1
|
Messina M, Barnes S, Setchell KD. Perspective: Isoflavones-Intriguing Molecules but Much Remains to Be Learned about These Soybean Constituents. Adv Nutr 2025; 16:100418. [PMID: 40157603 DOI: 10.1016/j.advnut.2025.100418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/20/2025] [Accepted: 03/24/2025] [Indexed: 04/01/2025] Open
Abstract
Isoflavones are naturally occurring compounds found in a wide range of plants, but among commonly consumed foods are especially abundant in soybeans and foods derived from this legume. Much of the substantial amount of research conducted on soy protein and soy foods over the past 30 y is because of their isoflavone content. Research interest in isoflavones increased dramatically beginning in the early 1990s as evidence highlighted their possible role in the prevention of a wide range of cancers, including breast, prostate, and colon cancer. Recognition that isoflavones preferentially bind to estrogen receptor (ER)β in comparison with ERα provided a conceptual basis for classifying these diphenolic molecules as selective ER modulators (SERMs). Isoflavone research soon greatly expanded beyond cancer to include areas such as coronary artery disease, bone health, cognitive function, and vasomotor symptoms of menopause. Nevertheless, safety concerns about isoflavones, based primarily on the results of rodent studies and presumed estrogenic effects, also arose. However, recent work challenges the traditional view of the estrogenicity of isoflavones. Furthermore, safety concerns have largely been refuted by intervention and population studies. On the other hand, investigation of the proposed benefits of isoflavones has produced inconsistent data. The small sample size and short duration common to many intervention trials, combined with marked interindividual differences in isoflavone metabolism, likely contribute to the conflicting findings. Also, many different intervention products have been employed, which vary not only in the total amount, but also in the relative proportion of the 3 soybean isoflavones, and the form in which they are delivered (glycoside compared with aglycone). For those interested in exploring the proposed benefits of isoflavones, studies justify an intake recommendation of ∼50 mg/d, an amount provided by ∼2 servings of traditional Asian soy foods.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Science and Research, Soy Nutrition Institute Global, Washington, DC, United States.
| | - Stephen Barnes
- Division of Pulmonary, Allergy and Critical Care Medicine, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kenneth Dr Setchell
- Clinical Mass Spectrometry, Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States
| |
Collapse
|
2
|
Viscardi G, Back S, Ahmed A, Yang S, Mejia SB, Zurbau A, Khan TA, Selk A, Messina M, Kendall CW, Jenkins DJ, Sievenpiper JL, Chiavaroli L. Effect of Soy Isoflavones on Measures of Estrogenicity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv Nutr 2025; 16:100327. [PMID: 39433088 PMCID: PMC11784794 DOI: 10.1016/j.advnut.2024.100327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/23/2024] Open
Abstract
Despite recommendations to increase plant food consumption for public and planetary health and the role that soy foods can play in plant-predominant diets, controversies around the effects of soy foods, especially soy isoflavones, are a barrier to their intake. Given their cardioprotective effects and ability to alleviate menopausal symptoms, addressing these concerns is particularly relevant to women. This systematic review and meta-analysis of randomized controlled trials aimed to determine the effect of soy isoflavones on measures of estrogenicity in postmenopausal women. MEDLINE, Embase, and Cochrane Library were searched through August 2024 for randomized trials ≥3-mo investigating soy isoflavones compared with non-isoflavone controls in postmenopausal women. Outcomes included endometrial thickness (ET), vaginal maturation index (VMI), follicle-stimulating hormone (FSH), and estradiol. Independent authors extracted data and assessed risk of bias. Grading of Recommendations, Assessment, Development and Evaluation was used to assess certainty of evidence. We included 40 trials (52 trial comparisons, n = 3285) assessing the effect of a median reported dose of 75 mg/d of soy isoflavones in substitution for non-isoflavone controls over a median of 24 wk. Soy isoflavones had no statistically significant effect on any measure of estrogenicity; ET [mean difference, -0.22 mm (95% confidence interval, -0.45, 0.01 mm), PMD = 0.059], VMI [2.31 (-2.14, 6.75), PMD = 0.310], FSH [-0.02 IU/L (-2.39, 2.35 IU/L), PMD = 0.987], and estradiol [1.61 pmol/L (-1.17, 4.38 pmol/L), PMD = 0.256]. The certainty of evidence was high to moderate for all outcomes. Current evidence suggests that soy isoflavones do not exhibit estrogenic effects compared with non-isoflavone controls on 4 measures of estrogenicity in postmenopausal women. This synthesis supports that soy isoflavones likely act as selective estrogen receptor modulators, differing clinically from the hormone estrogen. Addressing public health concerns may promote soy foods as high-quality plant protein sources with low environmental impact and cost, particularly benefiting postmenopausal women and aligning with sustainable dietary patterns and guidelines. This study was registered in PROSPERO as CRD42023439239.
