1
|
Qian C, Wang Y, Yuan Q, Guo Y, Wang Y. Insights into the itaconate family: Immunomodulatory mechanisms and therapeutic potentials. Eur J Pharmacol 2025; 997:177542. [PMID: 40147573 DOI: 10.1016/j.ejphar.2025.177542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The itaconate family, comprising itaconate derivatives, endogenous isomers, and other related compounds, has demonstrated substantial immunoregulatory properties. These compounds exhibit significant therapeutic potential in various disease models by modulating metabolic pathways, signal transduction cascades, and post-translational modifications. In this review, we delineate the structural characteristics and biological functions of the members of the itaconate family and elucidate their immunomodulatory mechanisms. Additionally, we summarize the immunomodulatory effects of the itaconate family across various disease categories, including cardiovascular, liver, respiratory, bone and cartilage, neurological, and autoimmune diseases. This review aims to deepen our understanding of the itaconate family and its potential applications, providing new perspectives and therapeutic strategies for inflammatory disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Chunlin Qian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yueying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
2
|
Paik S, Kim JK, Shin HJ, Park EJ, Kim IS, Jo EK. Updated insights into the molecular networks for NLRP3 inflammasome activation. Cell Mol Immunol 2025; 22:563-596. [PMID: 40307577 DOI: 10.1038/s41423-025-01284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Over the past decade, significant advances have been made in our understanding of how NACHT-, leucine-rich-repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes are activated. These findings provide detailed insights into the transcriptional and posttranslational regulatory processes, the structural-functional relationship of the activation processes, and the spatiotemporal dynamics of NLRP3 activation. Notably, the multifaceted mechanisms underlying the licensing of NLRP3 inflammasome activation constitute a focal point of intense research. Extensive research has revealed the interactions of NLRP3 and its inflammasome components with partner molecules in terms of positive and negative regulation. In this Review, we provide the current understanding of the complex molecular networks that play pivotal roles in regulating NLRP3 inflammasome priming, licensing and assembly. In addition, we highlight the intricate and interconnected mechanisms involved in the activation of the NLRP3 inflammasome and the associated regulatory pathways. Furthermore, we discuss recent advances in the development of therapeutic strategies targeting the NLRP3 inflammasome to identify potential therapeutics for NLRP3-associated inflammatory diseases. As research continues to uncover the intricacies of the molecular networks governing NLRP3 activation, novel approaches for therapeutic interventions against NLRP3-related pathologies are emerging.
Collapse
Affiliation(s)
- Seungwha Paik
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- System Network Inflammation Control Research Center, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
| | - Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyo Jung Shin
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Biochemistry and Cell Biology, Eulji University School of Medicine, Daejeon, Republic of Korea
- Brain Research Institute, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Jin Park
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - In Soo Kim
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
- Biomedical Research Institute, Chungnam National University Hospital, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Pålsson-McDermott EM, O'Neill LAJ. Gang of 3: How the Krebs cycle-linked metabolites itaconate, succinate, and fumarate regulate macrophages and inflammation. Cell Metab 2025; 37:1049-1059. [PMID: 40169002 DOI: 10.1016/j.cmet.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 02/18/2025] [Accepted: 03/05/2025] [Indexed: 04/03/2025]
Abstract
The reprogramming of metabolic pathways and processes in immune cells has emerged as an important aspect of the immune response. Metabolic intermediates accumulate as a result of metabolic adaptations and mediate functions outside of metabolism in the regulation of immunity and inflammation. In macrophages, there has been a major focus on 3 metabolites linked to the Krebs cycle, itaconate, succinate, and fumarate, which have been shown to regulate multiple processes. Here, we discuss recent progress on these 3 metabolites with regard to their effect on macrophages in host defense and inflammatory diseases. We also consider the therapeutic opportunities presented from the mimicry of these metabolites or by targeting the enzymes that make or metabolize them in order to leverage the body's own anti-inflammatory response.
