1
|
Zhong M, Yu H, Liao J, Jiang Y, Chai S, Yang R, Wang L, Deng X, Zhang L. A novel NAC36-MYB18-TAT2 model regulates the synthesis of phenolic acid in Salvia miltiorrhiza Bunge. Int J Biol Macromol 2025; 304:140987. [PMID: 39952526 DOI: 10.1016/j.ijbiomac.2025.140987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Phenolic acids (rosmarinic acid, salvianolic acid B, etc.) in Salvia miltiorrhiza Bunge possess significant pharmacological activity and thus have high medicinal and economic value. Tyrosine aminotransferase (TAT, EC 2.6.1.5) is one of the key enzymes in the phenolic acid metabolic pathway, and the biological function and regulatory mechanism of its family member SmTAT2 have not been reported in S. miltiorrhiza. Through a transgenic assay (Overexpression and CRISPR/Cas9), we demonstrated that SmTAT2 can positively regulate the accumulation of phenolic acid. By using molecular interaction (Yeast single hybrid, Dual-LUC and EMSA) and transgenic technologies, we demonstrated that SmNAC36 first activates the transcription of SmMYB18, and SmMYB18 subsequently activates the expression of the target gene SmTAT2 to promote phenolic acid biosynthesis. Moreover, SmNAC36 can directly activate the transcription of SmTAT2. The molecular mechanism underlying the induced synthesis and accumulation of phenolic acid in Salvia miltiorrhiza by NAC36-MYB18-TAT2 molecular model is revealed. These results provide novel insights into the metabolic pathways of phenolic acids and a theoretical basis for their metabolic engineering and synthetic biology research.
Collapse
Affiliation(s)
- Mingzhi Zhong
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China
| | - Haomiao Yu
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China
| | - Jinqiu Liao
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; College of Life Sciences, Sichuan Agricultural University, 625014 Ya'an, China
| | - Yuanyuan Jiang
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China
| | - Songyue Chai
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China
| | - Ruiwu Yang
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; College of Life Sciences, Sichuan Agricultural University, 625014 Ya'an, China
| | - Long Wang
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China
| | - Xuexue Deng
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China
| | - Li Zhang
- College of Science, Sichuan Agricultural University, 625014 Ya'an, China; Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China.
| |
Collapse
|
2
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Toxicity and safety of rosemary (Rosmarinus officinalis): a comprehensive review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025; 398:9-23. [PMID: 39096378 DOI: 10.1007/s00210-024-03336-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/24/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Rosemary (Rosmarinus officinalis) contains alkaloids, phenolic acids, saponins, tannins, diterpenes, flavonoids, and essential oils and has antioxidant, anti-inflammatory, antibacterial, anticancer, neuroprotective, cardioprotective, and hepatoprotective effects. While rosemary is generally considered safe for consumption and topical application, allergic reactions and dermatitis have been reported in some individuals. This paper provides an in-depth review of the current studies on rosemary toxicity, shedding light on its potential adverse effects and underlying mechanisms. METHODS Google Scholar, PubMed, Scopus, and Web of Science were used to perform extensive research from the inception of these databases until February 2024. RESULTS The toxicological effects explored include affecting several organs such as the liver and kidney by causing atrophic and degenerative changes, increasing blood urea nitrogen (BUN), aspartate aminotransferase (AST), and reducing total serum protein levels. Rosemary may induce reproductive toxicity by decreasing spermatogenesis in the testes, testosterone, sperm density, and motility. It might also trigger genotoxicity and anomalies in fetuses by increasing cytoplasmic membrane shrinkage, the formation of apoptotic bodies, internucleosomal deoxyribonucleic acid (DNA) fragmentation, and DNA ladder formation. CONCLUSION While rosemary is considered safe for food preservation, caution is warranted regarding chronic and high doses due to potential adverse effects on the kidneys, liver, reproductive system, and teratology. Additionally, it underscores the significance of considering drug interactions. The article also highlights the importance of considering toxicological data in realistic exposure situations and discusses the relevance of these findings for human health. Hence, further research is recommended to enhance our understanding of the toxicity profile associated with rosemary.
Collapse
Affiliation(s)
- Mahboobeh Ghasemzadeh Rahbardar
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, 9177948564, Iran.
| |
Collapse
|
3
|
Zhao C, Bai X, Wen A, Wang J, Ding Y. The therapeutic effects of salvianolic acids on ischemic stroke: From molecular mechanisms to clinical applications. Pharmacol Res 2024; 210:107527. [PMID: 39615615 DOI: 10.1016/j.phrs.2024.107527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/11/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024]
Abstract
Ischemic stroke (IS), primarily caused by cerebrovascular occlusion, poses a significant public health challenge with limited effective therapeutic options. Evidence suggests that salvianolic acids (SAs), mainly from Salvia miltiorrhiza Bunge, have been formulated into injections and are widely used in clinical treatments for cardiovascular and cerebrovascular diseases, including stroke. The pharmacological properties of SAs include reducing neuroinflammation, alleviating oxidative stress injury, inhibiting cellular apoptosis, preserving endothelial function, maintaining blood-brain barrier integrity, and promoting angiogenesis. Salvianolic acids for injection (SAFI) serve as a safe and effective treatment option for cardiovascular and cerebrovascular conditions by influencing various signaling pathways and molecular targets associated with these diseases. In this review, we first discuss the pathogenesis of IS, then summarize the classification of SAs, elaborate detailed molecular mechanisms of their efficacy, and the related clinical applications of SAFI. We also emphasize the recent pharmacological advancements and therapeutic possibilities of this promising drug preparation derived from herbs for cerebrovascular conditions.
Collapse
Key Words
- Caffeic acid (PubChem CID 689043)
- Clinical applications
- Danshensu (PubChem CID 11600642)
- Ischemic stroke
- Lithospermic acid (PubChem CID 6441498)
- Molecular mechanisms
- Pathogenesis
- Protocatechualdehyde (PubChem CID 8768)
- Protocatechuic acid (PubChem CID 72)
- Rosmarinic acid (PubChem CID 5281792)
- Salvia miltiorrhiza
- Salvianolic acids
- Salvianolic acids A, B, C, D, E, and Y (PubChem CIDs 5281793, 11629084, 13991590, 75412558, 86278266, 97182154)
Collapse
Affiliation(s)
- Chao Zhao
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xiaodan Bai
- Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an 710021, China
| | - Aidong Wen
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jingwen Wang
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Yi Ding
- Department of Pharmacy, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
4
|
Gospodinova Z, Antov G, Stoichev S, Zhiponova M. In Vitro Anticancer Effects of Aqueous Leaf Extract from Nepeta nuda L. ssp. nuda. Life (Basel) 2024; 14:1539. [PMID: 39768248 PMCID: PMC11678516 DOI: 10.3390/life14121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Despite significant efforts, cancer remains the second leading cause of mortality worldwide. The medicinal plant Nepeta nuda L. represents a valuable source of biologically active compounds with pharmacological activities including antioxidant, anti-inflammatory, antimicrobial, and antiviral. This study aimed to assess the antiproliferative potential and mechanisms of action of aqueous extract from the leaves of wild-grown N. nuda. Cancer cell lines, MDA-MB-231, MCF7 (breast), HT29, Colon 26 (colon), and HepG2 (liver cancer), and a non-cancerous skin cell line, BJ, were assessed for antiproliferative activity by MTT assay and observation of cell morphological alterations. The cancer cell line that was most sensitive to the extract was further studied for apoptotic alterations by Annexin V/propidium iodide staining, colony-forming assay, and qRT-PCR analysis. The results revealed that the plant extract inhibited the proliferation of all investigated cancer cell lines with the strongest cytostatic effect on Colon 26 cells with a half maximal inhibitory concentration (IC50) value of 380.2 μg/mL and a selectivity index (SI) of 3.5. The extract significantly inhibited the ability of cells to form colonies, exhibited considerable proapoptotic potential involving the participation of the CASP8 gene, and increased the expression levels of ATG3 and the BECN1 gene, which suggests a role of autophagic cell death in the antitumor action.
