1
|
Hu Z, Li W, Wei L, Ma J. Lactoferrin in cancer: Focus on mechanisms and translational medicine. Biochim Biophys Acta Rev Cancer 2025; 1880:189330. [PMID: 40274081 DOI: 10.1016/j.bbcan.2025.189330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/16/2025] [Accepted: 04/21/2025] [Indexed: 04/26/2025]
Abstract
Lactoferrin is an iron-binding glycoprotein that provides natural protective effects to the human body. Its biological properties, including antibacterial, antiviral, anti-inflammatory, immune-regulatory, and iron metabolism-regulating functions, have been extensively studied. With further research, lactoferrin's impact on tumorigenesis and tumor microenvironment has become increasingly evident, as it inhibits tumor proliferation, invasion, and metastasis through multiple pathways. This article summarizes the molecular mechanisms underlying lactoferrin's anticancer effects, explores its association with the malignant progression of various cancers, and highlights its clinical translational potential as a potential cancer biomarker and drug delivery carrier to enhance anticancer therapy efficiency. Due to the high safety profile of lactoferrin, its widespread application in the field of cancer treatment is highly anticipated.
Collapse
Affiliation(s)
- Zhengyu Hu
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Wenchao Li
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China
| | - Lingyu Wei
- Laboratory of Clinical Research Center, Department of Pathology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, Shanxi, China.
| | - Jian Ma
- Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China; Cancer Research Institute, School of Basic Medicine Sciences, Xiangya School of Medicine, Central South University, Changsha, China; Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, NHC Key Laboratory of Carcinogenesis, Hunan Key Laboratory of Nonresolving Inflammation and Cancer, Hunan Key Laboratory of Cancer Metabolism, Changsha, China.
| |
Collapse
|
2
|
Liu X, Cui JH, Luan C, Li YP, Tong X, Jiang YX, Wang ZJ, Guo C. Repurposing pharmaceuticals for Alzheimer's treatment via adjusting the lactoferrin interacting proteins. Int J Biol Macromol 2025; 314:144230. [PMID: 40379164 DOI: 10.1016/j.ijbiomac.2025.144230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 05/07/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
Alzheimer's disease (AD), the most common neurodegenerative disease in humans, has been a major medical challenge. Lactoferrin (Ltf) in salivary glands might be identified as a potential detectable biomarker in AD and a therapeutic target for AD. Pharmaceutical studies directly addressing this biomarker, though, are scarce. Using a computational strategy for drug repurposing, we explored the proximal neighborhood of Ltf by exploring its interactome and regulatory constellations. We aimed to focus on the discovery of potential therapeutic agents for AD. Based on extensive analytical evaluation comprising structural congruence scales, profiling disease clusters, pathway enrichment analyses as well as molecular docking, SPR, in vivo studies, and immunofluorescence assays, our research identified three candidate repurposed drugs: Lovastatin, SU-11652, and SB-239063. Taken together, these results highlight strong binding affinities of the drug candidates to Ltf. In vitro studies showed that such compounds decrease β-amyloid (Aβ) production by increasing the fluorescence signal emitted by Ltf in N2a-sw cells, and that they act by modulating the expression of amyloidogenic pathway-associated enzymes (BACE1 and APH1α). In addition, in vivo studies showed a concomitant reduction in the expression levels of amyloidogenic pathway-related enzymes (BACE1 or APH1α). Thus, computational studies have focused on Ltf interactions that may recommend drug repurposing strategies and options for AD.
Collapse
Affiliation(s)
- Xin Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Jun-He Cui
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Chuang Luan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yun-Peng Li
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Xin Tong
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Yu-Xuan Jiang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Zhuo-Jue Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China
| | - Chuang Guo
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110169, China.
| |
Collapse
|
3
|
Barros CA, Vieira TCRG. Lactoferrin as a Candidate Multifunctional Therapeutic in Synucleinopathies. Brain Sci 2025; 15:380. [PMID: 40309834 PMCID: PMC12025589 DOI: 10.3390/brainsci15040380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 05/02/2025] Open
Abstract
Lactoferrin (Lf) is a multifunctional glycoprotein with well-established antimicrobial, anti-inflammatory, and iron-binding properties. Emerging evidence suggests that Lf also plays a neuroprotective role, particularly in neurodegenerative disorders characterized by protein aggregation, such as Parkinson's disease (PD). Alpha-synuclein (aSyn) aggregation is a pathological hallmark of PD and other synucleinopathies, contributing to neuronal dysfunction and disease progression. Recent studies indicate that Lf may interfere with aSyn aggregation, iron chelation, and modulation of oxidative stress and neuroinflammation. Additionally, Lf's ability to cross the blood-brain barrier and its potential impact on the gut-brain axis highlight its promise as a therapeutic agent. This review explores Lf's mechanisms of action in synucleinopathies, its potential as a disease-modifying therapy, and innovative delivery strategies that could enhance its clinical applicability. By addressing the pathological and therapeutic dimensions of aSyn aggregation, we propose Lf as a compelling candidate for future research and clinical development in neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Tuane C. R. G. Vieira
- Institute of Medical Biochemistry Leopoldo de Meis, National Institute of Science and Technology for Structural Biology and Bioimaging, Federal University of Rio de Janeiro, Rio de Janeiro 21941-599, RJ, Brazil;
| |
Collapse
|