Collapse
Affiliation(s)
- Gabrielle Viscardi
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Songhee Back
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amna Ahmed
- Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Shuting Yang
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Andreea Zurbau
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Tauseef A Khan
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Amanda Selk
- Department of Gynecology, Women's College Hospital, Toronto, Ontario, Canada; Department of Obstetrics and Gynaecology, Mount Sinai Hospital (Toronto), Sinai Health, Toronto, Ontario, Canada; Department of Obstetrics & Gynaecology, University of Toronto, Toronto, Ontario, Canada
| | - Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Cyril Wc Kendall
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - David Ja Jenkins
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - John L Sievenpiper
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Department of Medicine, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Division of Endocrinology and Metabolism, Department of Medicine, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada
| | - Laura Chiavaroli
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada; Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Centre, St. Michael's Hospital, Toronto, Ontario, Canada; Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Pan J, Qu J, Fang W, Zhao L, Zheng W, Zhai L, Tan M, Xu Q, Du Q, Lv W, Sun Y. SHP2-Triggered Endothelial Cell Activation Fuels Estradiol-Independent Endometrial Sterile Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403038. [PMID: 39234819 PMCID: PMC11538683 DOI: 10.1002/advs.202403038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Sterile inflammation occurs in various chronic diseases due to many nonmicrobe factors. Examples include endometrial hyperplasia (EH), endometriosis, endometrial cancer, and breast cancer, which are all sterile inflammation diseases induced by estrogen imbalances. However, how estrogen-induced sterile inflammation regulates EH remains unclear. Here, a single-cell RNA-Seq is used to show that SHP2 upregulation in endometrial endothelial cells promotes their inflammatory activation and subsequent transendothelial macrophage migration. Independent of the initial estrogen stimulation, IL1β and TNFα from macrophages then create a feedforward loop that enhances endothelial cell activation and IGF1 secretion. This endothelial cell-macrophage interaction sustains sterile endometrial inflammation and facilitates epithelial cell proliferation, even after estradiol withdrawal. The bulk RNA-Seq results and phosphoproteomic analysis show that endothelial SHP2 mechanistically enhances RIPK1 activity by dephosphorylating RIPK1Tyr380. This event activates downstream activator protein 1 (AP-1) and instigates the inflammation response. Furthermore, targeting SHP2 using SHP099 (an allosteric inhibitor) or endothelial-specific SHP2 deletion alleviates endothelial cell activation, macrophage infiltration, and EH progression in mice. Collectively, the findings demonstrate that SHP2 mediates the transition of endothelial activation from estradiol-driven acute inflammation to macrophage-amplified chronic inflammation. Targeting sterile inflammation mediated by endothelial cell activation is a promising strategy for nonhormonal intervention in estrogen-related diseases.
Collapse
Affiliation(s)
- Jie Pan
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Jiao Qu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhouJiangsu221004China
| | - Wen Fang
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Lixin Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Wei Zheng
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Linhui Zhai
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Minjia Tan
- Shanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
| | - Qianming Du
- General Clinical Research CenterNanjing First HospitalNanjing Medical UniversityNanjing210006China
- School of Basic Medicine & Clinical PharmacyChina Pharmaceutical UniversityNanjing210009China
| | - Wen Lv
- Department of GynecologyTongde Hospital of Zhejiang Province234 Gucui RoadHangzhouZhejiang310012China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology and Nanjing Drum Tower Hospital the Affiliated Hospital of Nanjing University Medical SchoolSchool of Life SciencesNanjing University163 Xianlin AvenueNanjing210023China