Collapse
Affiliation(s)
- Zlatina Gospodinova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Georgi Antov
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Svetozar Stoichev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, “Acad. Georgi Bonchev” Str., Bl. 21, 1113 Sofia, Bulgaria;
| | - Miroslava Zhiponova
- Department of Plant Physiology, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| |
Collapse
|
5
|
Dehghan M, Naeimi Bafghi N, Alnaiem M, Sadeghiyan R, Barkhordar S, Samareh Fekri A, Kamalati A. The Effects of Lavender and Rosemary Extracts on Sore Throat and Hoarseness After Endotracheal Intubation in Patients Undergoing Percutaneous Nephrolithotomy: A Randomized Clinical Trial. J Perianesth Nurs 2024:S1089-9472(24)00392-7. [PMID: 39503638 DOI: 10.1016/j.jopan.2024.07.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 11/08/2024]
Abstract
PURPOSE This study aimed to compare the effects of lavender and rosemary extracts on sore throat and hoarseness after endotracheal intubation in patients undergoing percutaneous nephrolithotomy. DESIGN Randomized clinical trial. METHODS This study was conducted on 90 patients undergoing percutaneous nephrolithotomy at Bahonar Hospital in Kerman in 2021. The patients were selected by convenience sampling method and randomly assigned to three groups: lavender, rosemary, and control. After general anesthesia with endotracheal intubation, an anesthesiologist put sterile gauzes impregnated with 3 cc of rosemary and lavender extracts into patients' throats in the intervention groups, while the control group received 3 cc of distilled water. After the surgery, the gauzes and tracheal tubes were removed and the patients were transferred to the postanesthesia care unit (PACU), their sore throat and hoarseness were measured and recorded during and 2 to 6 to 24 hours after recovery. A significance level of < .05 was considered. FINDINGS The study results showed a significant difference in the severity of sore throat between the 3 groups 2, 6, and 24 hours after surgery; sore throat in the rosemary group and then in the lavender group was lower than that in the control group (P < .05). The results also indicated a significant difference in hoarseness intensity between the three groups 2 and 6 hours after surgery; hoarseness intensity in the rosemary and lavender groups was lower than that in the control group, but it was not different between 3 groups 24 hours after surgery (P < .05). CONCLUSIONS Rosemary and lavender extracts had a positive effect on sore throat and hoarseness. As these herbs cause no complications in patients and are available and inexpensive, further studies are necessary to confirm the use of these herbs during intubation.
Collapse
Affiliation(s)
- Mahlagha Dehghan
- Nursing Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Naeimeh Naeimi Bafghi
- Clinical Research Center, Shahid Bahonar Hospital, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohamed Alnaiem
- Mental Health Services, Hamad Medical Corporation, Doha, Qatar
| | - Reyhaneh Sadeghiyan
- Department of Nursing and Midwifery, Hormozgan University of Medical Sciences, Hormozgan, Iran
| | - Shahrzad Barkhordar
- Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Atena Samareh Fekri
- Department of Anesthesiology, Faculty of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Ali Kamalati
- Department of Urology, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Alper Karakus A, Dallali I, Arslan R, Eken H, Hasan A, Bektas N. Examination of the antiallodynic effect of rosmarinic acid in neuropathic pain and possible mechanisms of action. Neurosci Lett 2024; 842:137994. [PMID: 39307178 DOI: 10.1016/j.neulet.2024.137994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
This study aimed to explore the potential antiallodynic effects of rosmarinic acid, a natural antioxidant with a demonstrated safety profile across a broad dose range. Using a chronic constriction injury-induced neuropathic pain model, the impact of rosmarinic acid on allodynia was investigated. Furthermore, the involvement of adrenergic and opioidergic mechanisms in its activity was assessed. To evaluate rosmarinic acid's efficacy, doses of 10, 20, and 40 mg/kg were administered and the electronic von Frey test was utilized along with an activity cage apparatus. % MPE values were calculated to gauge the extent of pain relief. Mechanistic insights were obtained by pretreating animals with the β-adrenergic receptor antagonist propranolol, the α1-adrenergic receptor antagonist prazosin, α2-adrenergic receptor antagonist yohimbine, and the opioid receptor antagonist naloxone. Rosmarinic acid demonstrated a statistically significant antiallodynic effect that was independent of locomotor activity. This effect was noteworthy as it resembled both the level and duration of relief provided by pregabalin. Additionally, the %MPE value of the group treated with 40 mg/kg rosmarinic acid showed a significant difference compared to the value of the pregabalin-treated group (P<0.001). Pre-administration of the antagonists revealed that the antiallodynic activity was shown to be mediated by the stimulation of opioid and adrenergic receptors, with a primary contribution from α2-adrenergic receptor stimulation. Our findings suggest that rosmarinic acid may hold promise as a potential therapeutic agent for neuropathic pain. By elucidating the involvement of adrenergic and opioidergic mechanisms, we have provided valuable preclinical data that could inform novel treatment approaches.
Collapse
Affiliation(s)
- Ahmet Alper Karakus
- Graduate School of Health Sciences, Department of Pharmacology, Anadolu University, 26470 Eskisehir, Turkey
| | - Ilhem Dallali
- Laboratory of Ion Channel Research, VIB-KU Leuven Center for Brain and Disease Research and Department of Cellular and Molecular Medicine, KU Leuven, ON1 Herestraat 49 - box 802, 3000 Leuven, Belgium
| | - Rana Arslan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey
| | - Hazal Eken
- Department of Pharmacology, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, 03030 Afyonkarahisar, Turkey
| | - Ahmed Hasan
- Graduate School of Health Sciences, Department of Pharmacology, Anadolu University, 26470 Eskisehir, Turkey
| | - Nurcan Bektas
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, 26470 Eskisehir, Turkey.