Collapse
Affiliation(s)
- Eva M Pålsson-McDermott
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland.
| | - Luke A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Science Institute, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
4
|
Wan Y, Gao Q, Ye B, Sun W, Chen K, Guo X. Multifunctional hydrogel loaded with 4-octyl itaconate and exosomes to induce bone regeneration for diabetic infected bone defect via Keap1-Nrf2 pathway. Mater Today Bio 2025; 31:101588. [PMID: 40070866 PMCID: PMC11894338 DOI: 10.1016/j.mtbio.2025.101588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/09/2025] [Accepted: 02/16/2025] [Indexed: 03/14/2025] Open
Abstract
Diabetic infected bone defect remains a great challenge in clinical practice, with delayed healing characterized by bacterial infection and cellular disfunction caused by oxidative stress. Hence, a novel self-healing multifunctional Ag@PEG-4OI/EXO hydrogel is introduced for improving healing of diabetic infected bone defect. 4-octyl itaconate, a derivative of the metabolite itaconate, has been proved that which performs antioxidant and mitochondria-protected properties. Simultaneously, the Ag+ that performed as cross-linking agent binds 4-arm-PEG-SH to form anti-bacterial hydrogel to deliver the bioactive molecule. The released of 4OI is confirmed that it can alleviate excessive ROS damage to cells and protect mitochondrial functions according to Keap1-Nrf2 pathway, synergistically promoting neurovascularization and osteogenic differentiation with EXO (from repair Schwann cells). In vivo, the Ag@PEG-4OI/EXO hydrogel also shows ideal antibacterial property and ameliorate the microenvironment of cells, finally promoting regeneration of CGRP+ nerve fibers and bone healing. In vivo and in vitro studies demonstrate that the improvement functions of cells with the use of the Ag@PEG-4OI/EXO hydrogel, presenting a viable strategy for diabetic infected bone defect.
Collapse
Affiliation(s)
- Yizhou Wan
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Qing Gao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Bing Ye
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Wenzhe Sun
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Kaifang Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Xiaodong Guo
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science & Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
5
|
Woo J, Cao G, Karmacharya N, Lee J, Lee J, Duru KC, McClenaghan C, An SS, Panettieri RA, Jude JA. Volume-Regulated Anion Channel Complex Modulates Mechano-Electrical Signal Responses in Human Airway Smooth Muscle Shortening. Am J Respir Cell Mol Biol 2025; 72:418-428. [PMID: 39470451 PMCID: PMC12005011 DOI: 10.1165/rcmb.2024-0160oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 10/29/2024] [Indexed: 10/30/2024] Open
Abstract
LRRC8A (leucine-rich repeat containing 8A) is an obligatory constituent of the volume-regulated anion channel (VRAC) that is fundamental to a wide range of biological processes, including regulating cell size, proliferation, and migration. Here we explored the physiological role of VRAC in excitation-contraction (E-C) coupling and shortening of human airway smooth muscle (HASM). In HASM cells, pharmacological inhibition of VRAC with DCPIB (4-[2-butyl-6,7-dichloro-2-cyclopentyl-indan-1-on-5-yl]) (0.1-10 μM) markedly attenuated swell-activated Cl- conductance, and contractile agonist (histamine or carbachol)-induced cellular stiffening as measured by single-cell patch-clamp and optical magnetic twisting cytometry, respectively. In addition, HASM cells treated with DCPIB or transfected with LRRC8A-targeting siRNA showed reduced agonist-induced phosphorylation of protein kinase B (i.e., AKT), paxillin, MYPT1, and myosin light chain. Consistent with the changes of these E-C coupling effectors, DCPIB appreciably decreased agonist-induced small airways narrowing in human precision-cut lung slices. Taken together, our findings shed new light on the mechanistic link between HASM shortening and regulatory volume decrease via LRRC8A, revealing a previously unrecognized nodal point for modulation of E-C coupling and acute airway constriction.