- Jiangsu Key Laboratory of New Drug Research and Clinical PharmacyXuzhou Medical University209 Tongshan RoadXuzhouJiangsu221004China
| |
Collapse
|
4
|
Vahedpour Z, Boroumand H, Tabatabaee Anaraki S, Tabasi Z, Motedayyen H, Akbari H, Raygan F, Ostadmohammadi V. Effects of Isoflavone Supplementation on the Response to Medroxyprogesterone in Premenopausal Women with Nonatypical Endometrial Hyperplasia: A Randomized, Double-Blind, Placebo-Controlled Trial. Int J Clin Pract 2022; 2022:1263544. [PMID: 36531558 PMCID: PMC9715344 DOI: 10.1155/2022/1263544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
OBJECTIVE The purpose of this study was to evaluate the impact of isoflavone supplementation compared with placebo on endometrial histology and serum estradiol levels in premenopausal women with nonatypical endometrial hyperplasia. MATERIALS AND METHODS The present double-blindplacebo-controlled clinical trial was conducted on 100 women with nonatypical endometrial hyperplasia in the age range of 30 to 45 years. Participants were randomly assigned to receive 50 mg of isoflavone (n = 50) or placebos (n = 50) daily for three months. Both groups received the standard treatment of nonatypical endometrial hyperplasia. Endometrial biopsy and blood samples were taken at the baseline and three months after the intervention. The incidence of drug side effects was assessed as well. RESULTS After three months, 88.4% of isoflavone-administered subjects had a significant histological improvement compared to 68.9% subjects in the placebo group (P=0.02). There were no significant differences between the two groups in the changes of serum estradiol levels and the incidence of drug side effects. CONCLUSION The findings of the present study demonstrated that the coadministration of 50 mg of isoflavones and medroxyprogesterone acetate increases the treatment efficacy in women with nonatypical endometrial hyperplasia. Clinical Trial Registration. This trial was registered on the Iranian website for clinical trial registration (https://www.irct.ir/trial/53553).
Collapse
Affiliation(s)
- Zahra Vahedpour
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Homa Boroumand
- Infectious Diseases Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Tabatabaee Anaraki
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Zohre Tabasi
- Department of Gynecology and Obstetrics, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Motedayyen
- Autoimmune Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Hossein Akbari
- Department of Biostatistics and Epidemiology, Faculty of Public Health, Kashan University of Medical Sciences, Kashan, Iran
| | - Fariba Raygan
- Department of Cardiology, Faculty of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
5
|
Messina M, Mejia SB, Cassidy A, Duncan A, Kurzer M, Nagato C, Ronis M, Rowland I, Sievenpiper J, Barnes S. Neither soyfoods nor isoflavones warrant classification as endocrine disruptors: a technical review of the observational and clinical data. Crit Rev Food Sci Nutr 2021; 62:5824-5885. [PMID: 33775173 DOI: 10.1080/10408398.2021.1895054] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Soybeans are a rich source of isoflavones, which are classified as phytoestrogens. Despite numerous proposed benefits, isoflavones are often classified as endocrine disruptors, based primarily on animal studies. However, there are ample human data regarding the health effects of isoflavones. We conducted a technical review, systematically searching Medline, EMBASE, and the Cochrane Library (from inception through January 2021). We included clinical studies, observational studies, and systematic reviews and meta-analyses (SRMA) that examined the relationship between soy and/or isoflavone intake and endocrine-related endpoints. 417 reports (229 observational studies, 157 clinical studies and 32 SRMAs) met our eligibility criteria. The available evidence indicates that isoflavone intake does not adversely affect thyroid function. Adverse effects are also not seen on breast or endometrial tissue or estrogen levels in women, or testosterone or estrogen levels, or sperm or semen parameters in men. Although menstrual cycle length may be slightly increased, ovulation is not prevented. Limited insight could be gained about possible impacts of in utero isoflavone exposure, but the existing data are reassuring. Adverse effects of isoflavone intake were not identified in children, but limited research has been conducted. After extensive review, the evidence does not support classifying isoflavones as endocrine disruptors.
