosis and mitochondria dysfunction that CHE triggered generation of mitochondrial ROS, mitochondrial depolarization, reduction of ATP level and mitochondrial fragmentation, which was the important trigger for RIP1-dependent necroptosis activation. Meanwhile, PINK1 and parkin-dependent mitophagy promoted clearance of impaired mitochondria in CHE-incubated glioma cells, and inhibition of mitophagy with CQ selectively enhanced CHE-induced necroptosis. Furthermore, early cytosolic calcium from the influx of extracellular Ca2+ induced by CHE acted as important "priming signals" for impairment of mitochondrial dysfunction and necroptosis. Suppression of mitochondrial ROS contributed to interrupting positive feedback between mitochondrial damage and RIPK1/RIPK3 necrosome. Lastly, subcutaneous tumor growth in U87 xenograft was suppressed by CHE without significant body weight loss and multi-organ toxicities. In summary, the present study helped to elucidate necroptosis was induced by CHE via mtROS-mediated formation of the RIP1-RIP3-Drp1 complex that promoted Drp1 mitochondrial translocation to enhance necroptosis. Our findings indicated that CHE could potentially be further developed as a novel therapeutic strategy for treatment of glioma.
Collapse
Affiliation(s)
- Peng Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Shi-Yi Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Ruo-Lin Jiang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Hao-Di Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yong-Ang Li
- Department of Neurosurgery, The First People's Hospital of Wenling, Wenling, 317500, China
| | - Jiang-Long Lu
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiong Ye
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325035, China
| | - Bo Han
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|