1
|
Gnanamony M, Thomas M, Nguyen TH, Brownstein K, de Alarcon PA. Pomiferin Induces Antiproliferative and Pro-Death Effects in High-Risk Neuroblastoma Cells by Modulating Multiple Cell Death Pathways. Int J Mol Sci 2025; 26:3600. [PMID: 40332068 DOI: 10.3390/ijms26083600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
Resistance to chemotherapy-induced apoptosis significantly hinders the successful treatment of high-risk neuroblastoma (NB). Natural compounds, such as osajin and pomiferin-isoflavones extracted from Osage orange (Maclura pomifera [Raf.] Schneid.)-have known anti-inflammatory and anticancer properties and may have the potential as a therapeutic agent to target conventional drug resistance in NB. In this study, we investigated the antiproliferative and cytotoxic potential of osajin and pomiferin in NB cell lines. Both compounds reduced proliferation and induced cytotoxicity, with pomiferin showing a lower IC50 than osajin. Using multiple techniques, we show that pomiferin induced a dose-dependent increase in apoptosis. In addition to apoptosis, we identified the activation of multiple cell death pathways. Pomiferin induced ferroptosis by inhibiting GPX4 and increasing lipid peroxidation. In addition, pomiferin treatment significantly impaired autophagic machinery. LAN5, a MYCN-amplified cell line, showed increased gasdermin E cleavage in response to pomiferin, suggesting pyroptosis. No changes were observed in phosphorylated MLKL, indicating the absence of necroptosis. In conclusion, our comprehensive evaluation demonstrates that pomiferin activates multiple cell death pathways in high-risk NB cells, potentially offering a valuable strategy to overcome drug resistance to conventional chemotherapy.
Collapse
Affiliation(s)
- Manu Gnanamony
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA
| | - Maria Thomas
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA
| | - Thu Hien Nguyen
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA
| | - Korey Brownstein
- Functional Foods Research Unit, United States Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, IL 61604, USA
| | - Pedro A de Alarcon
- Department of Pediatrics, University of Illinois College of Medicine Peoria, One Illini Drive, Peoria, IL 61605, USA
| |
Collapse
|
2
|
Tang F, Zhang JN, Zhao XL, Xu LY, Ao H, Peng C. Unlocking the dual role of autophagy: A new strategy for treating lung cancer. J Pharm Anal 2025; 15:101098. [PMID: 40104173 PMCID: PMC11919427 DOI: 10.1016/j.jpha.2024.101098] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 03/20/2025] Open
Abstract
Lung cancer exhibits the highest incidence and mortality rates among cancers globally, with a five-year overall survival rate alarmingly below 20%. Targeting autophagy, though a controversial therapeutic strategy, is extensively employed in clinical practice. Current research is actively pursuing various therapeutic strategies using small molecules to exploit the dual function of autophagy. Nevertheless, the pivotal question of enhancing or inhibiting autophagy in cancer therapy merits further attention. This review aims to provide a comprehensive overview of the mechanisms of autophagy in lung cancer. It also explores recent advances in targeting cytotoxic autophagy and inhibiting protective autophagy with small molecules to induce cell death in lung cancer cells. Notably, most autophagy-targeting drugs, primarily natural small molecules, have demonstrated that activating cytotoxic autophagy effectively induces cell death in lung cancer, as opposed to inhibiting protective autophagy. These insights contribute to identifying druggable targets and drug candidates for potential autophagy-related lung cancer therapies, offering promising approaches to combat this disease.