Collapse
Affiliation(s)
- Mark Messina
- Department of Nutrition, Loma Linda University, Loma Linda, California, USA
| | - Sonia Blanco Mejia
- Department of Nutritional Sciences, University of Toronto, Toronto, Canada
| | - Aedin Cassidy
- Nutrition and Preventive Medicine, Queen's University, Belfast, Northern Ireland, UK
| | - Alison Duncan
- College of Biological Sciences, University of Guelph, Guelph, Canada
| | - Mindy Kurzer
- Department of Food Science and Nutrition, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chisato Nagato
- Graduate School of Medicine, Gifu University, Gifu, Japan
| | - Martin Ronis
- Health Sciences Center, Louisiana State University Health Sciences Center, Baton Rouge, New Orleans, USA
| | - Ian Rowland
- Human Nutrition, University of Reading, Reading, England, UK
| | | | - Stephen Barnes
- Department of Pharmacology and Toxicology, University of Alabama, Alabama, USA
| |
Collapse
|
6
|
Marinho DS, Calió ML, Santos MA, Ko GM, Teixeira CP, Carbonel AF, Lisbôa-Nascimento T, Castro RA, Simões RS, Bertoncini CRA. Evaluation of the isoflavones and estrogen effects on the rat adrenal. Gynecol Endocrinol 2017; 33:811-815. [PMID: 28454492 DOI: 10.1080/09513590.2017.1318371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The aim of this study was to evaluate the morphometry and the gene expression of Ki-67, VEGF and caspase 3 and the stress oxidative in the adrenal gland of ovariectomized rats treated with estrogen or isoflavones. We used 15 Wistar rats ovariectomized treated with isoflavones or estrogen during 30 days. At the end of the treatment, the left adrenal gland was removed for subsequent histological studies and the right was used to evaluate gene expression of angiogenesis (VEGF-A), cell proliferation (Ki-67), apoptose (caspase 3 clivated) and oxidative stress. Treatment with estrogen showed a largest increase in the layers of the adrenal cortex than with isoflavones. These hypertrofic effects agree with higher expression elevation of Ki67 and VEGF, which did not occur with the caspase 3, indicating that isoflavones have great proliferative effect on the adrenal gland. Similar results were also observed on superoxide quantification show that isoflavone has a protective effect against oxidative stress. Our results indicate positively the trophic therapeutic potential of isoflavones has a protective effect and can contribute to the development of effective therapies to decrease the symptoms of menopause.
Collapse
Affiliation(s)
- Darci Souza Marinho
- a Department of Morphology and Genetics , Universidade Federal de São Paulo , Brazil
| | | | | | - Gui Mi Ko
- c Department of Pharmacology , Universidade Federal de São Paulo , Brazil
| | | | | | | | - Rodrigo Aquino Castro
- e Department of Obstetrics and Gynecology , Universidade Federal de São Paulo , Brazil , and
| | - Ricardo Santos Simões
- f Department of Obstetrics and Gynecology , Faculdade de Medicina da Universidade de São Paulo (FMUSP) , Brazil
| | | |
Collapse
|
7
|
Genistein Supplementation and Cardiac Function in Postmenopausal Women with Metabolic Syndrome: Results from a Pilot Strain-Echo Study. Nutrients 2017; 9:nu9060584. [PMID: 28590452 PMCID: PMC5490563 DOI: 10.3390/nu9060584] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 05/30/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022] Open
Abstract
Genistein, a soy-derived isoflavone, may improve cardiovascular risk profile in postmenopausal women with metabolic syndrome (MetS), but few literature data on its cardiac effects in humans are available. The aim of this sub-study of a randomized double-blind case-control study was to analyze the effect on cardiac function of one-year genistein dietary supplementation in 22 post-menopausal patients with MetS. Participants received 54 mg/day of genistein (n = 11) or placebo (n = 11) in combination with a Mediterranean-style diet and regular exercise. Left ventricular (LV) systolic function was assessed as the primary endpoint, according to conventional and strain-echocardiography measurements. Also, left atrial (LA) morphofunctional indices were investigated at baseline and at the final visit. Results were expressed as median with interquartile range (IQ). A significant improvement of LV ejection fraction (20.3 (IQ 12.5) vs. −1.67 (IQ 24.8); p = 0.040)), and LA area fractional change (11.1 (IQ 22.6) vs. 2.8 (9.5); p = 0.034)) were observed in genistein patients compared to the controls, following 12 months of treatment. In addition, body surface area indexed LA systolic volume and peak LA longitudinal strain significantly changed from basal to the end of the study in genistein-treated patients. One-year supplementation with 54 mg/day of pure genistein improved both LV ejection fraction and LA remodeling and function in postmenopausal women with MetS.
Collapse
|
8
|
Messina M. Soy and Health Update: Evaluation of the Clinical and Epidemiologic Literature. Nutrients 2016; 8:E754. [PMID: 27886135 PMCID: PMC5188409 DOI: 10.3390/nu8120754] [Citation(s) in RCA: 251] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 11/17/2016] [Accepted: 11/18/2016] [Indexed: 01/10/2023] Open
Abstract
Soyfoods have long been recognized as sources of high-quality protein and healthful fat, but over the past 25 years these foods have been rigorously investigated for their role in chronic disease prevention and treatment. There is evidence, for example, that they reduce risk of coronary heart disease and breast and prostate cancer. In addition, soy alleviates hot flashes and may favorably affect renal function, alleviate depressive symptoms and improve skin health. Much of the focus on soyfoods is because they are uniquely-rich sources of isoflavones. Isoflavones are classified as both phytoestrogens and selective estrogen receptor modulators. Despite the many proposed benefits, the presence of isoflavones has led to concerns that soy may exert untoward effects in some individuals. However, these concerns are based primarily on animal studies, whereas the human research supports the safety and benefits of soyfoods. In support of safety is the recent conclusion of the European Food Safety Authority that isoflavones do not adversely affect the breast, thyroid or uterus of postmenopausal women. This review covers each of the major research areas involving soy focusing primarily on the clinical and epidemiologic research. Background information on Asian soy intake, isoflavones, and nutrient content is also provided.