| |
Collapse
|
7
|
Chai Y, He S, Liang D, Gu C, Gong Q, Long L, Chen P, Wang L. Mahuang Fuzi Xixin decoction: A potent analgesic for neuropathic pain targeting the NMDAR2B/CaMKIIα/ERK/CREB pathway. Heliyon 2024; 10:e35970. [PMID: 39211918 PMCID: PMC11357756 DOI: 10.1016/j.heliyon.2024.e35970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/30/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Neuropathic pain (NeP) is a condition charactesized by nervous system injury or dysfunction that affects a significant portion of the population. Current treatments are ineffective, highlighting the need for novel therapeutic approaches. Mahuang Fuzi Xixin decoction (MFXD) has shown promise for treating pain conditions in clinical practice; however, its potential against NeP and the underlying mechanisms remain unclear. This study identified 35 compounds in MFXD using ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-HRMS). The analgesic effects of MFXD on chronic constriction injury (CCI) rats were evaluated through the detection of mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). The analgesic effects of MFXD in rats with chronic constriction injury (CCI) were evaluated by measuring the mechanical withdrawal threshold (MWT) and thermal withdrawal latency (TWL). Low-dose MFXD (L-MFXD) group (4.8 g/kg) and high-dose MFXD (H-MFXD) group (9.6 g/kg) exhibited significantly higher MWT and TWL values than the CCI group on days 11 and 15 post-CCI surgery, substantiating the remarkable analgesic efficacy of MFXD. Network pharmacology analysis identified 58 key targets enriched in pathways such as long-term potentiation (LTP) and glutamatergic synapse. The MCODE algorithm further identified core targets with significant enrichment in LTP. Molecular docking revealed that mesaconitine, rosmarinic acid, and delgrandine from MFXD exhibited high binding affinity with NMDAR2B (-11 kcal/mol), CaMKIIα (-14.3 kcal/mol), and ERK (-10.8 kcal/mol). Western blot and immunofluorescence confirmed that H-MFXD significantly suppressed the phosphorylation levels of NMDAR2B, CaMKIIα, ERK, and CREB in the spinal cord tissue of CCI rats. In conclusion, this study demonstrates that MFXD possesses potent analgesic effects on NeP by suppressing the NMDAR2B/CaMKIIα/ERK/CREB signalling pathway. This study unlocks a path toward potentially revolutionising NeP treatment with MFXD, encouraging further research and clinical development.
Collapse
Affiliation(s)
- Yihui Chai
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Siyu He
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| | - Dayi Liang
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, Haerbin, 150000, China
| | - Chunsong Gu
- Second Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Qian Gong
- First Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510000, China
| | - Ling Long
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Peng Chen
- Basic Medical School, Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Long Wang
- School of Pharmacy, Southwest Medical University, Luzhou, 646000, China
| |
Collapse
|
8
|
Khan J, Ali G, Saeed A, Khurshid A, Ahmad S, Kashtoh H, Ataya FS, Bathiha GES, Ullah A, Khan A. Efficacy assessment of novel methanimine derivatives in chronic constriction injury-induced neuropathic model: An in-vivo, ex-vivo and In-Silico approach. Eur J Pharm Sci 2024; 198:106797. [PMID: 38735401 DOI: 10.1016/j.ejps.2024.106797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
The multicomponent etiology, complex clinical implications, dose-based side effect and degree of pain mitigation associated with the current pharmacological therapy is incapable in complete resolution of chronic neuropathic pain patients which necessitates the perpetual requirement of novel medication therapy. Therefore, this study explored the ameliorative aptitude of two novel methanimine imitative like (E)-N-(4-nitrobenzylidene)-4‑chloro-2-iodobenzamine (KB 09) and (E)-N-(4-methylbenzylidene)-4‑chloro-2-iodobenzamine (KB 10) in chronic constriction injury (CCI) of sciatic nerve induced neuropathic pain in rat model. Standard behavioral tests like dynamic and static allodynia, cold, thermal and mechanical hyperalgesia along with rotarod activity were performed at various experimental days like 0, 3, 7, 14 and 21. Enzyme linked immunosorbent assay (ELISA) on spinal tissue and antioxidant assays on sciatic nerve were executed accompanied by molecular docking and simulation studies. Prolonged ligation of sciatic nerve expressively induced hyperalgesia as well as allodynia in rats. KB 09 and KB 10 substantially attenuated the CCI elicited hyperalgesia and allodynia. They significantly reduced the biomarkers of pain and inflammation like Interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in ELISA and while enhanced the GSH, SOD and CAT and diminished the MDA levels during antioxidant assays. KB 09 displayed -9.62 kcal/mol with TNF-α and -7.68 kcal/mol binding energy with IL-6 whereas KB 10 exhibited binding energy of -8.20 kcal/mol with IL-6 while -11.68 kcal/mol with TNF-α and hence both trial compounds ensured stable interaction with IL-6 and TNF-α during computational analysis. The results advocated that both methanimine derivatives might be novel candidates for attenuation of CCI-induced neuropathic pain prospects via anti-nociceptive, anti-inflammatory and antioxidant mechanisms.
Collapse
Affiliation(s)
- Jawad Khan
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Gowhar Ali
- Department of Pharmacy, University of Peshawar, Peshawar 25120, Pakistan.
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan
| | - Asma Khurshid
- Department of Chemistry, Quaid-I-Azam University Islamabad 45320, Pakistan.
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University Peshawar 25000, Pakistan
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Korea.
| | - Farid S Ataya
- Department of Biochemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Gaber El-Saber Bathiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheria, Egypt
| | - Aman Ullah
- Department of Pharmacy, Saba Medical Center, Abu Dhabi PO Box 20316, United Arab Emirates
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
| |
Collapse
|
9
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic potential of hypnotic herbal medicines: A comprehensive review. Phytother Res 2024; 38:3037-3059. [PMID: 38595123 DOI: 10.1002/ptr.8201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/29/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Insomnia affects millions of people worldwide, prompting considerable interest in herbal remedies for its treatment. This review aims to assess the therapeutic potential of such remedies for insomnia by analyzing current scientific evidence. The analysis identified several herbs, including Rosmarinus officinalis, Crocus sativus, Rosa damascena, Curcuma longa, Valeriana officinalis, Lactuca sativa, Portulaca oleracea, Citrus aurantium, Lippia citriodora, and Melissa officinalis, which show promise in improving overall sleep time, reducing sleep latency, and enhancing sleep quality. These plants act on the central nervous system, particularly the serotonergic and gamma-aminobutyric acid (GABA)ergic systems, promoting sedation and relaxation. However, further research is necessary to fully understand their mechanisms of action, optimal dosages, and treatment protocols. Combining herbal medicines with conventional treatments may offer an effective natural alternative for those seeking medication. Nevertheless, individuals should consult their healthcare provider before using herbal remedies for insomnia. While this review provides evidence supporting their use, additional high-quality studies are needed to firmly establish their clinical efficacy.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Khaksar S, Kiarostami K, Ramdan M. Effect of Rosmarinic Acid on Cell Proliferation, Oxidative Stress, and Apoptosis Pathways in an Animal Model of Induced Glioblastoma Multiforme. Arch Med Res 2024; 55:103005. [PMID: 38759277 DOI: 10.1016/j.arcmed.2024.103005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND In brain tumors, the complexity of the pathophysiological processes such as oxidative stress, cell proliferation, angiogenesis, and apoptosis have seriously challenged the definitive treatment. Rosmarinic acid (RA), as a polyphenolic compound, has been found to prevent tumor progression in some aggressive cancers. This study was designed to evaluate the anticancer effects of RA on brain tumors. METHOD Rats were divided into six groups. Implantation of C6 glioma cells was carried out in the caudate nucleus of the right hemisphere. RA at doses of 5, 10, and 20 mg/kg (i.p.) was administered to the treatment groups for seven days. Tumor volume (by MRI imaging), locomotor ability, survival time, histological alterations (by H & E staining), expression of p53 and p21 mRNAs (by RT-PCR), activities of antioxidant enzymes (superoxide dismutase [SOD] and catalase [CAT] by assay kits), expression of caspase-3 and VEGF (by immunohistochemical analysis), and TUNEL-positive cells (by tunnel staining) were analyzed. RESULTS The results indicated that the RA at a dose of 20 mg/kg reduced the tumor volume, prolonged survival time, increased p53 and p21 mRNAs, attenuated SOD and CAT activities in tumor tissue, elevated caspase-3, and increased the number of TUNEL-positive cells. Furthermore, histological analysis revealed less invasion of tumor cells into the normal parenchyma in rats treated with RA (20 mg/kg). CONCLUSION These findings provide evidence that the ability of RA to reduce tumor volume could be related to factors that modulate oxidative stress (SOD and CAT enzymes), cell proliferation (p53 and p21), and apoptosis (caspase-3).
