1
|
ElNebrisi E, Lozon Y, Oz M. The Role of α7-Nicotinic Acetylcholine Receptors in the Pathophysiology and Treatment of Parkinson's Disease. Int J Mol Sci 2025; 26:3210. [PMID: 40244021 PMCID: PMC11990008 DOI: 10.3390/ijms26073210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
The α7 nicotinic acetylcholine receptor (α7-nAChR) is a pivotal regulator of neurotransmission, neuroprotection, and immune modulation in the central nervous system. This review explores its structural and functional attributes, highlighting its therapeutic potential in neurodegenerative disorders, particularly Parkinson's disease (PD). α7-nAChRs mediate synaptic plasticity, modulate inflammatory responses, and influence dopamine release, positioning them as a promising pharmacological target. Positive allosteric modulators (PAMs) enhance α7-nAChR activity mainly by reducing desensitization, offering a superior therapeutic approach compared with direct agonists. Emerging preclinical studies suggest that α7-nAChR activation mitigates dopaminergic neurodegeneration, improves L-dopa-induced dyskinesia, and reduces neuroinflammation. Despite promising findings, clinical trials have yielded mixed results, necessitating further research into optimizing α7-targeted therapies. This review underscores the significance of α7-nAChRs in PD pathophysiology and highlights future directions for their translational potential in neuroprotection and symptomatic relief.
Collapse
Affiliation(s)
- Eslam ElNebrisi
- Department of Biomedical Sciences, Dubai Medical College for Girls, Dubai Medical University, Dubai 20170, United Arab Emirates
| | - Yosra Lozon
- Department of Pharmaceutical Sciences, Dubai Pharmacy College for Girls, Dubai Medical University, Dubai 20170, United Arab Emirates;
| | - Murat Oz
- Department of Pharmacology and Therapeutics, College of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|
2
|
Simonyan K, Darbinyan L, Hambardzumyan L, Manukyan L, Chavushyan V. Teucrium Polium ameliorates amyloid β-induced brain network disorders in rats: electrophysiological and behavioral studies. BMC Complement Med Ther 2025; 25:116. [PMID: 40148951 PMCID: PMC11948851 DOI: 10.1186/s12906-024-04715-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/22/2024] [Indexed: 03/29/2025] Open
Abstract
Synaptic failure in specific cholinergic networks in rat brains has been implicated in amyloid β-induced neurodegeneration. Teucrium polium is a promising candidate for drug development against Alzheimer's disease (AD) and similar disorders. However, the protective effect of Teucrium polium against amyloid β-induced impairment of short-term synaptic plasticity is still poorly understood. In this study, we used in vivo extracellular single-unit recordings to investigate the preventive efficacy of Teucrium polium on Aβ(25-35)-induced aberrant neuronal activity in the hippocampus and basolateral amygdala of rats, in response to high-frequency stimulation of the cholinergic nucleus basalis magnocellularis (NBM). After 12 weeks of intracerebroventricular administration of Aβ(25-35), alterations such as decreased excitatory responses and increased inhibitory synaptic activity were observed in the NBM-hippocampus and NBM-basolateral amygdala cholinergic circuits. Treatment with Teucrium polium improved the balance of excitatory and inhibitory responses by modulating synaptic transmission strength and restoring short-term plasticity. Acute injection of a therapeutic dose of Teucrium temporarily inhibited spiking activity in single NBM neurons. Open field tests revealed that amyloid-injected rats displayed anxiety and reduced exploratory drive. Treatment with Teucrium polium improved these behaviors, reducing anxiety and increasing exploration. Teucrium polium mitigated amyloid β-induced alterations in cholinergic circuits by enhancing the adaptive capacity of short-term synaptic plasticity. These findings suggest that Teucrium polium could serve as a preventive strategy to delay the progression of cholinergic neurodegeneration.
Collapse
Affiliation(s)
- Karen Simonyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, Yerevan, 0028, Armenia
| | - Lilit Darbinyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, Yerevan, 0028, Armenia.
