1
|
Lyukmanova EN, Bychkov ML, Chernikov AM, Kukushkin ID, Kulbatskii DS, Shabelnikov SV, Shulepko MA, Zhao R, Guo W, Kirpichnikov MP, Shenkarev ZO, Paramonov AS. In Search of the Role of Three-Finger Starfish Proteins. Mar Drugs 2024; 22:488. [PMID: 39590767 PMCID: PMC11595613 DOI: 10.3390/md22110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/23/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Three-finger proteins (TFPs), or Ly6/uPAR proteins, are characterized by the beta-structural LU domain containing three protruding "fingers" and stabilized by four conserved disulfide bonds. TFPs were initially characterized as snake alpha-neurotoxins, but later many studies showed their regulatory roles in different organisms. Despite a known expression of TFPs in vertebrates, they are poorly studied in other taxa. The presence of TFPs in starfish was previously shown, but their targets and functional role still remain unknown. Here, we analyzed expression, target, and possible function of the Lystar5 protein from the Asterias rubens starfish using bioinformatics, qPCR, and immunoassay. First, the presence of Lystar5 homologues in all classes of echinoderms was demonstrated. qPCR revealed that mRNA of Lystar5 and LyAr2 are expressed mainly in coelomocytes and coelomic epithelium of Asterias, while mRNA of other TFPs, LyAr3, LyAr4, and LyAr5, were also found in a starfish body wall. Using anti-Lystar5 serum from mice immunized by a recombinant Lystar5, we confirmed that this protein is expressed on the surface of coelomocytes and coelomic epithelium cells. According to ELISA, a recombinant analogue of Lystar5 bound to the membrane fraction of coelomocytes and coelomic epithelium but not to the body wall or starfish arm tip. Analysis by LC-MALDI MS/MS suggested integrin α-8-like protein expressed in the coelomocytes and coelomic epithelium as a target of Lystar5. Thus, our insights propose the important role of TFPs in regulation of starfish physiology and show prospects for their further research.
Collapse
Affiliation(s)
- Ekaterina N. Lyukmanova
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Maxim L. Bychkov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Andrei M. Chernikov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Ilya D. Kukushkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Dmitrii S. Kulbatskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| | - Sergey V. Shabelnikov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Prospect 4, 194064 St. Petersburg, Russia
| | - Mikhail A. Shulepko
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Ran Zhao
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Wenxiao Guo
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
| | - Mikhail P. Kirpichnikov
- Shenzhen MSU-BIT University, No. 1, International University Park Road, Dayun New Town, Longgang District, Shenzhen 518172, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University «Molecular Technologies of the Living Systems and Synthetic Biology», Faculty of Biology, Lomonosov Moscow State University, Leninskie Gory, 119234 Moscow, Russia
| | - Zakhar O. Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
- Moscow Center for Advanced Studies, 123592 Moscow, Russia
| | - Alexander S. Paramonov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya Str. 16/10, 119997 Moscow, Russia
| |
Collapse
|
2
|
Mialon M, Patrash L, Weinreb A, Özkan E, Bessereau JL, Pinan-Lucarre B. A trans-synaptic IgLON adhesion molecular complex directly contacts and clusters a nicotinic receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611427. [PMID: 39314492 PMCID: PMC11418930 DOI: 10.1101/2024.09.05.611427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The localization and clustering of neurotransmitter receptors at appropriate postsynaptic sites is a key step in the control of synaptic transmission. Here, we identify a novel paradigm for the synaptic localization of an ionotropic acetylcholine receptor (AChR) based on the direct interaction of its extracellular domain with a cell adhesion molecule of the IgLON family. Our results show that RIG-5 and ZIG-8, which encode the sole IgLONs in C. elegans, are tethered in the pre- and postsynaptic membranes, respectively, and interact in vivo through their first immunoglobulin-like (Ig) domains. In addition, ZIG-8 traps ACR-16 via a direct cis- interaction between the ZIG-8 Ig2 domain and the base of the large extracellular AChR domain. Such mechanism has never been reported, but all these molecules are conserved during evolution. Similar interactions may directly couple Ig superfamily adhesion molecules and members of the large family of Cys-loop ionotropic receptors, including AChRs, in the mammalian nervous system, and may be relevant in the context of IgLON-associated brain diseases.