Collapse
Affiliation(s)
- Sepideh Khaksar
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Khadijeh Kiarostami
- Department of Plant Sciences, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Mahmoud Ramdan
- Department of Biology, Faculty of Science, Al-Furat University, Deir-ez-Zor, Syrian Arab Republic
| |
Collapse
|
11
|
Ng ML, Majid AMSA, Yee SM, Natesan V, Basheer MKA, Gnanasekaran A, Al-Suede FSR, Parish C, Dalal M, Ming LC, Nazari V M, Khan SS, Stn Hameed Sultan SB, Babu KG, Majid ASA, Abdul Aziz MAS. A phase II randomized, double-blind, placebo-controlled study of Nuvastatic (C50SEW505OESA), a standardized rosmarinic acid-rich polymolecular botanical extract formulation to reduce cancer-related fatigue in patients with solid tumors. Support Care Cancer 2024; 32:331. [PMID: 38710920 DOI: 10.1007/s00520-024-08536-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 04/30/2024] [Indexed: 05/08/2024]
Abstract
AIM We evaluated the efficacy and safety of Nuvastatic™ (C5OSEW5050ESA) in improving cancer-related fatigue (CRF) among cancer patients. METHODS This multicenter randomized double-blind placebo-controlled phase 2 trial included 110 solid malignant tumor patients (stage II-IV) undergoing chemotherapy. They were randomly selected and provided oral Nuvastatic™ 1000 mg (N = 56) or placebo (N = 54) thrice daily for 9 weeks. The primary outcomes were fatigue (Brief Fatigue Inventory (BFI)) and Visual Analog Scale for Fatigue (VAS-F)) scores measured before and after intervention at baseline and weeks 3, 6, and 9. The secondary outcomes were mean group difference in the vitality subscale of the Medical Outcome Scale Short Form-36 (SF-36) and urinary F2-isoprostane concentration (an oxidative stress biomarker), Eastern Cooperative Oncology Group scores, adverse events, and biochemical and hematologic parameters. Analysis was performed by intention-to-treat (ITT). Primary and secondary outcomes were assessed by two-way repeated-measures analysis of variance (mixed ANOVA). RESULTS The Nuvastatic™ group exhibited an overall decreased fatigue score compared with the placebo group. Compared with the placebo group, the Nuvastatic™ group significantly reduced BFI-fatigue (BFI fatigue score, F (1.4, 147) = 16.554, p < 0.001, partial η2 = 0.333). The Nuvastatic™ group significantly reduced VAS-F fatigue (F (2, 210) = 9.534, p < 0.001, partial η2 = 0.083), improved quality of life (QoL) (F (1.2, 127.48) = 34.07, p < 0.001, partial η2 = 0.243), and lowered urinary F2-IsoP concentrations (mean difference (95% CI) = 55.57 (24.84, 86.30)), t (55) = 3.624, p < 0.001, Cohen's d (95% CI) = 0.48 (0.20, 0.75)). Reported adverse events were vomiting (0.9%), fever (5.4%), and headache (2.7%). CONCLUSION Nuvastatic™ is potentially an effective adjuvant for CRF management in solid tumor patients and worthy of further investigation in larger trials. TRIAL REGISTRATION ClinicalTrial.gov ID: NCT04546607. Study registration date (first submitted): 11-05-2020.
Collapse
Grants
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
- KP/ITTP/S/1/367-1 Jld.2 (91) The Malaysian Ministry of Agriculture, Malaysia
Collapse
Affiliation(s)
- Mei Ling Ng
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Amin Malik Shah Abdul Majid
- EMAN Research Ltd, Symonston, Australia
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Siew Mei Yee
- Faculty of Pharmacy, SEGi University, Petaling Jaya, Malaysia
| | - V Natesan
- EMAN Research Ltd, Symonston, Australia
| | | | - Ashok Gnanasekaran
- Department of Pharmacology, Faculty of Medicine, Quest International University, Ipoh, Malaysia
| | | | - Christopher Parish
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Meena Dalal
- Notrox Research Private Limited, Hospital & Health Care Bangalore, Bangalore, Karnataka, India
| | - Long Chiau Ming
- School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia
| | - Mansoureh Nazari V
- EMAN Biodiscoveries Sdn. Bhd, Sungai Petani, Malaysia
- School of Pharmacy, Universitas 17 Agustus 1945 Jakarta, Jakarta, Indonesia
| | | | - Siti Balkees Stn Hameed Sultan
- EMAN Biodiscoveries Sdn. Bhd, Sungai Petani, Malaysia
- Integrative Medicine Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - K Govind Babu
- HCG Cancer Centre-Double Road, Bengaluru, Karnataka, India
| | - Aman Shah Abdul Majid
- Department of Pharmacology, Faculty of Medicine, Quest International University, Ipoh, Malaysia.
- EMAN Biodiscoveries Sdn. Bhd, Sungai Petani, Malaysia.
| | | |
Collapse
|
12
|
Chiu PL, Lin MC, Hsu ST, Ho TY, Chen YH, Chen CC, Chen YS. Rosmarinic acid Ameliorates neuronal regeneration in the bridging silicone rubber conduits of the sciatic nerve in taxol-treated rats. J Tradit Complement Med 2024; 14:276-286. [PMID: 38707916 PMCID: PMC11068989 DOI: 10.1016/j.jtcme.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/03/2024] [Accepted: 03/05/2024] [Indexed: 05/07/2024] Open
Abstract
Background and aim Taxol modulates local inflammatory conditions in peripheral nerves, which may impair their regeneration and recovery when injured. This study aimed to determine the effects of rosmarinic acid (RA, a polyphenol constituent of many culinary herbs) on the regeneration of the sciatic nerves in the bridging conduits. Experimental procedure In the cell study, RA decreased nuclear factor (NF)-κB activity induced by taxol in a dose dependency. In the animal model, taxol-treated rats were divided into 3 groups (n = 10/group): taxol (2 mg/kg body weight for 4 times) and taxol + RA (3 times/week for 4 weeks at 20 and 40 mg/kg body weight) groups. Macrophage infiltration, calcitonin gene-related peptide (CGRP) expression levels, neuronal connectivity, animal behavior, and neuronal electrophysiology were evaluated. Results and conclusion At the end of 4 weeks, macrophage density, CGRP expression level, and axon number significantly increased in the RA group compared with the taxol group. The RA administration unaffected heat, cold plate licking latencies, and motor coordination. Moreover, the 40 mg/kg RA group had significantly larger nerve conduction velocity and less latency compared to the taxol group. This study suggested that RA could ameliorate local inflammatory conditions to augment the recovery of regenerating nerves by accelerating their regrowth and improving electrophysiological function in taxol-treated peripheral nerve injury repaired with the silicone rubber conduit.