Collapse
Affiliation(s)
- Fei Tang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jing-Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xiao-Lan Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Li-Yue Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Hui Ao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| |
Collapse
|
3
|
Zhao WB, Sheng R. The correlation between mitochondria-associated endoplasmic reticulum membranes (MAMs) and Ca 2+ transport in the pathogenesis of diseases. Acta Pharmacol Sin 2025; 46:271-291. [PMID: 39117969 PMCID: PMC11756407 DOI: 10.1038/s41401-024-01359-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024]
Abstract
Mitochondria and the endoplasmic reticulum (ER) are vital organelles that influence various cellular physiological and pathological processes. Recent evidence shows that about 5%-20% of the mitochondrial outer membrane is capable of forming a highly dynamic physical connection with the ER, maintained at a distance of 10-30 nm. These interconnections, known as MAMs, represent a relatively conserved structure in eukaryotic cells, acting as a critical platform for material exchange between mitochondria and the ER to maintain various aspects of cellular homeostasis. Particularly, ER-mediated Ca2+ release and recycling are intricately associated with the structure and functionality of MAMs. Thus, MAMs are integral in intracellular Ca2+ transport and the maintenance of Ca2+ homeostasis, playing an essential role in various cellular activities including metabolic regulation, signal transduction, autophagy, and apoptosis. The disruption of MAMs observed in certain pathologies such as cardiovascular and neurodegenerative diseases as well as cancers leads to a disturbance in Ca2+ homeostasis. This imbalance potentially aggravates pathological alterations and disease progression. Consequently, a thorough understanding of the link between MAM-mediated Ca2+ transport and these diseases could unveil new perspectives and therapeutic strategies. This review focuses on the changes in MAMs function during disease progression and their implications in relation to MAM-associated Ca2+ transport.
Collapse
Affiliation(s)
- Wen-Bin Zhao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences of Soochow University, Suzhou, 215123, China.
| |
Collapse
|
4
|
Hong J, Du K, Zhang W, Jiang Y, Yu H, Pan T, Wu T, Zhao L, Du W, Zheng SS, Jin H, Chen Y, Cao L. PFOS and Its Commercial Alternative, 6:2 Cl-PFESA, Induce Multidrug Resistance in Pancreatic Cancer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22027-22038. [PMID: 39644250 DOI: 10.1021/acs.est.4c08669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS), specifically perfluorooctanesulfonate (PFOS) and its alternative, 2-[(6-chloro-1,1,2,2,3,3,4,4,5,5,6,6-dodecafluorohexyl)oxy]-1,1,2,2-tetrafluoroethanesulfonic acid (6:2 Cl-PFESA), are associated with environmental health concerns and potential cancer progression. However, their impact on multidrug resistance (MDR) in pancreatic cancer (PC) chemotherapy remains unclear. Here, we employed drug-sensitivity assays, including IC50 calculations, in vitro and in vivo models with various chemotherapeutics, and paclitaxel (PTX) as a representative agent, combined with transcriptomic/proteomic sequencing and clinical prognostic analysis, to identify MDR-related genes and validate their relevance, with the objective of establishing the correlation between PFOS/6:2 Cl-PFESA exposure and MDR in PC at molecular, cellular, and animal model levels. Our findings demonstrate that PFOS/6:2 Cl-PFESA exposure increases the drug IC50 in three different PC cell lines for various chemotherapeutic agents. Compared with PFOS, 6:2 Cl-PFESA demonstrated a more pro-MDR effect on PC cells in vitro. In vivo experiments further revealed that PFOS/6:2 Cl-PFESA exposures significantly reduced the efficacy of PTX in PC, with inhibition rates dropping from 78.3% to 23.8%/6.1%, respectively (p < 0.05). This effect was driven by the aberrant activation of the PI3K-ABCB1 pathway, with 6:2 Cl-PFESA demonstrating a stronger capacity to promote this signal pathway's expression and function compared with PFOS. These data suggest that exposure to PFAS may elevate the risk of MDR and subsequent disease progression. Although marketed as a safer alternative to PFOS, the notable impact of 6:2 Cl-PFESA on MDR highlights the necessity for a comprehensive assessment of its potential carcinogenic risks.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Weichen Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Hanxi Yu
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
| | - Tingting Pan
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Tong Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Liang Zhao
- Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shu-Sen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
- Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute, Zhejiang University of Technology, Quzhou, Zhejiang 324400, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