Collapse
|
3
|
Wahl D, Grant RA, LaRocca TJ. The reverse transcriptase inhibitor 3TC modulates hippocampal transcriptome signatures of inflammation in tauopathy model mice. Exp Gerontol 2024; 192:112458. [PMID: 38735597 PMCID: PMC11185825 DOI: 10.1016/j.exger.2024.112458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/01/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Reducing neuroinflammation, a key contributor to brain aging and neurodegenerative diseases, is a promising strategy for improving cognitive function in these settings. The FDA-approved nucleoside reverse transcriptase inhibitor 3TC (Lamivudine) has been reported to improve cognitive function in old wild-type mice and multiple mouse models of neurodegenerative disease, but its effects on the brain have not been comprehensively investigated. In the current study, we used transcriptomics to broadly characterize the effects of long-term supplementation with a human-equivalent therapeutic dose of 3TC on the hippocampal transcriptome in male and female rTg4510 mice (a commonly studied model of tauopathy-associated neurodegeneration). We found that tauopathy increased hippocampal transcriptomic signatures of neuroinflammation/immune activation, but 3TC treatment reversed some of these effects. We also found that 3TC mitigated tauopathy-associated activation of key transcription factors that contribute to neuroinflammation and immune activation, and these changes were related to improved recognition memory performance. Collectively, our findings suggest that 3TC exerts protective effects against tauopathy in the hippocampus by modulating inflammation and immune activation, and they may provide helpful insight for ongoing clinical efforts to determine if 3TC and/or related therapeutics hold promise for treating neurodegeneration.
Collapse
Affiliation(s)
- Devin Wahl
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States of America
| | - Randy A Grant
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States of America
| | - Thomas J LaRocca
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, United States of America; Columbine Health Systems Center for Healthy Aging, Colorado State University, Fort Collins, CO, United States of America.
| |
Collapse
|
4
|
Gotti C, Clementi F, Zoli M. Special issue "The multifaceted activities of nervous and non-nervous neuronal nicotinic acetylcholine receptors in physiology and pathology". Pharmacol Res 2024; 205:107239. [PMID: 38801984 DOI: 10.1016/j.phrs.2024.107239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Affiliation(s)
| | - Francesco Clementi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Centre for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Abbondanza A, Urushadze A, Alves-Barboza AR, Janickova H. Expression and function of nicotinic acetylcholine receptors in specific neuronal populations: Focus on striatal and prefrontal circuits. Pharmacol Res 2024; 204:107190. [PMID: 38704107 DOI: 10.1016/j.phrs.2024.107190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/06/2024]
Abstract
Nicotinic acetylcholine receptors (nAChRs) are widely expressed in the central nervous system and play an important role in the control of neural functions including neuronal activity, transmitter release and synaptic plasticity. Although the common subtypes of nAChRs are abundantly expressed throughout the brain, their expression in different brain regions and by individual neuronal types is not homogeneous or incidental. In recent years, several studies have emerged showing that particular subtypes of nAChRs are expressed by specific neuronal populations in which they have major influence on the activity of local circuits and behavior. It has been demonstrated that even nAChRs expressed by relatively rare neuronal types can induce significant changes in behavior and contribute to pathological processes. Depending on the identity and connectivity of the particular nAChRs-expressing neuronal populations, the activation of nAChRs can have distinct or even opposing effects on local neuronal signaling. In this review, we will summarize the available literature describing the expression of individual nicotinic subunits by different neuronal types in two crucial brain regions, the striatum and the prefrontal cortex. The review will also briefly discuss nicotinic expression in non-neuronal, glial cells, as they cannot be ignored as potential targets of nAChRs-modulating drugs. The final section will discuss options that could allow us to target nAChRs in a neuronal-type-specific manner, not only in the experimental field, but also eventually in clinical practice.
