1
|
Zhuang X, Xiao F, Chen F, Ni S. HDAC9-mediated deacetylation of CALML6 promotes excessive proliferation of glomerular mesangial cells in IgA nephropathy. Clin Exp Nephrol 2025; 29:734-744. [PMID: 39833449 DOI: 10.1007/s10157-024-02620-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/24/2024] [Indexed: 01/22/2025]
Abstract
PURPOSE This study seeks to investigate the fundamental molecular processes through which histone deacetylase 9 (HDAC9) governs the proliferation of glomerular mesangial cells in the context of immunoglobulin A nephropathy (IgAN) and to identify novel targets for clinical research on IgAN. METHODS Data from high-throughput RNA sequencing for IgAN were procured from the Gene Expression Omnibus database to assess the expression profiles and clinical diagnostic significance of histone deacetylase family proteins (HDACs). Blood samples from 20 IgAN patients were employed in RT-qPCR analysis, and the spearman linear regression method was utilized to analyze the clinical correlation. The proliferation of glomerular mesangial cells (GMCs) under the influence of HDAC9 was examined using the 5-ethynyl-2'-deoxyuridine (EdU) assay. Proteins interacting with HDAC9 were predicted utilizing the STRING database. Immunoprecipitation and protein immunoblotting employing anti-acetylated lysine antibodies were conducted to determine the acetylation status of calmodulin-like protein 6 (CALML6). RESULTS Analysis of the GSE141295 dataset revealed a significant upregulation of HDAC9 expression in IgAN and the results of RT-qPCR demonstrated a substantial increase in HDAC9 expression in IgAN patients. Receiver operating characteristic (ROC) analysis indicated that the area under the curve (AUC) value for HDAC9 were 0.845 and Spearman correlation analysis showed that HDAC9 expression was positively correlated with blood levels of blood urea nitrogen (BUN) and serum creatinine (Crea). The EdU cell proliferation assay indicated that HDAC9 facilitated the excessive proliferation of GMCs. The STRING database and recovery experiments identified CALML6 as a downstream effector of HDAC9 in controlling abnormal GMC multiplication. Co-immunoprecipitation assays demonstrated that HDAC9 modulates CALML6 expression through acetylation modification. CONCLUSION HDAC9 is markedly upregulated in IgAN, and it mediates the excessive proliferation of GMCs by regulating the deacetylation of CALML6.
Collapse
Affiliation(s)
- Xingxing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China
| | - Fei Xiao
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China.
| | - Shoudong Ni
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, No. 64 North Chaohu Road, Chaohu, Anhui, 238000, People's Republic of China.
- School of Pharmacy, Anhui Medical University, No. 81 Meishan Road, Hefei, Anhui, 230000, People's Republic of China.
| |
Collapse
|
2
|
Zheng Y, Zhang TN, Hao PH, Yang N, Du Y. Histone deacetylases and their inhibitors in kidney diseases. Mol Ther 2025:S1525-0016(25)00300-4. [PMID: 40263937 DOI: 10.1016/j.ymthe.2025.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/18/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025] Open
Abstract
Histone deacetylases (HDACs) have emerged as key regulators in the pathogenesis of various kidney diseases. This review explores recent advancements in HDAC research, focusing on their role in kidney development and their critical involvement in the progression of chronic kidney disease (CKD), acute kidney injury (AKI), autosomal dominant polycystic kidney disease (ADPKD), and diabetic kidney disease (DKD). It also discusses the therapeutic potential of HDAC inhibitors in treating these conditions. Various HDAC inhibitors have shown promise by targeting specific HDAC isoforms and modulating a range of biological pathways. Their protective effects include modulation of apoptosis, autophagy, inflammation, and fibrosis, underscoring their broad therapeutic potential for kidney diseases. However, further research is essential to improve the selectivity of HDAC inhibitors, minimize toxicity, overcome drug resistance, and enhance their pharmacokinetic properties. This review offers insights to guide future research and prevention strategies for kidney disease management.