Collapse
Affiliation(s)
- Joanna Woo
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Gaoyuan Cao
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Nikhil Karmacharya
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Jordan Lee
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Justin Lee
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Kingsley C. Duru
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and
| | - Conor McClenaghan
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and
| | - Steven S. An
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Department of Pharmacology, Rutgers Robert Wood Johnson Medical School, and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Reynold A. Panettieri
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | - Joseph A. Jude
- Joint Graduate Program in Toxicology, Ernest Mario School of Pharmacy and
- Rutgers Institute for Translational Medicine and Science, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| |
Collapse
|
6
|
Qin M, Yi X, Duan Z, Chang B, Li T. Recent insights on the impact of SWELL1 on metabolic syndromes. Front Pharmacol 2025; 16:1552176. [PMID: 40191429 PMCID: PMC11968765 DOI: 10.3389/fphar.2025.1552176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
SWELL1 is a key component of the volume-regulated anion channel (VRAC) and participates in cell volume regulation as an ion channel plasma membrane protein. While early studies focused on its role in immune cell development and tumor progression, recent studies have revealed that SWELL1 plays an important role in metabolic diseases. Studies have shown that SWELL1 is extensively involved in physiological processes in peripheral metabolic tissues, including adipocyte hypertrophy, skeletal muscle volume regulation, insulin secretion, and hepatic lipid metabolism through interactions with the insulin signaling pathway. These functions play key roles in the pathogenesis of obesity, type 2 diabetes mellitus (T2DM), and non-alcoholic fatty liver disease (NAFLD), suggesting that SWELL1 may be a new target for the treatment of metabolic diseases. In this review, we focus on the structural and functional characteristics of SWELL1 to provide an in-depth explanation of its role in the development of metabolic syndrome, especially the regulation of the insulin signaling pathway, and provide a basis for the development of therapeutic strategies for metabolic diseases targeting SWELL1.
Collapse
Affiliation(s)
- Mianhong Qin
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Xuejie Yi
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Ziqiang Duan
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| | - Bo Chang
- College of Sport Science, Zhuhai College of Science and Technology, Zhuhai, Guangdong, China
| | - Tao Li
- School of Sports Health, Shenyang Sport University, Shenyang, Liaoning, China
| |
Collapse
|
7
|
Sabirov RZ, Rustamova SI, Toshtemirova GA, Tsiferova NA, Khojiboev SA, Fayziev DD, Inogamov UK, Kurbannazarova RS, Syrov VN, Merzlyak PG. Ferula sesquiterpenes, ferutinin, galbanic acid and karatavic acid, suppress thymocyte volume regulation and proliferation by blocking the volume-sensitive anion channel. Biomed Pharmacother 2025; 184:117875. [PMID: 39913971 DOI: 10.1016/j.biopha.2025.117875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/16/2025] [Accepted: 01/27/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND T cell development and maturation requires efficient cell volume regulation (CVR) system. Although the molecular basis of CVR is being rapidly elucidated, pharmacology of its key components remains poorly developed. Biopharmaceuticals specifically targeting CVR and its central player, the volume-sensitive outwardly rectifying anion channel (VSOR/VRAC), are necessary to uncover relationships between the channel, CVR and cell proliferation and survival. METHODS The effects of three Ferula sesquiterpenes, ferutinin, galbanic acid and karatavic acid on the regulatory volume decrease (RVD) of freshly isolated thymocytes by light transmittance, on proliferation of primary cultured thymocytes by cell counting and on the VSOR/VRAC by patch-clamp were evaluated. RESULTS Ferutinin, galbanic acid and karatavic acid exerted a profound inhibitory effect on RVD of thymocytes, leading to proliferation arrest. All three sesquiterpenes blocked VSOR/VRAC in a voltage-independent "cork-in-bottle" manner with half-maximal efficiencies comparable to those for RVD. Hill coefficients of 2.0-3.3 imply that positively cooperated binding of 2-3 molecules of the Ferula sesquiterpenes to VSOR/VRAC is required to suppress cell proliferation via inhibition of CVR. The Ferula sesquiterpenes were not apoptogenic, but induced necrotic cell death, which was pronounced for ferutinin and less manifested for galbanic and karatavic acids. VSOR/VRAC and RVD inhibition did not correlate with necrotic cell death induction. CONCLUSION The VSOR/VRAC channel blockage by Ferula sesquiterpenes was found to impair the CVR machinery of thymocytes, resulting in suppression of cell proliferation. The necrotic cell death is not a direct consequence of VSOR/VRAC and RVD inhibition, likely involving other cellular pathways.