Collapse
Affiliation(s)
- Ping-Ling Chiu
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Mei-Chen Lin
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Shih-Tien Hsu
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Obstetrics and Gynecology and Women's Health, Taichung Veterans General Hospital, Taichung, 407, Taiwan
- Center for General Education, Ling Tung University, Taichung, 408, Taiwan
| | - Tin-Yun Ho
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| | - Yung-Hsiang Chen
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung, 413, Taiwan
| | - Chung-Chia Chen
- Linsen Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, 103, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City, 840, Taiwan
| | - Yueh-Sheng Chen
- Program for Aging, Department of Biomedical Engineering, College of Biomedical Engineering, School of Medicine, Graduate Institute of Chinese Medicine, Graduate Institute of Integrated Medicine, School of Chinese Medicine, China Medical University, Taichung, 404, Taiwan
| |
Collapse
|
13
|
Li T, Wang W, Guo Q, Li J, Tang T, Wang Y, Liu D, Yang K, Li J, Deng K, Wang F, Li H, Wu Z, Guo J, Guo D, Shi Y, Zou J, Sun J, Zhang X, Yang M. Rosemary (Rosmarinus officinalis L.) hydrosol based on serotonergic synapse for insomnia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:116984. [PMID: 37532071 DOI: 10.1016/j.jep.2023.116984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 07/10/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Rosemary (Rosmarinus officinalis L.) has been widely used as a traditional remedy for insomnia, depression and anxiety in China and Western countries. Modern pharmacological studies have shown that rosemary has important applications in neurological disorders. However, the mechanism of action of rosemary hydrosol in the treatment of insomnia is not known. AIMS OF THE STUDY Insomnia is closely linked to anxiety and depression, and its pathogenesis is related to biology, psychology, and sociology. Rosemary is a natural plant that has been used to treat insomnia and depression and has good biological activity, but its material basis and mechanism for the treatment of insomnia are not clear. Here, we report on the role of aqueous extracts of rosemary in the treatment of insomnia. MATERIALS AND METHODS The study was based on network pharmacology, using a combination of RNA-sequencing, "quantity-effect" weighting coefficients, and pharmacodynamic experiments. DL-4-chlorophenylalanine (PCPA) was intraperitoneally injected into SD rats to replicate the insomnia model with a blank, model, diazepam, and rosemary hydrosol low-, medium-, and high-dose groups were set up for the experiment. The key pathways in the treatment of insomnia with rosemary hydrosol were analyzed by molecular docking, open field assay, ELISA, western-Blot, Rt-PCR, and immunohistochemical assay. RESULTS Rosemary hydrosol was analyzed by GC-MS to identify 19 components. 1579 differential genes were obtained by RNA-Seq analysis, 533 targets for rosemary hydrosol and 2705 targets for insomnia, and 29 key targets were obtained by intersection. The KEGG results were ranked by "quantity-effect" weighting coefficients, resulting in serotonergic synapse was the key pathway for the treatment of insomnia with rosemary hydrosol. Molecular docking results showed that 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, 3-methyl-4-isopropylphenol, caryophyllene, and citronellol of rosemary hydrosol acted synergistically to achieve a therapeutic effect on insomnia. Caryophyllene acts on the HTR1A target by upregulating 5-HT1AR, leading to increased 5-HT release, and upregulation of ADCY5, cAMP, PKA and GABAA at serotonergic synapses; citronellol upregulated ADCY5 and 1,7,7-trimethylbicyclo[2.2.1] heptan-2-one, and 3-methyl-4-isopropylphenol up-regulated GABAA to improve insomnia symptoms. In open-field experiments, ELISA kits (5-HT, GABA, and DA), Western-blotting, Rt-PCR and immunohistochemical assay experiments, insomnia rats in the low-, medium- and high-dose groups of rosemary hydrosol showed different degrees of improvement compared with the model group. CONCLUSIONS It was shown that rosemary hydrosol may exert its therapeutic effects on insomnia through serotonergic synapses by combining RNA-Seq, "quantity-effect" weighting coefficients network pharmacology and pharmacodynamic experiments. We have provided a preliminary theoretical study for the development of rosemary hydrosol additive into a beverage for the treatment of insomnia, but it needs to be studied in depth. This study was conducted in rats and the results have limitations and may not apply to humans.
Collapse
Affiliation(s)
- Taotao Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Wenfei Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Qiuting Guo
- Xianyang Vocational Technical College, Xianyang, 712000, Shaanxi, China
| | - Jia Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Tiantian Tang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yujiao Wang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Ding Liu
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Kai Yang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jiayi Li
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Kaixue Deng
- Shaanxi Jianchi Biological Pharmaceutical Co., Ltd, Xianyang, 712000, Shaanxi, China
| | - Fang Wang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Huiting Li
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Zhenfeng Wu
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China
| | - Jianbo Guo
- Shaanxi Province Food and Drug Safety Monitoring Key Laboratory, Shaanxi Institute of Food and Drug Control, Xi'an, 710000, Shaanxi, China
| | - Dongyan Guo
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Yajun Shi
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Junbo Zou
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Jing Sun
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Xiaofei Zhang
- Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China; Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| |
Collapse
|
14
|
Zhong M, Zhang L, Yu H, Liao J, Jiang Y, Chai S, Yang R, Wang L, Deng X, Zhang S, Li Q, Zhang L. Identification and characterization of a novel tyrosine aminotransferase gene (SmTAT3-2) promotes the biosynthesis of phenolic acids in Salvia miltiorrhiza Bunge. Int J Biol Macromol 2024; 254:127858. [PMID: 37924917 DOI: 10.1016/j.ijbiomac.2023.127858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/06/2023]
Abstract
Rosmarinic acid (RA) and salvianolic acid B (SAB) are main phenolic acids in Salvia miltiorrhiza Bunge have been widely used in the treatment of cardiovascular and cerebrovascular diseases due to their excellent pharmacological activity. RA is a precursor of SAB, and tyrosine transaminase (TAT, EC 2.6.1.5) is a crucial rate-limiting enzyme in their metabolism pathway. This study identified a novel TAT gene, SmTAT3-2, and found that it is a new transcript derived from unconventional splicing of SmTAT3. We used different substrates for enzymatic reaction with SmTAT1, SmTAT3 and SmTAT3-2. Subcellular localization of SmTAT1 and SmTAT3-2 was completed based on submicroscopic techniques. In addition, they were overexpressed and CRISPR/Cas9 gene edited in hairy roots of S. miltiorrhiza. Revealed SmTAT3-2 and SmTAT1 showed a stronger affinity for L-tyrosine than SmTAT3, localized in the cytoplasm, and promoted the synthesis of phenolic acid. In overexpressed SmTAT3-2 hairy roots, the content of RA and SAB was significantly increased by 2.53 and 3.38 fold, respectively, which was significantly higher than that of overexpressed SmTAT1 strain compared with EV strain. These findings provide a valuable key enzyme gene for the phenolic acids metabolism pathway and offer a theoretical basis for the clinical application.