Collapse
Affiliation(s)
- Yue Zheng
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Peng-Hui Hao
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Yue Du
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China; Key Laboratory of Health Ministry for Congenital Malformation, Shengjing Hospital, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Li X, Cui J, Ding Z, Tian Z, Kong Y, Li L, Liu Y, Zhao W, Chen X, Guo H, Cui Z, Li X, Yuan J, Zhang H. Klebsiella pneumoniae-derived extracellular vesicles impair endothelial function by inhibiting SIRT1. Cell Commun Signal 2025; 23:21. [PMID: 39800699 PMCID: PMC11726972 DOI: 10.1186/s12964-024-02002-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 12/18/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The potential role of Klebsiella pneumoniae (K.pn) in hypertension development has been emphasized, although the specific mechanisms have not been well understood. Bacterial extracellular vesicles (BEVs) released by Gram-negative bacteria modulate host cell functions by delivering bacterial components to host cells. Endothelial dysfunction is an important early event in the pathogenesis of hypertension, yet the impact of K.pn-secreted EVs (K.pn EVs) on endothelial function remains unclear. This study aimed to investigate the effects of K.pn EVs on endothelial function and to elucidate the underlying mechanisms. METHODS K.pn EVs were purified from the bacterial suspension using ultracentrifugation and characterized by transmission electron microscopy nanoparticle tracking analysis, and EV marker expression. Endothelium-dependent relaxation was measured using a wire myograph after in vivo or ex vivo treatment with K.pn EVs. Superoxide anion production was measured by confocal microscopy and HUVEC senescence was assessed by SA-β-gal activity. SIRT1 overexpression or activator was utilized to investigate the underlying mechanisms. RESULTS Our data showed that K.pn significantly impaired acetylcholine-induced endothelium-dependent relaxation and increased superoxide anion production in endothelial cells in vivo. Similarly, in vivo and ex vivo studies showed that K.pn EVs caused significant endothelial dysfunction, endothelial provocation, and increased blood pressure. Further examination revealed that K.pn EVs reduced the levels of SIRT1 and p-eNOS and increased the levels of NOX2, COX-2, ET-1, and p53 in endothelial cells. Notably, overexpression or activation of SIRT1 attenuated the adverse effects and protein changes induced by K.pn EVs on endothelial cells. CONCLUSION This study reveals a novel role of K.pn EVs in endothelial dysfunction and dissects the relevant mechanism involved in this process, which will help to establish a comprehensive understanding of K.pn EVs in endothelial dysfunction and hypertension from a new scope.
Collapse
Affiliation(s)
- Xinxin Li
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jinghua Cui
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Zanbo Ding
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Ziyan Tian
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Yiming Kong
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China
| | - Linghai Li
- Department of Anesthesiology, Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, China
| | - Yang Liu
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Wen Zhao
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Xueying Chen
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Han Guo
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Zhengshuo Cui
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Xinwei Li
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China
| | - Jing Yuan
- Microbiology Department, Capital Institute of Pediatrics, China No.2 Yabao Road, Chaoyang District, Beijing, 100020, China.
| | - Huina Zhang
- Beijing An Zhen Hospital, Capital Medical University, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing, 100029, China.