Collapse
Affiliation(s)
- Ravshan Z Sabirov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Department of Biophysics, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Sarvinoz I Rustamova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Gulnoza A Toshtemirova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Nargiza A Tsiferova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Center for Advanced Technologies, Tashkent 100174, Uzbekistan.
| | - Sirojbek A Khojiboev
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Diyor D Fayziev
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Department of Biophysics, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Utkir K Inogamov
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Tashkent Scientific Research Institute for Vaccines and Serums, Tashkent 100084, Uzbekistan.
| | - Ranokhon Sh Kurbannazarova
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan; Department of Biophysics, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| | - Vladimir N Syrov
- Institute of Chemistry of Plant Substances, Academy of Sciences of Uzbekistan, Tashkent 100170, Uzbekistan.
| | - Petr G Merzlyak
- Institute of Biophysics and Biochemistry, National University of Uzbekistan, Tashkent 100174, Uzbekistan.
| |
Collapse
|
8
|
Zhang F, Cui D, Wang Z, Li Y, Wang K, Lu H, Yu H, Jiao W, Cui X. NOX4 Regulates NLRP3 by Inhibiting the Ubiquitination of LRRC8A to Promote Ferroptosis in Nucleus Pulposus Cells. Inflammation 2025:10.1007/s10753-025-02253-0. [PMID: 39909992 DOI: 10.1007/s10753-025-02253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Intervertebral disc degeneration (IDD) is a significant contributor to low back pain, imposing a considerable socioeconomic burden. Ferroptosis, a novel form of cell death driven by iron and characterized by the accumulation of reactive oxygen species (ROS), has been associated with the progression of IDD. Nicotinamide adenine dinucleotide phosphate oxidase 4 (NOX4) has been widely recognized as a pivotal factor promoting ferroptosis across various diseases; however, its precise role in the pathogenesis of IDD remains incompletely understood. Our experimental findings demonstrated a marked upregulation of NOX4 in degenerated cells, accompanied by elevated ROS levels and a diminished mitochondrial membrane potential, indicating the participation of ferroptosis. Furthermore, the expression of the critical regulatory factor GPX4 was reduced, while ACSL4 levels were significantly increased, further corroborating the involvement of ferroptosis. Functional loss and gain experiments revealed that NOX4 overexpression augmented ferroptosis and ROS production while promoting the secretion of inflammatory cytokines. Subsequent studies indicated that the knockdown of NOX4 could reverse tert-butyl hydroperoxide (TBHP)-induced ferroptosis. Mass spectrometry analysis identified leucine-rich repeat-containing 8A (LRRC8A) as an interacting protein of NOX4, and further validation confirmed that they co-regulate Nod-like receptor pyrin domain-3 (NLRP3) activation through their interaction. Utilizing a rat model of intervertebral disc degeneration, we further corroborated the role of NOX4 in IDD. This study provides theoretical support for the potential application of NOX4-targeting drugs in the treatment of IDD.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Di Cui
- Medical School of Fuyang, Normal University, No. 100, Qinghe West Road, Yingzhou District, Fuyang, 236000, Anhui, China
| | - Zhaodong Wang
- Anhui Province Key Laboratory of Tissue Transplantation, Bengbu Medical University, No.2600, Donghai Dadao, Bengbu, 233000, Anhui, China
- Department of Orthopedics, the First Affiliated Hospital of Bengbu Medical University, No. 287,Changhuai Road, Bengbu, 233000, Anhui, China
| | - Yifei Li
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Kangkang Wang
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haitao Lu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China
| | - Haiyang Yu
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Wei Jiao
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| | - Xilong Cui
- Department of Orthopedics, Fuyang City People's Hospital, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
- Clinical Research Center for Spinal Deformity of Anhui Province, No. 501, Sanqing Road, Fuyang, 236000, Anhui, China.
| |
Collapse
|
9
|
Li X, Du YX, Yu CL, Niu N. Ion channels in macrophages: Implications for disease progression. Int Immunopharmacol 2025; 144:113628. [PMID: 39566388 DOI: 10.1016/j.intimp.2024.113628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 11/22/2024]
Abstract
RATIONALE Macrophages are immune cells found throughout the body and exhibit morphological and functional diversity. Macrophages have been implicated in a wide range of diseases, including autoimmune diseases, acute liver injury, cardiovascular diseases, lung diseases and tumours. Ion channels are transmembrane glycoproteins with important functions in maintaining homeostasis in the intra- and extracellular environment and mediating signal transduction. Many studies have shown that different types of ion channels influence the role of macrophages in the development of various diseases. In recent years, studies on the role of ion channels in macrophages in immune regulation and inflammatory responses have attracted much attention. OBJECTIVE AND FINDINGS In order to gain a deeper understanding of the role of macrophage ion channels, this paper reviews the recent research progress on the role of macrophage ion channels in recent years. The aim is to explore the role of different ion channels in the regulation of macrophage function and their impact on a variety of disease processes. The most studied channels are calcium, sodium and potassium channels, most of which are located in the cell membrane. Among these, TRP channels have a more complex role in M1 and M2 macrophage types. CONCLUSION Ion channels are critical for the functional regulation of macrophages. Targeting ion channels provides new avenues for disease prevention and treatment. This review provides researchers with new ideas and introduces readers to the current state of research on ion channels in macrophages.