| | - Lilia Hambardzumyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, Yerevan, 0028, Armenia
| | - Larisa Manukyan
- Sensorimotor Integration Lab, Orbeli Institute of Physiology NAS RA, Yerevan, 0028, Armenia
| | - Vergine Chavushyan
- Neuroendocrine Relationships Lab, Orbeli Institute of Physiology NAS RA, Yerevan, 0028, Armenia
| |
Collapse
|
3
|
Wu X, Tian Y, Wang H, Chen H, Hou H, Hu Q. Dual Regulation of Nicotine on NLRP3 Inflammasome in Macrophages with the Involvement of Lysosomal Destabilization, ROS and α7nAChR. Inflammation 2025; 48:61-74. [PMID: 38717634 DOI: 10.1007/s10753-024-02036-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/23/2024] [Accepted: 04/23/2024] [Indexed: 02/09/2025]
Abstract
Nicotine, the primary alkaloid in tobacco products, has been shown to have immunoregulatory function in at least 20 diseases. The biological mechanism of action of nicotine immunoregulation is complex, resulting in an improvement of some disease states and exacerbation of others. Given the central role of the NLRP3 inflammasome in macrophages among multiple inflammatory diseases, this study examined how nicotine alters NLRP3 inflammasome activation in macrophages. NLRP3 inflammasome activation was examined mechanistically in the context of different nicotine dosages. We show NLRP3 inflammasome activation, apoptosis-associated speck-like protein (ASC) expression, caspase-1 activity and subsequent IL-1β secretion were positively correlated with nicotine in a dose-dependent relationship, and destabilization of lysosomes and ROS production were also involved. At high concentrations of nicotine surpassing 0.25 mM, NLRP3 inflammasome activity declined, along with increased expression of the anti-inflammatory Alpha7 nicotinic acetylcholine receptor (α7nAChR) and the inhibition of TLR4/NF-κB signaling. Consequently, high doses of nicotine also reduced ASC expression, caspase-1 activity and IL-1β secretion in macrophages. Collectively, these results suggest a dual regulatory function of nicotine on NLRP3 inflammasome activation in macrophages, that is involved with the pro-inflammatory effects of lysosomal destabilization and ROS production. We also show nicotine mediates anti-inflammatory effects by activating α7nAChR at high doses.
Collapse
Affiliation(s)
- Xiaqing Wu
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China
| | - Yushan Tian
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China
| | - Hongjuan Wang
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China
| | - Huan Chen
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China
| | - Hongwei Hou
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China.
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China.
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China.
| | - Qingyuan Hu
- China National Tobacco Quality Supervision & Test Center, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China.
- Key Laboratory of Tobacco Biological Effects, No. 2 Fengyang Street, Zhengzhou, 450001, Henan, China.
- Beijing Life Science Academy, Lutuan East Road, Beijing, 102200, China.
- Key Laboratory of Tobacco Biological Effects and Biosynthesis, Lutuan East Road, Beijing, 102200, China.
| |
Collapse
|
4
|
Li Y, Mao J, Chai G, Zheng R, Liu X, Xie J. Neurobiological mechanisms of nicotine's effects on feeding and body weight. Neurosci Biobehav Rev 2025; 169:106021. [PMID: 39826824 DOI: 10.1016/j.neubiorev.2025.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure. The energy homeostasis-related neurons, pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), prolactin-releasing hormone (Prlh), etc, were discussed about the responsibility for nicotine's effects on feeding. Nicotine's actions on hypothalamus and its related neural circuits were described in view of peripheral nervous system, reward system, adipose browning, hormone secretion, and gut-brain axis. Elucidation of neurobiological mechanism of nicotine's actions on feeding and body weight will be of immense value to the therapeutic strategies of smoking, and advance the medicine research for the therapy of obesity.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Guobi Chai
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruimao Zheng
- Department of Anatomy Histology and Embryology School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xingyu Liu
- Beijing Life Science Academy, Beijing, China.
| | - Jianping Xie
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
5
|
Guan Z. Alterations in Neuronal Nicotinic Acetylcholine Receptors in the Pathogenesis of Various Cognitive Impairments. CNS Neurosci Ther 2024; 30:e70069. [PMID: 39370620 PMCID: PMC11456617 DOI: 10.1111/cns.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024] Open
Abstract
Cognitive impairment is a typical symptom of both neurodegenerative and certain other diseases. In connection with these different pathologies, the etiology and neurological and metabolic changes associated with cognitive impairment must differ. Until these characteristics and differences are understood in greater detail, pharmacological treatment of the different forms of cognitive impairment remains suboptimal. Neurotransmitter receptors, including neuronal nicotinic acetylcholine receptors (nAChRs), dopamine receptors, and glutamine receptors, play key roles in the functions and metabolisms of the brain. Among these, the role of nAChRs in the development of cognitive impairment has attracted more and more attention. The present review summarizes what is presently known concerning the structure, distribution, metabolism, and function of nAChRs, as well as their involvement in major cognitive disorders such as Alzheimer's disease, Parkinson's disease, vascular dementia, schizophrenia, and diabetes mellitus. As will be discussed, the relevant scientific literature reveals clearly that the α4β2 and α7 nAChR subtypes and/or subunits of the receptors play major roles in maintaining cognitive function and in neuroprotection of the brain. Accordingly, focusing on these as targets of drug therapy can be expected to lead to breakthroughs in the treatment of cognitive disorders such as AD and schizophrenia.