Collapse
Affiliation(s)
- Mingzhi Zhong
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Lei Zhang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, 610041 Chengdu, China
| | - Haomiao Yu
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Jinqiu Liao
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Life Sciences, Sichuan Agricultural University, 625014 Ya'an, China
| | - Yuanyuan Jiang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Songyue Chai
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Ruiwu Yang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Life Sciences, Sichuan Agricultural University, 625014 Ya'an, China
| | - Long Wang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Xuexue Deng
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China
| | - Songlin Zhang
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, 610041 Chengdu, China
| | - Qingmiao Li
- Sichuan Provincial Key Laboratory of Quality and Innovation Research of Chinese Materia Medica, Sichuan Academy of Chinese Medicine Sciences, 610041 Chengdu, China.
| | - Li Zhang
- Featured Medicinal Plants Sharing and Service Platform of Sichuan Province, Sichuan Agricultural University, 625014 Ya'an, China; College of Science, Sichuan Agricultural University, 625014 Ya'an, China.
| |
Collapse
|
15
|
Mohmad Saberi SE, Chua LS. Potential of rosmarinic acid from Orthosiphon aristatus extract for inflammatory induced diseases and its mechanisms of action. Life Sci 2023; 333:122170. [PMID: 37827234 DOI: 10.1016/j.lfs.2023.122170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/03/2023] [Accepted: 10/09/2023] [Indexed: 10/14/2023]
Abstract
Orthosiphon aristatus has been traditionally used as a medicinal herb for various illnesses in Southeast Asia and Europe. The most dominant bioactive compound of the herb is rosmarinic acid (RosA) which has been demonstrated for its remarkable anti-inflammatory properties. This review describes the recent progress of studies on multi-target molecular pathways of RosA in relation to targeted inflammatory-associated diseases. An inclusive literature search was conducted using electronic databases such as Google Scholar, Scopus, Springer Link, PubMed, Medline, Wiley and Science Direct for studies reporting on the anti-inflammatory actions of RosA from 2008 until 2023. The keywords of the search were RosA and anti-inflammatory in relation to hepatoprotective, chondroprotective, cardioprotective, neuroprotective and toxicity. Only publications that are written in English are included in this review. The inhibition and deactivation of pro-inflammatory biomolecules by RosA were explained based on the initial inflammation stimuli and their location in the body. The activation of Nrf2/HO-1 expression to inhibit NF-κB pathway is the key mechanism for hepatoprotection. Besides NF-κB inhibition, RosA activates PPARγ to alleviate ischemia/reperfusion (I/R)-induced myocardial injury for cardioprotection. The regulation of MAPK and T-cell activation is important for chondroprotection, whereas the anti-oxidant property of RosA is the main contributor of neuroprotection. Even though less studies on the anti-inflammation of RosA extracts from O. aristatus, but the effective pharmacological properties of RosA has promoted it as a natural potent lead for further investigation.
Collapse
Affiliation(s)
- Salfarina Ezrina Mohmad Saberi
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Lee Suan Chua
- Herbal and Phytochemical Unit, Institute of Bioproduct Development, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Department of Bioprocess and Polymer Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor Bahru, Johor, Malaysia.
| |
Collapse
|
16
|
Vafaeipour Z, Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effect of saffron, black seed, and their main constituents on inflammatory cytokine response (mainly TNF-α) and oxidative stress status: an aspect on pharmacological insights. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2241-2259. [PMID: 37103518 DOI: 10.1007/s00210-023-02501-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/15/2023] [Indexed: 04/28/2023]
Abstract
Tumor necrosis factor-α (TNF-α), an inflammatory cytokine, is produced by monocytes and macrophages. It is known as a 'double-edged sword' because it is responsible for advantageous and disadvantageous events in the body system. The unfavorable incident includes inflammation, which induces some diseases such as rheumatoid arthritis, obesity, cancer, and diabetes. Many medicinal plants have been found to prevent inflammation, such as saffron (Crocus sativus L.) and black seed (Nigella sativa). Therefore, the purpose of this review was to assess the pharmacological effects of saffron and black seed on TNF-α and diseases related to its imbalance. Different databases without time limitations were investigated up to 2022, including PubMed, Scopus, Medline, and Web of Science. All the original articles (in vitro, in vivo, and clinical studies) were collected on the effects of black seed and saffron on TNF-α. Black seed and saffron have therapeutic effects against many disorders, such as hepatotoxicity, cancer, ischemia, and non-alcoholic fatty liver, by decreasing TNF-α levels based on their anti-inflammatory, anticancer, and antioxidant properties. Saffron and black seed can treat a variety of diseases by suppressing TNF-α and exhibiting a variety of activities such as neuroprotective, gastroprotective, immunomodulatory, antimicrobial, analgesic, antitussive, bronchodilator, antidiabetic activity, anticancer, and antioxidant effects. To uncover the beneficial underlying mechanisms of black seed and saffron, more clinical trials and phytochemical research are required. Also, these two plants affect other inflammatory cytokines, hormones, and enzymes, implying that they could be used to treat a variety of diseases.
Collapse
Affiliation(s)
- Zeinab Vafaeipour
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
17
|
Alves-Silva JM, Pedreiro S, Cruz MT, Salgueiro L, Figueirinha A. Exploring the Traditional Uses of Thymbra capitata Infusion in Algarve (Portugal): Anti-Inflammatory, Wound Healing, and Anti-Aging. Pharmaceuticals (Basel) 2023; 16:1202. [PMID: 37765010 PMCID: PMC10538188 DOI: 10.3390/ph16091202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammation plays a pivotal role in the resolution of infection or tissue damage. In addition, inflammation is considered a hallmark of aging, which in turn compromises wound healing. Thymbra capitata is an aromatic plant, whose infusion is traditionally used as an anti-inflammatory and wound-healing agent. In this study, a T. capitata infusion was prepared and characterized by HPLC-PDA-ESI-MSn and its safety profile determined by the resazurin metabolic assay. The anti-inflammatory potential was revealed in lipopolysaccharide (LPS)-stimulated macrophages by assessing nitric oxide (NO) release and levels of inducible nitric oxide synthase (iNOS) and the interleukin-1β pro-form (pro-IL-1β). Wound-healing capacity was determined using the scratch assay. The activity of senescence-associated β-galactosidase was used to unveil the anti-senescent potential, along with the nuclear accumulation of yH2AX and p21 levels. The antiradical potential was assessed by DPPH and ABTS scavenging assays. The infusion contains predominantly rosmarinic acid and salvianolic acids. The extract decreased NO, iNOS, and pro-IL-1β levels. Interestingly, the extract promoted wound healing and decreased β-galactosidase activity, as well as yH2AX and p21 levels. The present work highlights strong antiradical, anti-inflammatory, and wound healing capacities, corroborating the traditional uses ascribed to this plant. We have described, for the first time for this extract, anti-senescent properties.
Collapse
Affiliation(s)
- Jorge Miguel Alves-Silva
- Univ Coimbra, Institute for Clinical and Biomedical Research, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal;
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
| | - Sónia Pedreiro
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Maria Teresa Cruz
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra, Center for Neuroscience and Cell Biology, Faculty of Medicine, Rua Larga, 3004-504 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Univ Coimbra, Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, 3030-790 Coimbra, Portugal
| | - Artur Figueirinha
- Univ Coimbra, Faculty of Pharmacy, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (S.P.); (M.T.C.); (A.F.)