| |
Collapse
|
4
|
Xiang HL, Yuan Q, Zeng JY, Xu ZY, Zhang HZ, Huang J, Song AN, Xiong J, Zhang C. MDM2 accelerated renal senescence via ubiquitination and degradation of HDAC1. Acta Pharmacol Sin 2024; 45:2328-2338. [PMID: 38760541 PMCID: PMC11489730 DOI: 10.1038/s41401-024-01294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Accepted: 04/16/2024] [Indexed: 05/19/2024]
Abstract
Senescence, an intricate and inevitable biological process, characterized by the gradual loss of homeostasis and declining organ functions. The pathological features of cellular senescence, including cell cycle arrest, metabolic disruptions, and the emergence of senescence-associated secretory phenotypes (SASP), collectively contribute to the intricate and multifaceted nature of senescence. Beyond its classical interaction with p53, murine double minute gene 2 (MDM2), traditionally known as an E3 ubiquitin ligase involved in protein degradation, plays a pivotal role in cellular processes governing senescence. Histone deacetylase (HDAC), a class of histone deacetylases mainly expressed in the nucleus, has emerged as a critical contributor to renal tissues senescence. In this study we investigated the interplay between MDM2 and HDAC1 in renal senescence. We established a natural aging model in mice over a 2-year period that was verified by SA-β-GAL staining and increased expression of senescence-associated markers such as p21, p16, and TNF-α in the kidneys. Furthermore, we showed that the expression of MDM2 was markedly increased, while HDAC1 expression underwent downregulation during renal senescence. This phenomenon was confirmed in H2O2-stimulated HK2 cells in vitro. Knockout of renal tubular MDM2 alleviated renal senescence in aged mice and in H2O2-stimulated HK2 cells. Moreover, we demonstrated that MDM2 promoted renal senescence by orchestrating the ubiquitination and subsequent degradation of HDAC1. These mechanisms synergistically accelerate the aging process in renal tissues, highlighting the intricate interplay between MDM2 and HDAC1, underpinning the age-related organ function decline.
Collapse
Affiliation(s)
- Hui-Ling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jie-Yu Zeng
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Zi-Yu Xu
- Department of Nephrology, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450000, China
| | - Hui-Zi Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - An-Ni Song
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Jing Xiong
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430000, China.
| |
Collapse
|
5
|
Ren L, Pushpakumar S, Almarshood H, Das SK, Sen U. Epigenetic DNA Methylation and Protein Homocysteinylation: Key Players in Hypertensive Renovascular Damage. Int J Mol Sci 2024; 25:11599. [PMID: 39519150 PMCID: PMC11546175 DOI: 10.3390/ijms252111599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Hypertension has been a threat to the health of people, the mechanism of which, however, remains poorly understood. It is clinically related to loss of nephron function, glomerular sclerosis, or necrosis, resulting in renal functional declines. The mechanisms underlying hypertension's development and progression to organ damage, including hypertensive renal damage, remain to be fully elucidated. As a developing approach, epigenetics has been postulated to elucidate the phenomena that otherwise cannot be explained by genetic studies. The main epigenetic hallmarks, such as DNA methylation, histone acetylation, deacetylation, noncoding RNAs, and protein N-homocysteinylation have been linked with hypertension. In addition to contributing to endothelial dysfunction and oxidative stress, biologically active gases, including NO, CO, and H2S, are crucial regulators contributing to vascular remodeling since their complex interplay conducts homeostatic functions in the renovascular system. Importantly, epigenetic modifications also directly contribute to the pathogenesis of kidney damage via protein N-homocysteinylation. Hence, epigenetic modulation to intervene in renovascular damage is a potential therapeutic approach to treat renal disease and dysfunction. This review illustrates some of the epigenetic hallmarks and their mediators, which have the ability to diminish the injury triggered by hypertension and renal disease. In the end, we provide potential therapeutic possibilities to treat renovascular diseases in hypertension.
Collapse
Affiliation(s)
- Lu Ren
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Sathnur Pushpakumar
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Hebah Almarshood
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| | - Swapan K. Das
- Department of Internal Medicine, Section on Endocrinology and Metabolism, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA
| | - Utpal Sen
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY 40202, USA; (L.R.)