Collapse
Affiliation(s)
- Alice Abbondanza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Anna Urushadze
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Amanda Rosanna Alves-Barboza
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic
| | - Helena Janickova
- Laboratory of Neurochemistry, Institute of Physiology of the Czech Academy of Sciences, Prague 14200, Czech Republic.
| |
Collapse
|
6
|
Gotti C, Clementi F, Zoli M. Auxiliary protein and chaperone regulation of neuronal nicotinic receptor subtype expression and function. Pharmacol Res 2024; 200:107067. [PMID: 38218358 DOI: 10.1016/j.phrs.2024.107067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Neuronal nicotinic acetylcholine receptors (nAChRs) are a family of pentameric, ligand-gated ion channels that are located on the surface of neurons and non-neuronal cells and have multiple physiological and pathophysiological functions. In order to reach the cell surface, many nAChR subtypes require the help of chaperone and/or auxiliary/accessory proteins for their assembly, trafficking, pharmacological modulation, and normal functioning in vivo. The use of powerful genome-wide cDNA screening has led to the identification and characterisation of the molecules and mechanisms that participate in the assembly and trafficking of receptor subtypes, including chaperone and auxiliary or accessory proteins. The aim of this review is to describe the latest findings concerning nAChR chaperones and auxiliary proteins and pharmacological chaperones, and how some of them control receptor biogenesis or regulate channel activation and pharmacology. Some auxiliary proteins are subtype selective, some regulate various subtypes, and some not only modulate nAChRs but also target other receptors and signalling pathways. We also discuss how changes in auxiliary proteins may be involved in nAChR dysfunctions.
Collapse
Affiliation(s)
- Cecilia Gotti
- CNR, Institute of Neuroscience, Milan, Italy; NeuroMi Milan Center for Neuroscience, University of Milano-Bicocca, Italy.
| | - Francesco Clementi
- CNR, Institute of Neuroscience, Milan, Italy; Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy
| | - Michele Zoli
- Department of Biomedical, Metabolic and Neural Sciences, Center for Neuroscience and Neurotechnology (CfNN), University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
7
|
Kost V, Sukhov D, Ivanov I, Kasheverov I, Ojomoko L, Shelukhina I, Mozhaeva V, Kudryavtsev D, Feofanov A, Ignatova A, Utkin Y, Tsetlin V. Comparison of Conformations and Interactions with Nicotinic Acetylcholine Receptors for E. coli-Produced and Synthetic Three-Finger Protein SLURP-1. Int J Mol Sci 2023; 24:16950. [PMID: 38069271 PMCID: PMC10707033 DOI: 10.3390/ijms242316950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023] Open
Abstract
SLURP-1 is a three-finger human protein targeting nicotinic acetylcholine receptors (nAChRs). The recombinant forms of SLURP-1 produced in E. coli differ in added fusion fragments and in activity. The closest in sequence to the naturally occurring SLURP-1 is the recombinant rSLURP-1, differing by only one additional N-terminal Met residue. sSLURP-1 can be prepared by peptide synthesis and its amino acid sequence is identical to that of the natural protein. In view of recent NMR analysis of the conformational mobility of rSLURP-1 and cryo-electron microscopy structures of complexes of α-bungarotoxin (a three-finger snake venom protein) with Torpedo californica and α7 nAChRs, we compared conformations of sSLURP-1 and rSLURP-1 by Raman spectroscopy and CD-controlled thermal denaturation, analyzed their competition with α-bungarotoxin for binding to the above-mentioned nAChRs, compared the respective receptor complexes with computer modeling and compared their inhibitory potency on the α9α10 nAChR. The CD revealed a higher thermostability of sSLURP-1; some differences between sSLURP-1 and rSLURP-1 were observed in the regions of disulfides and tyrosine residues by Raman spectroscopy, but in binding, computer modeling and electrophysiology, the proteins were similar. Thus, sSLURP-1 and rSLURP-1 with only one additional Met residue appear close in structure and functional characteristics, being appropriate for research on nAChRs.
Collapse
Affiliation(s)
- Vladimir Kost
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Dmitry Sukhov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Igor Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Igor Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Lucy Ojomoko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Irina Shelukhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Vera Mozhaeva
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Denis Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
- Department of Biology and General Genetics, I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya Str., 119048 Moscow, Russia
| | - Alexey Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Anastasia Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Yuri Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| | - Victor Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia; (V.K.); (D.S.); (I.I.); (I.K.); (L.O.); (I.S.); (V.M.); (D.K.); (A.F.); (Y.U.)
| |
Collapse
|