Collapse
Affiliation(s)
- Xu Li
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Yan-Xi Du
- School of Clinical Medicine, North Sichuan Medical College, Nanchong 637000, China
| | - Chun-Lei Yu
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China
| | - Na Niu
- School of Pharmacy, North Sichuan Medical College, Nanchong 637000, China.
| |
Collapse
|
10
|
Yanushkevich S, Zieminska A, Gonzalez J, Añazco F, Song R, Arias-Cavieres A, Granados ST, Zou J, Rao Y, Concepcion AR. Recent advances in the structure, function and regulation of the volume-regulated anion channels and their role in immunity. J Physiol 2024. [PMID: 39709525 DOI: 10.1113/jp285200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 11/20/2024] [Indexed: 12/23/2024] Open
Abstract
Volume-regulated anion channels (VRACs) are heteromeric complexes formed by proteins of the leucine-rich repeat-containing 8 (LRRC8) family. LRRC8A (also known as SWELL1) is the core subunit required for VRAC function, and it must combine with one or more of the other paralogues (i.e. LRRC8B-E) to form functional heteromeric channels. VRACs were discovered in T lymphocytes over 35 years ago and are found in virtually all vertebrate cells. Initially, these anion channels were characterized for their role in Cl- efflux during the regulatory volume decrease process triggered when cells are subjected to hypotonic challenges. However, substantial evidence suggests that VRACs also transport small molecules under isotonic conditions. These findings have expanded the research on VRACs to explore their functions beyond volume regulation. In innate immune cells, VRACs promote inflammation by modulating the transport of immunomodulatory cyclic dinucleotides, itaconate and ATP. In adaptive immune cells, VRACs suppress their function by taking up cyclic dinucleotides to activate the STING signalling pathway. In this review, we summarize the current understanding of LRRC8 proteins in immunity and discuss recent progress in their structure, function, regulation and mechanisms for channel activation and gating. Finally, we also examine potential immunotherapeutic applications of VRAC modulation.
Collapse
Affiliation(s)
- Sergei Yanushkevich
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Aleksandra Zieminska
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Joshua Gonzalez
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Francisca Añazco
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Richard Song
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | | | - Sara T Granados
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Junyi Zou
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Yan Rao
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Axel R Concepcion
- Department of Biochemistry & Molecular Biology, University of Chicago, Chicago, IL, USA
- Committee on Immunology, University of Chicago, Chicago, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL, USA
- University of Chicago Medicine Comprehensive Cancer Center, Chicago, IL, USA
| |
Collapse
|
11
|
Meng L, Hao D, Liu Y, Yu P, Luo J, Li C, Jiang T, Yu J, Zhang Q, Liu S, Shi L. LRRC8A drives NADPH oxidase-mediated mitochondrial dysfunction and inflammation in allergic rhinitis. J Transl Med 2024; 22:1034. [PMID: 39550567 PMCID: PMC11568585 DOI: 10.1186/s12967-024-05853-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 11/02/2024] [Indexed: 11/18/2024] Open
Abstract
OBJECTIVES Allergic rhinitis (AR) is a complex disorder with variable pathogenesis. Increasing evidence suggests that the LRRC8A is involved in maintaining cellular stability, regulating immune cell activation and function, and playing significant roles in inflammation. However, the involvement of LRRC8A in AR inflammation and its underlying mechanisms remain unclear. METHODS LRRC8A expression in AR patients, confirmed by qRT-PCR and Western blotting, was analyzed to investigate its relationship with the clinical characteristics of AR patients. In vitro, IL-13 stimulated HNEpCs to establish a Th2 inflammation model, with subsequent LRRC8A knockout or overexpression. NOX1/NOX4 inhibitor (GKT137831) and chloride channel inhibitor (DCPIB) were utilized to investigate AR development mechanisms during LRRC8A overexpression. An OVA-induced AR model with nasal mucosa LRRC8A knockdown confirmed LRRC8A's regulatory role in AR inflammation. RESULTS LRRC8A mRNA and protein levels were significantly elevated in AR patients, positively correlating