Collapse
Affiliation(s)
- Zhi‐Zhong Guan
- Department of PathologyThe Affiliated Hospital of Guizhou Medical UniversityGuiyangP.R. China
- Key Laboratory of Endemic and Ethnic DiseasesGuizhou Medical University, Ministry of Education and Provincial Key Laboratory of Medical Molecular BiologyGuiyangP.R. China
| |
Collapse
|
6
|
Sbrini G, Mutti V, Bono F, Tomasoni Z, Fadel D, Missale C, Fiorentini C. 17-β-estradiol potentiates the neurotrophic and neuroprotective effects mediated by the dopamine D3/acetylcholine nicotinic receptor heteromer in dopaminergic neurons. Eur J Pharmacol 2024; 976:176678. [PMID: 38821163 DOI: 10.1016/j.ejphar.2024.176678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
Dopaminergic neurons express a heteromer composed of the dopamine D3 receptor and the α4β2 nicotinic acetylcholine receptor, the D3R-nAChR heteromer, activated by both nicotine and dopamine D2 and D3 receptors agonists, such as quinpirole, and crucial for dopaminergic neuron homeostasis. We now report that D3R-nAChR heteromer activity is potentiated by 17-β-estradiol which acts as a positive allosteric modulator by binding a specific domain on the α4 subunit of the nicotinic receptor protomer. In mouse dopaminergic neurons, in fact, 17-β-estradiol significantly increased the ability of nicotine and quinpirole in promoting neuron dendritic remodeling and in protecting neurons against the accumulation of α-synuclein induced by deprivation of glucose, with a mechanism that does not involve the classical estrogen receptors. The potentiation induced by 17-β-estradiol required the D3R-nAChR heteromer since either nicotinic receptor or dopamine D3 receptor antagonists and interfering TAT-peptides, but not the estrogen receptor antagonist fulvestrant, specifically prevented 17-β-estradiol effects. Evidence of estrogens neuroprotection, mainly mediated by genomic mechanisms, have been provided, which is in line with epidemiological data reporting that females are less likely to develop Parkinson's Disease than males. Therefore, potentiation of D3R-nAChR heteromer activity may represent a further mechanism by which 17-β-estradiol reduces dopaminergic neuron vulnerability.
Collapse
Affiliation(s)
- Giulia Sbrini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Veronica Mutti
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Federica Bono
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Zaira Tomasoni
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Dounia Fadel
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Cristina Missale
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy
| | - Chiara Fiorentini
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| |
Collapse
|
7
|
Gotti C, Clementi F, Zoli M. Special issue "The multifaceted activities of nervous and non-nervous neuronal nicotinic acetylcholine receptors in physiology and pathology". Pharmacol Res 2024; 205:107239. [PMID: 38801984 DOI: 10.1016/j.phrs.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
| | - Francesco Clementi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Centre for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
8
|
Abbondanza A, Urushadze A, Alves-Barboza AR, Janickova H. Expression and function of nicotinic acetylcholine receptors in specific neuronal populations: Focus on striatal and prefrontal circuits. Pharmacol Res 2024; 204:107190. [PMID: 38704107 DOI: 10.1016/j.phrs.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.
Collapse
Affiliation(s)
- Alice Abbondanza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Anna Urushadze
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Amanda Rosanna Alves-Barboza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Helena Janickova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic.
| |
Collapse
|
9
|
Chen H, Xiong XX, Jin SY, He XY, Li XW, Yang JM, Gao TM, Chen YH. Dopamine D2 receptors in pyramidal neurons in the medial prefrontal cortex regulate social behavior. Pharmacol Res 2024; 199:107042. [PMID: 38142878 DOI: 10.1016/j.phrs.2023.107042] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 12/14/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Drugs acting on dopamine D2 receptors are widely used for the treatment of several neuropsychiatric disorders, including schizophrenia and depression. Social deficits are a core symptom of these disorders. Pharmacological manipulation of dopamine D2 receptors (Drd2), a Gi-coupled subtype of dopamine receptors, in the medial prefrontal cortex (mPFC) has shown that Drd2 is implicated in social behaviors. However, the type of neurons expressing Drd2 in the mPFC and the underlying circuit mechanism regulating social behaviors remain largely unknown. Here, we show that Drd2 were mainly expressed in pyramidal neurons in the mPFC and that the activation of the Gi-pathway in Drd2+ pyramidal neurons impaired social behavior in male mice. In contrast, the knockdown of D2R in pyramidal neurons in the mPFC enhanced social approach behaviors in male mice and selectively facilitated the activation of mPFC neurons projecting to the nucleus accumbens (NAc) during social interaction. Remarkably, optogenetic activation of mPFC-to-NAc-projecting neurons mimicked the effects of conditional D2R knockdown on social behaviors. Altogether, these results demonstrate a cell type-specific role for Drd2 in the mPFC in regulating social behavior, which may be mediated by the mPFC-to-NAc pathway.