- Innovation Research Center of Advanced Environmental Technology, Eco-Industrial Innovation Institute, Zhejiang University of Technology, Quzhou, Zhejiang 324400, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, PR China
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, PR China
| |
Collapse
|
5
|
Feng M, Fan X, Shi J, Shan S, Li S, He S, Ding M, Li Z. Terpenoids from quinoa reverse drug resistance of colon cancer by upregulating miR-495-3p. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:8916-8927. [PMID: 38962946 DOI: 10.1002/jsfa.13718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/09/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Quinoa contains far more nutrients than any traditional grain crop. It is known that terpenoids in quinoa have anti-inflammatory and antitumor effects, but their role in reversing drug resistance remains unclear. RESULTS Our previous studies showed that quinoa-derived terpenoid compounds (QBT) can inhibit the occurrence and development of colon cancer. This study further indicates that QBT markedly reverse drug resistance of colon cancer. The results showed that QBT combined with 5-fluorouracil (5-Fu) treatment significantly enhanced the chemotherapy sensitivity of HCT-8/Fu, compared with 5-Fu treatment alone. Moreover, we found that QBT significantly reduced the expression of drug-resistant proteins (P-gp, MRP1, BCRP), and increased the accumulation of chemotherapy drugs. Taking P-gp as the target for biogenesis prediction analysis, results showed that upregulation of miR-495-3p enhanced the chemosensitivity of drug-resistant HCT-8/Fu cells. Besides, the results showed that miR-495-3p was abnormally methylated in HCT-8/Fu compared with HCT-8 colon cancer cells. The expression of methyltransferases DNMT1, DNMT3a and DNMT3b was abnormal. After QBT treatment, the expression level of methyltransferases returned to normal. In addition, the QBT + 5Fu group showed inhibition of tumors in nude mice. CONCLUSION QBT treatment downregulated the expression of drug-resistant protein P-gp by inhibiting the methylation of miR-495-3p, and enhanced the accumulation of 5-Fu in vivo, which in turn reversed its chemoresistance. This suggests that QBT has potential ability as a new drug-resistance reversal agent in colorectal cancer. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mangmang Feng
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Xiaxia Fan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Jiangying Shi
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shuhua Shan
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Songtao Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Shuiling He
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| | - Man Ding
- School of Life Science, Shanxi University, Taiyuan, China
| | - Zhuoyu Li
- Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, China
| |
Collapse
|
6
|
Yang Z, Zhou Z, Meng Q, Chen Z, Yun L, Jiang J, He Y, Dian M, Zhang R, Ge H, Yan T, Men B, Li Z, Wu X, He J, Rao S. Dihydroartemisinin Sensitizes Lung Cancer Cells to Cisplatin Treatment by Upregulating ZIP14 Expression and Inducing Ferroptosis. Cancer Med 2024; 13:e70271. [PMID: 39394878 PMCID: PMC11470233 DOI: 10.1002/cam4.70271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 10/14/2024] Open
Abstract
BACKGROUND Despite significant advances in lung cancer treatment, cisplatin (DDP)-based chemotherapy remains a cornerstone for managing the disease. However, the prevalence of chemoresistance presents a major challenge, limiting its effectiveness and contributing to poor outcomes. This underscores the urgent need for novel therapeutic strategies to overcome chemoresistance and improve chemotherapy efficacy in lung cancer patients. Exploring approaches to sensitize tumors to cisplatin could enhance treatment responses and overall survival rates. METHODS AND RESULTS Our study utilized a variety of lung cancer models, including cell lines, mouse models, and patient-derived organoids, to validate the synergistic cytotoxic effects of dihydroartemisinin (DHA) and cisplatin (DDP). When combined with DDP, we demonstrate that DHA is a promising therapeutic agent that effectively triggers ferroptosis in lung cancer cells, offering a potential strategy for overcoming chemoresistance. Mechanistically, the combination of DHA and DDP synergistically enhances ZIP14 expression, modulating iron homeostasis and upregulating oxidative stress, leading to both in vitro and in vivo ferroptosis. Notably, our findings revealed that the sequential administration of DDP followed by DHA significantly increases ZIP14 expression and induces superior therapeutic outcomes compared to the simultaneous administration or DHA followed by DDP. This observation underscores the importance of the drug administration order in optimizing treatment efficacy, providing new insights into enhancing chemotherapy response in lung cancer. CONCLUSION Our findings suggest that combining dihydroartemisinin (DHA) with cisplatin (DDP) presents a promising strategy to overcome chemoresistance in lung cancer patients. Importantly, administering DHA during chemotherapy intervals could further optimize treatment outcomes, enhancing the overall efficacy of lung cancer chemotherapy.