Collapse
Affiliation(s)
- Mark Messina
- Nutrition Matters, Inc., 26 Spadina Parkway, Pittsfield, MA 01201, USA.
| |
Collapse
|
9
|
Chandra V, Kim JJ, Benbrook DM, Dwivedi A, Rai R. Therapeutic options for management of endometrial hyperplasia. J Gynecol Oncol 2015; 27:e8. [PMID: 26463434 PMCID: PMC4695458 DOI: 10.3802/jgo.2016.27.e8] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 07/24/2015] [Accepted: 07/31/2015] [Indexed: 12/24/2022] Open
Abstract
Endometrial hyperplasia (EH) comprises a spectrum of changes in the endometrium ranging from a slightly disordered pattern that exaggerates the alterations seen in the late proliferative phase of the menstrual cycle to irregular, hyperchromatic lesions that are similar to endometrioid adenocarcinoma. Generally, EH is caused by continuous exposure of estrogen unopposed by progesterone, polycystic ovary syndrome, tamoxifen, or hormone replacement therapy. Since it can progress, or often occur coincidentally with endometrial carcinoma, EH is of clinical importance, and the reversion of hyperplasia to normal endometrium represents the key conservative treatment for prevention of the development of adenocarcinoma. Presently, cyclic progestin or hysterectomy constitutes the major treatment option for EH without or with atypia, respectively. However, clinical trials of hormonal therapies and definitive standard treatments remain to be established for the management of EH. Moreover, therapeutic options for EH patients who wish to preserve fertility are challenging and require nonsurgical management. Therefore, future studies should focus on evaluation of new treatment strategies and novel compounds that could simultaneously target pathways involved in the pathogenesis of estradiol-induced EH. Novel therapeutic agents precisely targeting the inhibition of estrogen receptor, growth factor receptors, and signal transduction pathways are likely to constitute an optimal approach for treatment of EH.
Collapse
Affiliation(s)
- Vishal Chandra
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Jong Joo Kim
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea
| | - Doris Mangiaracina Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Anila Dwivedi
- Division of Endocrinology, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajani Rai
- School of Biotechnology, Yeungnam University, Gyeongsan, Korea.
| |
Collapse
|
10
|
Kiatprasert P, Deachapunya C, Benjanirat C, Poonyachoti S. Soy isoflavones improves endometrial barrier through tight junction gene expression. Reproduction 2015; 149:269-80. [DOI: 10.1530/rep-14-0269] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Contamination with bacterial endotoxin causes the disruption of the tight junction (TJ) barrier. We investigated the ameliorative effect of dietary flavonoids genistein (Ge) and daidzein (Di) in normal or lipopolysaccharide (LPS)-induced disruption of epithelial barrier function of the endometrium. Using the immortalized porcine glandular endometrial epithelial cells (PEG), transepithelial electrical resistance (TER) and FITC-dextran flux (FD-4) across the monolayer were measured. The mRNA expression of TJ proteins, zona occludens-1 (ZO1), and claudin-1, -3, -4, -7 and -8 was evaluated by real-time RT-PCR for coinciding effect of Ge or Di occurred at the gene transcription level. The results revealed that Ge and Di altered the TER, depending on times and concentrations. Low concentration (10−10 M) of both compounds decreased the TER, whereas higher concentrations (10−8and 10−6 M) increased the TER which was not related to the FD-4 flux. The increased TER by Ge or Di was parallel to the induction ofclaudin-3and-4or-8mRNA expression respectively. With LPS inoculation, all isoflavone treatments inhibited the decreased TER induced by LPS, but only Ge (10−8or 10−6 M) or Di (10−10or 10−6 M) was coincidence with the decreased FD-4 flux. Under this LPS-stimulated condition, some or all examined TJ gene expressions appeared to be promoted by specific concentration of Ge or Di respectively. Our findings suggest that the soy isoflavones treatment could promote and restore the impaired endometrial barrier function caused by LPS contamination.