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| |
Collapse
|
18
|
Bernatoniene J, Sciupokas A, Kopustinskiene DM, Petrikonis K. Novel Drug Targets and Emerging Pharmacotherapies in Neuropathic Pain. Pharmaceutics 2023; 15:1799. [PMID: 37513986 PMCID: PMC10384314 DOI: 10.3390/pharmaceutics15071799] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Neuropathic pain is a debilitating condition characterized by abnormal signaling within the nervous system, resulting in persistent and often intense sensations of pain. It can arise from various causes, including traumatic nerve injury, neuropathy, and certain diseases. We present an overview of current and emerging pharmacotherapies for neuropathic pain, focusing on novel drug targets and potential therapeutic agents. Current pharmacotherapies, including tricyclic antidepressants, gabapentinoids, and serotonin norepinephrine re-uptake inhibitors, are discussed, as are emerging treatments, such as ambroxol, cannabidiol, and N-acetyl-L-cysteine. Additionally, the article highlights the need for further research in this field to identify new targets and develop more effective and targeted therapies for neuropathic pain management.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Arunas Sciupokas
- Pain Clinic, Lithuanian University of Health Sciences Hospital Kauno Klinikos, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| | - Dalia Marija Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Kestutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, Eivenių Str. 2, LT-50009 Kaunas, Lithuania
| |
Collapse
|
19
|
Hassanen EI, Issa MY, Hassan NH, Ibrahim MA, Fawzy IM, Fahmy SA, Mehanna S. Potential Mechanisms of Imidacloprid-Induced Neurotoxicity in Adult Rats with Attempts on Protection Using Origanum majorana L. Oil/Extract: In Vivo and In Silico Studies. ACS OMEGA 2023; 8:18491-18508. [PMID: 37273614 PMCID: PMC10233680 DOI: 10.1021/acsomega.2c08295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/19/2023] [Indexed: 06/06/2023]
Abstract
Imidacloprid (IMI) insecticide is rapidly metabolized in mammals and contributes to neurotoxicity via the blocking of nicotinic acetylcholine receptors, as in insects. Origanum majorana retains its great antioxidant potential in both fresh and dry forms. No data is available on the neuroprotective effect of this plant in laboratory animals. In this context, aerial parts of O. majorana were used to prepare the essential oil (OMO) and methanol extract (OME). The potential neuroprotective impact of both OMO and OME against IMI-induced neurotoxicity in rats was explored. Forty-two rats were divided into 6 groups, with 7 rats in each one. Rats were daily administered the oral treatments: normal saline, OMO, OME, IMI, IMI + OMO, and IMI + OME. Our results revealed the identification of 55 components in O. majorana essential oil, most belonging to the oxygenated and hydrocarbon monoterpenoid group. Moreover, 37 constituents were identified in the methanol extract, mostly phenolics. The potent neurotoxic effect of IMI on rats was confirmed by neurobehavioral and neuropathological alterations and a reduction of both acetylcholine esterase (AchE) activity and dopamine (DA), serotonin (5HT), and γ-aminobutyric acid (GABA) levels in the brain. Exposure of rats to IMI elevates the malondialdehyde (MDA) levels and reduces the antioxidant capacity. IMI could upregulate the transcription levels of nuclear factor-κB (NF-κB), interleukin-1 β (IL-1β), and tumor necrosis factor (TNF-α) genes and express strong caspase-3 and inducible nitric oxide synthase (iNOS) immunostaining in most examined brain areas. On the other hand, rats coadministered OMO or OME with IMI showed a marked improvement in all of the studied toxicological parameters. In conclusion, cotreatment of O. majorana extracts with IMI can protect against IMI neurotoxicity via their potent antioxidant, anti-inflammatory, and anti-apoptotic effects. Thus, we recommend a daily intake of O. majorana to protect against insecticide's oxidative stress-mediated neuroinflammatory stress and apoptosis. The molecular docking study of linalool, rosmarinic acid, γ-terpene, and terpene-4-ol justify the observed normalization of the elevated iNOS and TNF-α levels induced after exposure to IMI.
Collapse
Affiliation(s)
- Eman I. Hassanen
- Department
of Pathology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Marwa Y. Issa
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr El-Aini
Street, 11562 Cairo, Egypt
| | - Neven H. Hassan
- Department
of Physiology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Marwa A. Ibrahim
- Department
of Biochemistry, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Iten M. Fawzy
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt, 11835 Cairo, Egypt
| | - Sherif Ashraf Fahmy
- Department
of Chemistry, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, R5 New Garden City, New Administrative
Capital, 11835 Cairo, Egypt
| | - Sally Mehanna
- Department
of Animal Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| |
Collapse
|
20
|
Alves-Silva JM, Pedreiro S, Cavaleiro C, Cruz MT, Figueirinha A, Salgueiro L. Effect of Thymbra capitata (L.) Cav. on Inflammation, Senescence and Cell Migration. Nutrients 2023; 15:nu15081930. [PMID: 37111149 PMCID: PMC10146686 DOI: 10.3390/nu15081930] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/30/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Aromatic plants are reported to display pharmacological properties, including anti-aging. This work aims to disclose the anti-aging effect of the essential oil (EO) of Thymbra capitata (L.) Cav., an aromatic and medicinal plant widely used as a spice, as well as of the hydrodistillation residual water (HRW), a discarded by-product of EO hydrodistillation. The phytochemical characterization of EO and HRW was assessed by GC-MS and HPLC-PDA-ESI-MSn, respectively. The DPPH, ABTS, and FRAP assays were used to disclose the antioxidant properties. The anti-inflammatory potential was evaluated using lipopolysaccharide-stimulated macrophages by assessing NO production, iNOS, and pro-IL-1β protein levels. Cell migration was evaluated using the scratch wound assay, and the etoposide-induced senescence was used to assess the modulation of senescence. The EO is mainly characterized by carvacrol, while the HRW is predominantly characterized by rosmarinic acid. The HRW exerts a stronger antioxidant effect in the DPPH and FRAP assays, whereas the EO was the most active sample in the ABTS assay. Both extracts reduce NO, iNOS, and pro-IL-1β. The EO has no effect on cell migration and presents anti-senescence effects. In opposition, HRW reduces cell migration and induces cellular senescence. Overall, our study highlights interesting pharmacological properties for both extracts, EO being of interest as an anti-aging ingredient and HRW relevant in cancer therapy.
Collapse
Affiliation(s)
- Jorge M Alves-Silva
- Institute for Clinical and Biomedical Research, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
| | - Sónia Pedreiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Carlos Cavaleiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Maria Teresa Cruz
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Artur Figueirinha
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
| | - Lígia Salgueiro
- Faculty of Pharmacy, University of Coimbra, Health Sciences Campus, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Associated Laboratory for Green Chemistry (LAQV) of the Network of Chemistry and Technology (REQUIMTE), University of Porto, 4099-002 Porto, Portugal
- Chemical Process Engineering and Forest Products Research Centre, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
21
|
Farhadi F, Baradaran Rahimi V, Mohamadi N, Askari VR. Effects of rosmarinic acid, carnosic acid, rosmanol, carnosol, and ursolic acid on the pathogenesis of respiratory diseases. Biofactors 2022. [PMID: 36564953 DOI: 10.1002/biof.1929] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022]
Abstract
This review aimed to identify preclinical and clinical studies examining the effects of rosmarinic acid (RA), carnosic acid (CaA), rosmanol (RO), carnosol (CA), and ursolic acid (UA) against allergic and immunologic disorders. Various online databases, including PubMed, Science Direct, EMBASE, Web of Sciences, Cochrane trials, and Scopus, were searched from inception until October 2022. Due to the suppression of the nuclear factor-κB (NF-κB) pathway, the main factor in allergic asthma, RA may be a promising candidate for the treatment of asthma. The other ingredients comprising CA and UA reduce the expression of interleukin (IL)-4, IL-5, and IL-13 and improve airway inflammation. Rosemary's anti-cancer effect is mediated by several mechanisms, including DNA fragmentation, apoptosis induction, inhibition of astrocyte-upregulated gene-1 expression, and obstruction of cell cycle progression in the G1 phase. The compounds, essentially found in Rosemary essential oil, prevent smooth muscle contraction through its calcium antagonistic effects, inhibiting acetylcholine (ACH), histamine, and norepinephrine stimulation. Additionally, CA exhibits a substantially greater interaction with the nicotinic ACH receptor than a family of medications that relax the smooth muscles, making it a potent antispasmodic treatment. The components have demonstrated therapeutic effects on the immune, allergy, and respiratory disorders.