Collapse
Affiliation(s)
- Zhuoying Yang
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zehao Zhou
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Qingyu Meng
- Department of Radiation Oncology, Peking Union Medical College HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijingChina
| | - Zhijie Chen
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Liang Yun
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jianjun Jiang
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Yujing He
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Meijuan Dian
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Ruihao Zhang
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Haotian Ge
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Tianbao Yan
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Biying Men
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zichao Li
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Xu Wu
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Junming He
- Department of Hepatobiliary SurgeryThe Second Affiliated Hospital of Guangzhou University of Chinese MedicineGuangzhouGuangdongChina
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
7
|
Fakhri S, Moradi SZ, Moradi SY, Piri S, Shiri Varnamkhasti B, Piri S, Khirehgesh MR, Bishayee A, Casarcia N, Bishayee A. Phytochemicals regulate cancer metabolism through modulation of the AMPK/PGC-1α signaling pathway. BMC Cancer 2024; 24:1079. [PMID: 39223494 PMCID: PMC11368033 DOI: 10.1186/s12885-024-12715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Due to the complex pathophysiological mechanisms involved in cancer progression and metastasis, current therapeutic approaches lack efficacy and have significant adverse effects. Therefore, it is essential to establish novel strategies for combating cancer. Phytochemicals, which possess multiple biological activities, such as antioxidant, anti-inflammatory, antimutagenic, immunomodulatory, antiproliferative, anti-angiogenesis, and antimetastatic properties, can regulate cancer progression and interfere in various stages of cancer development by suppressing various signaling pathways. METHODS The current systematic and comprehensive review was conducted based on Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) criteria, using electronic databases, including PubMed, Scopus, and Science Direct, until the end of December 2023. After excluding unrelated articles, 111 related articles were included in this systematic review. RESULTS In this current review, the major signaling pathways of cancer metabolism are highlighted with the promising anticancer role of phytochemicals. This was through their ability to regulate the AMP-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) signaling pathway. The AMPK/PGC-1α signaling pathway plays a crucial role in cancer cell metabolism via targeting energy homeostasis and mitochondria biogenesis, glucose oxidation, and fatty acid oxidation, thereby generating ATP for cell growth. As a result, targeting this signaling pathway may represent a novel approach to cancer treatment. Accordingly, alkaloids, phenolic compounds, terpene/terpenoids, and miscellaneous phytochemicals have been introduced as promising anticancer agents by regulating the AMPK/PGC-1α signaling pathway. Novel delivery systems of phytochemicals targeting the AMPK/PGC-1α pathway in combating cancer are also highlighted in this review.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Seyed Yahya Moradi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sarina Piri
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Behrang Shiri Varnamkhasti
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Sana Piri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | - Mohammad Reza Khirehgesh
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, 6734667149, Iran
| | | | - Nicolette Casarcia
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA
| | - Anupam Bishayee
- Department of Pharmacology, College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| |
Collapse
|
8
|
Bailly C. Pharmacological properties of extracts and prenylated isoflavonoids from the fruits of Osage orange (Maclura pomifera (Raf.) C.K.Schneid.). Fitoterapia 2024; 177:106112. [PMID: 38971332 DOI: 10.1016/j.fitote.2024.106112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Osage orange trees (Maclura pomifera (Raf.) C.K.Schneid.) are distributed worldwide, particularly in south-east states of the USA. They produce large quantities of strong yellow fruits, bigger than oranges, but these fruits are inedible, with an acid milky juice which is little consumed by birds and insects. Extracts prepared from Osage orange fruits (hedge apple) have revealed a range of pharmacological properties of interest in human and veterinary medicine. In addition, Osage orange extracts can be used in agriculture and aquaculture, and as dyeing agent for the textile industry. Extracts contain potent antioxidant compounds, notably the isoflavonoids pomiferin and auriculasin, together with other terpenoids and flavonoids. The structural characteristics and pharmacological properties of the major prenylated isoflavones isolated from M. pomifera are discussed here, with a focus on the two phenolic compounds osajin and warangalone, and the two catechol analogues pomiferin and auriculasin. The mechanisms at the origin of their potent antioxidant and anti-inflammatory effects are presented, notably inhibition of xanthine oxidase, phosphodiesterase 5A and kinases such as RKS2 and kRAS. Osajin and auriculasin display marked anticancer properties, owing to their ability to inhibit tumor cell proliferation, migration and tumor angiogenesis. Different molecular mechanisms are discussed, including osajin‑copper complexation and binding to quadruplex DNA. An overview of the mechanism of action of the prenylated isoflavones from Osage orange is presented, with the objective to promote their knowledge and to raise opportunities to better exploit the fruits of Osage orange, abundant but largely neglected at present.