Collapse
|
11
|
Shukla V, Chandra V, Sankhwar P, Popli P, Kaushal JB, Sirohi VK, Dwivedi A. Phytoestrogen genistein inhibits EGFR/PI3K/NF-kB activation and induces apoptosis in human endometrial hyperplasial cells. RSC Adv 2015; 5:56075-56085. [DOI: 10.1039/c5ra06167a] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025] Open
Abstract
Endometrial hyperplasia is an estrogen-dependent disease and is the most frequent precursor of endometrial cancer, diagnosed in pre- and peri-menopausal women.
Collapse
Affiliation(s)
- Vinay Shukla
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Vishal Chandra
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Pushplata Sankhwar
- Department of Obstetrics and Gynecology
- King George's Medical University
- Lucknow-226001
- India
| | - Pooja Popli
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Jyoti Bala Kaushal
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Vijay Kumar Sirohi
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| | - Anila Dwivedi
- Division of Endocrinology
- CSIR-Central Drug Research Institute
- Lucknow-226031
- India
| |
Collapse
|
12
|
Wocławek-Potocka I, Mannelli C, Boruszewska D, Kowalczyk-Zieba I, Waśniewski T, Skarżyński DJ. Diverse effects of phytoestrogens on the reproductive performance: cow as a model. Int J Endocrinol 2013; 2013:650984. [PMID: 23710176 PMCID: PMC3655573 DOI: 10.1155/2013/650984] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/04/2013] [Indexed: 12/12/2022] Open
Abstract
Phytoestrogens, polyphenolic compounds derived from plants, are more and more common constituents of human and animal diets. In most of the cases, these chemicals are much less potent than endogenous estrogens but exert their biological effects via similar mechanisms of action. The most common source of phytoestrogen exposure to humans as well as ruminants is soybean-derived foods that are rich in the isoflavones genistein and daidzein being metabolized in the digestive tract to even more potent metabolites-para-ethyl-phenol and equol. Phytoestrogens have recently come into considerable interest due to the increasing information on their adverse effects in human and animal reproduction, increasing the number of people substituting animal proteins with plant-derived proteins. Finally, the soybean becomes the main source of protein in animal fodder because of an absolute prohibition of bone meal use for animal feeding in 1995 in Europe. The review describes how exposure of soybean-derived phytoestrogens can have adverse effects on reproductive performance in female adults.
Collapse
Affiliation(s)
- Izabela Wocławek-Potocka
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Chiara Mannelli
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
- Department of Life Sciences, Doctoral School in Life Sciences, University of Siena, Miniato via A. Moro 2 St., 53100 Siena, Italy
| | - Dorota Boruszewska
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Ilona Kowalczyk-Zieba
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
| | - Tomasz Waśniewski
- Department of Gynecology and Obstetrics, Faculty of Medical Sciences, University of Warmia and Masuria, Zolnierska 14 C St., 10-561 Olsztyn, Poland
| | - Dariusz J. Skarżyński
- Department of Reproductive Immunology and Pathology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10 Street, 10-747 Olsztyn, Poland
- *Dariusz J. Skarżyński:
| |
Collapse
|
13
|
Reuter S, Gupta SC, Park B, Goel A, Aggarwal BB. Epigenetic changes induced by curcumin and other natural compounds. GENES AND NUTRITION 2011; 6:93-108. [PMID: 21516481 DOI: 10.1007/s12263-011-0222-1] [Citation(s) in RCA: 232] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/05/2011] [Indexed: 12/12/2022]
Abstract
Epigenetic regulation, which includes changes in DNA methylation, histone modifications, and alteration in microRNA (miRNA) expression without any change in the DNA sequence, constitutes an important mechanism by which dietary components can selectively activate or inactivate gene expression. Curcumin (diferuloylmethane), a component of the golden spice Curcuma longa, commonly known as turmeric, has recently been determined to induce epigenetic changes. This review summarizes current knowledge about the effect of curcumin on the regulation of histone deacetylases, histone acetyltransferases, DNA methyltransferase I, and miRNAs. How these changes lead to modulation of gene expression is also discussed. We also discuss other nutraceuticals which exhibit similar properties. The development of curcumin for clinical use as a regulator of epigenetic changes, however, needs further investigation to determine novel and effective chemopreventive strategies, either alone or in combination with other anticancer agents, for improving cancer treatment.
Collapse
Affiliation(s)
- Simone Reuter
- Cytokine Research Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | | | | | | |
Collapse
|