with NADPH oxidase subunits and Th2 inflammatory markers. In vitro, IL-13 stimulation of HNEpCs resulted in upregulation of LRRC8A and increased expression of NOX1, NOX4, and p22phox, along with mitochondrial dysfunction and NF-κB pathway activation. The knockout of LRRC8A reversed these effects. In nasal mucosal epithelial cells, DCPIB and GKT137831 completely blocked mitochondrial dysfunction caused by the overexpression of LRRC8A, which led to up-regulation of NOX1, NOX4, and p22phox. In vivo, knocking down LRRC8A reduced eosinophil infiltration, downregulated the expression of NOX1, NOX4, p22phox IL-4, IL-5, and IL-13, and decreased NF-κB pathway activation. CONCLUSION LRRC8A drives the upregulation of NOX1, NOX4, and p22phox, leading to ROS overproduction and mitochondrial dysfunction. It also activates NF-κB, ultimately leading to nasal mucosal epithelial inflammation. LRRC8A may be a potential target for the treatment of AR.
Collapse
Affiliation(s)
- Linghui Meng
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Dingqian Hao
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Yuan Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Department of Otolaryngology Head & Neck Surgery, The Second People's Hospital of Shenzhen, Shenzhen, Guangdong, People's Republic of China
| | - Peng Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Jinfeng Luo
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Chunhao Li
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Tianjiao Jiang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - JinZhuang Yu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Qian Zhang
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China
| | - Shengyang Liu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China.
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| | - Li Shi
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250000, Shandong, China.
- Shandong Provincial Key Medical and Health Discipline of Allergy, Shandong Second Provincial General Hospital, Jinan, Shandong, China.
| |
Collapse
|
12
|
Okada Y. Physiology of the volume-sensitive/regulatory anion channel VSOR/VRAC: part 2: its activation mechanisms and essential roles in organic signal release. J Physiol Sci 2024; 74:34. [PMID: 38877402 PMCID: PMC11177392 DOI: 10.1186/s12576-024-00926-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
The volume-sensitive outwardly rectifying or volume-regulated anion channel, VSOR/VRAC, which was discovered in 1988, is expressed in most vertebrate cell types, and is essentially involved in cell volume regulation after swelling and in the induction of cell death. This series of review articles describes what is already known and what remains to be uncovered about the functional and molecular properties as well as the physiological and pathophysiological roles of VSOR/VRAC. This Part 2 review article describes, from the physiological and pathophysiological standpoints, first the pivotal roles of VSOR/VRAC in the release of autocrine/paracrine organic signal molecules, such as glutamate, ATP, glutathione, cGAMP, and itaconate, as well as second the swelling-independent and -dependent activation mechanisms of VSOR/VRAC. Since the pore size of VSOR/VRAC has now well been evaluated by electrophysiological and 3D-structural methods, the signal-releasing activity of VSOR/VRAC is here discussed by comparing the molecular sizes of these organic signals to the channel pore size. Swelling-independent activation mechanisms include a physicochemical one caused by the reduction of intracellular ionic strength and a biochemical one caused by oxidation due to stimulation by receptor agonists or apoptosis inducers. Because some organic substances released via VSOR/VRAC upon cell swelling can trigger or augment VSOR/VRAC activation in an autocrine fashion, swelling-dependent activation mechanisms are to be divided into two phases: the first phase induced by cell swelling per se and the second phase caused by receptor stimulation by released organic signals.
Collapse
Affiliation(s)
- Yasunobu Okada
- National Institute for Physiological Sciences (NIPS), 5-1 Higashiyama, Myodaiji, Okazaki, Aichi, 444-8787, Japan.
- Department of Integrative Physiology, Graduate School of Medicine, Akita University, Akita, Japan.
- Department of Physiology, School of Medicine, Aichi Medical University, Nagakute, Japan.
- Graduate University for Advanced Studies (SOKENDAI), Hayama, Kanagawa, Japan.
| |
Collapse
|