Collapse
Affiliation(s)
- Christian Bailly
- CNRS, Inserm, CHU Lille, UMR9020-U1277-CANTHER-Cancer Heterogeneity Plasticity and Resistance to Therapies, OncoLille Institut, University of Lille, F-59000 Lille, France; Institute of Pharmaceutical Chemistry Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, F-59006 Lille, France; OncoWitan, Scientific Consulting Office, F-59290 Lille, France.
| |
Collapse
|
9
|
Guang D, Xiaofei Z, Yu M, Hui N, Min S, Xiaonan S. Pomiferin targeting SLC9A9 based on histone acetylation modification pattern is a potential therapeutical option for gastric cancer with high malignancy. Biochem Pharmacol 2024; 226:116333. [PMID: 38824966 DOI: 10.1016/j.bcp.2024.116333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/30/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Changes in histone acetylation status are associated with gastric cancer (GC) progression. Pomiferin is a natural flavonoid, however, the specific role of pomiferin in the treatment of GC is still unclear, and its targets are not well clarified. In this work, the prognostic genes related with histone acetylation in GC were screened by univariate Cox analysis. Next, a risk model of was constructed using least absolute shrinkage and selection operator-Cox regression analyses, and multivariate Cox analysis was used for identifying the independent risk factor. Molecular docking was performed using AutoDock Vina to validate the interaction between solute carrier family 9 member A9 (SLC9A9) and pomiferin. In vitro and in vivo models were applied to investigate the tumor-suppressive role of pomiferin against GC. The inhibitory effects of pomiferin on EGFR/PI3K/AKT signaling were valdiated by Western blotting, immunofluorescence staining and qPCR. Here, a prognostic risk model based on histone acetylation regulators was established, and SLC9A9 was identified as a risk factor associated with histone acetylation status in GC. SLC9A9 expression was associated with abnormal immune microenvironment of tumor. Pomiferin had a high binding affinity with SLC9A9, and both pomiferin treatment and depletion of SLC9A9 repressed the malignant phenotypes of GC cells. Mechanistically, pomiferin inactivates EGFR/PI3K/AKT signaling in GC cells. In summary, SLC9A9, as a indicator of abnormal histone acetylation status of GC, functions as an oncogenic factor. Pomiferin binds with SLC9A9 to inactivate EGFR/PI3K/AKT pathway, to block GC progression, suggesting it is a promising drug for the patients with highly malignant GC.
Collapse
Affiliation(s)
- Deng Guang
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhang Xiaofei
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Meng Yu
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Niu Hui
- Department of Respiratory, Zhoukou City Central Hospital, Zhoukou 466000, Henan, China
| | - Song Min
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| | - Shi Xiaonan
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
10
|
Patel D, Sethi N, Patel P, Shah S, Patel K. Exploring the potential of P-glycoprotein inhibitors in the targeted delivery of anti-cancer drugs: A comprehensive review. Eur J Pharm Biopharm 2024; 198:114267. [PMID: 38514020 DOI: 10.1016/j.ejpb.2024.114267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 03/14/2024] [Accepted: 03/18/2024] [Indexed: 03/23/2024]
Abstract
Due to the high prevalence of cancer, progress in the management of cancer is the need of the hour. Most cancer patients develop chemotherapeutic drug resistance, and many remain insidious due to overexpression of Multidrug Resistance Protein 1 (MDR1), also known as Permeability-glycoprotein (P-gp) or ABCB1 transporter (ATP-binding cassette subfamily B member 1). P-gp, a transmembrane protein that protects vital organs from outside chemicals, expels medications from malignant cells. The blood-brain barrier (BBB), gastrointestinal tract (GIT), kidneys, liver, pancreas, and cancer cells overexpress P-gp on their apical surfaces, making treatment inefficient and resistant. Compounds that compete with anticancer medicines for transportation or directly inhibit P-gp may overcome biological barriers. Developing nanotechnology-based formulations may help overcome P-gp-mediated efflux and improve bioavailability and cell chemotherapeutic agent accumulation. Nanocarriers transport pharmaceuticals via receptor-mediated endocytosis, unlike passive diffusion, which bypasses ABCB1. Anticancer drugs and P-gp inhibitors in nanocarriers may synergistically increase drug accumulation and chemotherapeutic agent toxicity. The projection of desirable binding and effect may be procured initially by molecular docking of the inhibitor with P-gp, enabling the reduction of preliminary trials in formulation development. Here, P-gp-mediated efflux and several possible outcomes to overcome the problems associated with currently prevalent cancer treatments are highlighted.