Collapse
Affiliation(s)
- Hao Chen
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xing-Xing Xiong
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shi-Yang Jin
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Ying He
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiao-Wen Li
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jian-Ming Yang
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Tian-Ming Gao
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China; State Key Laboratory of Organ Failure Research, Institute of Brain Diseases, Nanfang Hospital, Southern Medical University, China.
| | - Yi-Hua Chen
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangdong Province Key Laboratory of Psychiatric Disorders, Department of Neurobiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.
| |
Collapse
|
10
|
Matera C, Papotto C, Dallanoce C, De Amici M. Advances in small molecule selective ligands for heteromeric nicotinic acetylcholine receptors. Pharmacol Res 2023; 194:106813. [PMID: 37302724 DOI: 10.1016/j.phrs.2023.106813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023]
Abstract
The study of nicotinic acetylcholine receptors (nAChRs) has significantly progressed in the last decade, due to a) the improved techniques available for structural studies; b) the identification of ligands interacting at orthosteric and allosteric recognition sites on the nAChR proteins, able to tune channel conformational states; c) the better functional characterization of receptor subtypes/subunits and their therapeutic potential; d) the availability of novel pharmacological agents able to activate or block nicotinic-mediated cholinergic responses with subtype or stoichiometry selectivity. The copious literature on nAChRs is related to the pharmacological profile of new, promising subtype selective derivatives as well as the encouraging preclinical and early clinical evaluation of known ligands. However, recently approved therapeutic derivatives are still missing, and examples of ligands discontinued in advanced CNS clinical trials include drug candidates acting at both neuronal homomeric and heteromeric receptors. In this review, we have selected heteromeric nAChRs as the target and comment on literature reports of the past five years dealing with the discovery of new small molecule ligands or the advanced pharmacological/preclinical investigation of more promising compounds. The results obtained with bifunctional nicotinic ligands and a light-activated ligand as well as the applications of promising radiopharmaceuticals for heteromeric subtypes are also discussed.
Collapse
Affiliation(s)
- Carlo Matera
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Claudio Papotto
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Clelia Dallanoce
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy
| | - Marco De Amici
- Department of Pharmaceutical Sciences, Medicinal Chemistry Section "Pietro Pratesi", University of Milan, Via Luigi Mangiagalli 25, 20133 Milan, Italy.
| |
Collapse
|
11
|
Leonard S, Benfante R. Unanswered questions in the regulation and function of the duplicated α7 nicotinic receptor gene CHRFAM7A. Pharmacol Res 2023; 192:106783. [PMID: 37164281 DOI: 10.1016/j.phrs.2023.106783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/20/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
The α7 nicotinic receptor (α7 nAChR) is an important entry point for Ca2+ into the cell, which has broad and important effects on gene expression and function. The gene (CHRNA7), mapping to chromosome (15q14), has been genetically linked to a large number of diseases, many of which involve defects in cognition. While numerous mutations in CHRNA7 are associated with mental illness and inflammation, an important control point may be the function of a recently discovered partial duplication CHRNA7, CHRFAM7A, that negatively regulates the function of the α7 receptor, through the formation of heteropentamers; other functions cannot be excluded. The deregulation of this human specific gene (CHRFAM7A) has been linked to neurodevelopmental, neurodegenerative, and inflammatory disorders and has important copy number variations. Much effort is being made to understand its function and regulation both in healthy and pathological conditions. However, many questions remain to be answered regarding its functional role, its regulation, and its role in the etiogenesis of neurological and inflammatory disorders. Missing knowledge on the pharmacology of the heteroreceptor has limited the discovery of new molecules capable of modulating its activity. Here we review the state of the art on the role of CHRFAM7A, highlighting unanswered questions to be addressed. A possible therapeutic approach based on genome editing protocols is also discussed.
Collapse
Affiliation(s)
- Sherry Leonard
- Department of Psychiatry - University of Colorado Anschutz, Aurora, Colorado, USA
| | - Roberta Benfante
- CNR - Institute of Neuroscience, Vedano al Lambro (MB), Italy; Dept. Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy; NeuroMI - Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy.
| |
Collapse
|