| |
Collapse
|
6
|
Dang Z, Li H, Xue S, Shao B, Ning Y, Su G, Zhang F, Yu W, Leng S. Histone deacetylase 9-mediated phenotypic transformation of vascular smooth muscle cells is a potential target for treating aortic aneurysm/dissection. Biomed Pharmacother 2024; 173:116396. [PMID: 38460370 DOI: 10.1016/j.biopha.2024.116396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/29/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024] Open
Abstract
Aortic aneurysm/dissection (AAD) is a serious cardiovascular condition characterized by rapid onset and high mortality rates. Currently, no effective drug treatment options are known for AAD. AAD pathogenesis is associated with the phenotypic transformation and abnormal proliferation of vascular smooth muscle cells (VSMCs). However, endogenous factors that contribute to AAD progression remain unclear. We aimed to investigate the role of histone deacetylase 9 (HDAC9) in AAD pathogenesis. HDAC9 expression was considerably increased in human thoracic aortic dissection specimens. Using RNA-sequencing (RNA-seq) and chromatin immunoprecipitation, we demonstrated that HDAC9 transcriptionally inhibited the expression of superoxide dismutase 2 and insulin-like growth factor-binding protein-3, which are critically involved in various signaling pathways. Furthermore, HDAC9 triggered the transformation of VSMCs from a systolic to synthetic phenotype, increasing their proliferation and migration abilities and suppressing their apoptosis. Consistent with these results, in vivo experiments revealed that TMP195, a pharmacological inhibitor of HDAC9, suppressed the formation of the β-aminopropionitrile-induced AAD phenotype in mice. Our findings indicate that HDAC9 may be a novel endogenous risk factor that promotes the onset of AAD by mediating the phenotypic transformation of VSMCs. Therefore, HDAC9 may serve as a potential therapeutic target for drug-based AAD treatment. Furthermore, TMP195 holds potential as a therapeutic agent for AAD treatment.
Collapse
Affiliation(s)
- Zhiqiao Dang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Haijie Li
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Shishan Xue
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Baowei Shao
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Yansong Ning
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Guohai Su
- Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China
| | - Fengquan Zhang
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Wenqian Yu
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| | - Shuai Leng
- Department of Cardiac Surgery, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China; Research Center of Translational Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250013, China.
| |
Collapse
|
7
|
González-Lamuño D, Arrieta-Blanco FJ, Fuentes ED, Forga-Visa MT, Morales-Conejo M, Peña-Quintana L, Vitoria-Miñana I. Hyperhomocysteinemia in Adult Patients: A Treatable Metabolic Condition. Nutrients 2023; 16:135. [PMID: 38201964 PMCID: PMC10780827 DOI: 10.3390/nu16010135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Hyperhomocysteinemia (HHcy) is recognized as an independent risk factor for various significant medical conditions, yet controversy persists around its assessment and management. The diagnosis of disorders afffecting homocysteine (Hcy) metabolism faces delays due to insufficient awareness of its clinical presentation and unique biochemical characteristics. In cases of arterial or venous thrombotic vascular events, particularly with other comorbidities, it is crucial to consider moderate to severe HHcy. A nutritional approach to HHcy management involves implementing dietary strategies and targeted supplementation, emphasizing key nutrients like vitamin B6, B12, and folate that are crucial for Hcy conversion. Adequate intake of these vitamins, along with betaine supplementation, supports Hcy remethylation. Lifestyle modifications, such as smoking cessation and regular physical activity, complement the nutritional approach to enhance Hcy metabolism. For individuals with HHcy, maintaining a plasma Hcy concentration below 50 μmol/L consistently is vital to lowering the risk of vascular events. Collaboration with healthcare professionals and dietitians is essential for developing personalized dietary plans addressing the specific needs and underlying health conditions. This integrated approach aims to optimize metabolic processes and reduce the associated health risks.
Collapse
Affiliation(s)
| | | | - Elena Dios Fuentes
- Endocrinology and Nutrition Department, Virgen del Rocío University Hospital, 41013 Sevilla, Spain;
| | | | - Monstserrat Morales-Conejo
- Unit for Congenital Metabolic Diseases and Other Rare Diseases, Internal Medicine Department, 12 de Octubre University Hospital, 28041 Madrid, Spain;
| | - Luis Peña-Quintana
- Pediatric Gastroenterology and Nutrition Unit, Insular Materno-Infantil University Hospital Complex, Asociación Canaria de Investigación Pediátrica, Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición, University of Las Palmas de Gran Canaria, 35016 Las Palmas de Gran Canaria, Spain;
| | - Isidro Vitoria-Miñana
- Nutrition and Metabolic Diseases Unit, La Fe University Hospital, 46026 Valencia, Spain
| |
Collapse
|