Collapse
Affiliation(s)
- Dhvani Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Nutan Sethi
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Paresh Patel
- Department of Pharmaceutical Chemistry, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Shreeraj Shah
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India
| | - Kaushika Patel
- Department of Pharmaceutical Technology, L. J. Institute of Pharmacy, L J University, Ahmedabad 382 210, India.
| |
Collapse
|
11
|
Chen T, Xiao Z, Liu X, Wang T, Wang Y, Ye F, Su J, Yao X, Xiong L, Yang DH. Natural products for combating multidrug resistance in cancer. Pharmacol Res 2024; 202:107099. [PMID: 38342327 DOI: 10.1016/j.phrs.2024.107099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/22/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Cancer cells frequently develop resistance to chemotherapeutic therapies and targeted drugs, which has been a significant challenge in cancer management. With the growing advances in technologies in isolation and identification of natural products, the potential of natural products in combating cancer multidrug resistance has received substantial attention. Importantly, natural products can impact multiple targets, which can be valuable in overcoming drug resistance from different perspectives. In the current review, we will describe the well-established mechanisms underlying multidrug resistance, and introduce natural products that could target these multidrug resistant mechanisms. Specifically, we will discuss natural compounds such as curcumin, resveratrol, baicalein, chrysin and more, and their potential roles in combating multidrug resistance. This review article aims to provide a systematic summary of recent advances of natural products in combating cancer drug resistance, and will provide rationales for novel drug discovery.
Collapse
Affiliation(s)
- Ting Chen
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Zhicheng Xiao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Xiaoyan Liu
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Tingfang Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Yun Wang
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Fei Ye
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China
| | - Juan Su
- School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| | - Xuan Yao
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Liyan Xiong
- Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai 200444, China.
| | - Dong-Hua Yang
- New York College of Traditional Chinese Medicine, NY 11501, USA.
| |
Collapse
|
12
|
Yang C, Ding Y, Mao Z, Wang W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int J Nanomedicine 2024; 19:917-944. [PMID: 38293604 PMCID: PMC10826716 DOI: 10.2147/ijn.s445578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The overall cancer incidence and death toll have been increasing worldwide. However, the conventional therapies have some obvious limitations, such as non-specific targeting, systemic toxic effects, especially the multidrug resistance (MDR) of tumors, in which, autophagy plays a vital role. Therefore, there is an urgent need for new treatments to reduce adverse reactions, improve the treatment efficacy and expand their therapeutic indications more effectively and accurately. Combination therapy based on autophagy regulators is a very feasible and important method to overcome tumor resistance and sensitize anti-tumor drugs. However, the less improved efficacy, more systemic toxicity and other problems limit its clinical application. Nanotechnology provides a good way to overcome this limitation. Co-delivery of autophagy regulators combined with anti-tumor drugs through nanoplatforms provides a good therapeutic strategy for the treatment of tumors, especially drug-resistant tumors. Notably, the nanomaterials with autophagy regulatory properties have broad therapeutic prospects as carrier platforms, especially in adjuvant therapy. However, further research is still necessary to overcome the difficulties such as the safety, biocompatibility, and side effects of nanomedicine. In addition, clinical research is also indispensable to confirm its application in tumor treatment.
Collapse
Affiliation(s)
- Caixia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|