Collapse
Affiliation(s)
- Faegheh Farhadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Neda Mohamadi
- Herbal and Traditional Medicines Research center, Kerman University of Medical Sciences, Kerman, Iran
| | - Vahid Reza Askari
- International UNESCO Center for Health-Related Basic Sciences and Human Nutrition, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Natural Herbal Non-Opioid Topical Pain Relievers-Comparison with Traditional Therapy. Pharmaceutics 2022; 14:pharmaceutics14122648. [PMID: 36559142 PMCID: PMC9785912 DOI: 10.3390/pharmaceutics14122648] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 12/04/2022] Open
Abstract
Pain is the predominant symptom of many clinical diseases and is frequently associated with neurological and musculoskeletal problems. Chronic pain is frequent in the elderly, causing suffering, disability, social isolation, and increased healthcare expenses. Chronic pain medication is often ineffective and has many side effects. Nonsteroidal over-the-counter and prescription drugs are frequently recommended as first-line therapies for pain control; however, long-term safety issues must not be neglected. Herbs and nutritional supplements may be a safer and more effective alternative to nonsteroidal pharmaceuticals for pain management, especially when used long-term. Recently, topical analgesic therapies have gained attention as an innovative approach due to their sufficient efficacy and comparatively fewer systemic side effects and drug-drug interactions. In this paper, we overview the main natural herbal pain relievers, their efficacy and safety, and their potential use as topical agents for pain control. Although herbal-derived medications are not appropriate for providing quick relief for acute pain problems, they could be used as potent alternative remedies in managing chronic persistent pain with minimal side effects.
Collapse
|
23
|
Antinociceptive effect of N-acetyl glucosamine in a rat model of neuropathic pain. Acta Neuropsychiatr 2022; 34:260-268. [PMID: 35109948 DOI: 10.1017/neu.2022.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study was aimed at evaluating the efficacy of glucosamine and potential mechanisms of actions in a neuropathic pain model in rats. METHODS Glucosamine (500, 1000 and 2000 mg/kg) was administered via gavage route, 1 day before the chronic constriction injury (CCI) of sciatic nerve and daily for 14 days (prophylactic regimen), or from days 5 to 14 post-injury (therapeutic regimen), as the indicators of neuropathic pain, mechanical allodynia, cold allodynia and thermal hyperalgesia were assessed on days 0, 3, 5, 7, 10 and 14 after ligation. Inducible nitric oxide synthase (iNOS) and tumour necrosis factor alpha (TNF-α) gene expressions were measured by real-time polymerase chain reaction. TNF-α protein content was measured using the enzyme-linked immunosorbent assay method. RESULTS Three days after nerve injury, the threshold of pain was declined among animals subjected to neuropathic pain. Mechanical and cold allodynia, as well as thermal hyperalgesia were attenuated by glucosamine (500, 1000, 2000 mg/kg) in the prophylactic regimen. However, existing pain was not decreased by this drug. Increased mRNA expression of iNOS and TNF-α was significantly reduced in the spinal cord of CCI animals by glucosamine (500, 1000, 2000 mg/kg) in the prophylactic regimen. The overall expression of spinal TNF-α was increased by CCI, but this increase was reduced in animals receiving glucosamine prophylactic treatment. CONCLUSION Findings suggest that glucosamine as a safe supplement may be a useful candidate in preventing neuropathic pain following nerve injury. Antioxidant and anti-inflammatory effects may be at least in part responsible for the antinociceptive effects of this drug.
Collapse
|
24
|
Verma H, Shivavedi N, Tej GNVC, Kumar M, Nayak PK. Prophylactic administration of rosmarinic acid ameliorates depression-associated cardiac abnormalities in Wistar rats: Evidence of serotonergic, oxidative, and inflammatory pathways. J Biochem Mol Toxicol 2022; 36:e23160. [PMID: 35838106 DOI: 10.1002/jbt.23160] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/05/2022] [Accepted: 07/01/2022] [Indexed: 12/16/2022]
Abstract
Psychiatric disorders and associated cardiac comorbidities have increased the risk of mortality worldwide. Researchers reported that depression increases the possibility of future cardiac abnormalities by approximately 30%. Therefore, there is an unmet need to develop therapeutic interventions to treat depression and associated cardiac abnormalities. The present study was conducted to evaluate the prophylactic effect of rosmarinic acid (RA) against chronic unpredictable stress (CUS)-induced depression associated cardiac abnormalities in Wistar rats. The CUS paradigm, which comprised several stressors, was employed for 40 days to induce depressive-like behavior and associated cardiac abnormalities in rats. Along with CUS, RA at a dose of 25 and 50 mg/kg was administered orally to two groups of animals for 40 days. Behavioral tests (forced swim test and sucrose consumption test) and molecular biomarkers (corticosterone and serotonin) were performed. Electrocardiography was performed before CUS (Day 0), Day 20, and Day 40 to study electrocardiogram parameters. Furthermore, changes in body weight, organ weight, tissue lipid peroxidation, glutathione, catalase, cTn-I, MMP-2, and proinflammatory cytokines (TNF-α and IL-6) were estimated. Our results showed that RA treatment caused a reduction in immobility period, adrenal hyperplasia, corticosterone level, tissue lipid peroxidation, cTn-I, MMP-2, proinflammatory cytokines, and QRS complex duration, while an increase in sucrose consumption, brain serotonin level, T-wave width, glutathione, and catalase activity as compared with the CUS-control group. The results of our study proved that RA administration ameliorates CUS-induced depression-associated cardiac abnormalities in rats via serotonergic, oxidative, and inflammatory pathways.
Collapse
Affiliation(s)
- Himanshu Verma
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Naveen Shivavedi
- Shri Ram Group Of Institutions, Faculty of Pharmacy, Jabalpur, Madhya Pradesh, India
| | - Gullanki N V C Tej
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Mukesh Kumar
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| | - Prasanta K Nayak
- Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (IIT), Banaras Hindu University (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
25
|
Cazuza RA, Batallé G, Bai X, Leite-Panissi CRA, Pol O. Effects of treatment with a carbon monoxide donor and an activator of heme oxygenase 1 on the nociceptive, apoptotic and/or oxidative alterations induced by persistent inflammatory pain in the central nervous system of mice. Brain Res Bull 2022; 188:169-178. [PMID: 35952846 DOI: 10.1016/j.brainresbull.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/24/2022]
Abstract
The activation of heme oxygenase 1 (HO-1)/carbon monoxide (CO) inhibits chronic inflammatory pain, but its role in the central nervous system (CNS) is not entirely known. We evaluated whether the treatment with an HO-1 inducer, cobalt protoporphyrin IX (CoPP), or a CO-releasing molecule, tricarbonyldichlororuthenium(II)dimer (CORM-2), modulates the nociceptive, apoptotic and/or oxidative responses provoked by persistent inflammatory pain in the CNS. In C57BL/6 male mice with peripheral inflammation caused by complete Freund's adjuvant (CFA), we assessed the effects of CORM-2 and CoPP on the expression of protein kinase B (Akt), the apoptotic protein BAX, and the antioxidant enzymes HO-1 and NADPH quinone oxidoreductase 1 (NQO1) in the periaqueductal gray matter (PAG), amygdala (AMG), ventral hippocampus (VHPC) and medial septal area (MSA). Our results showed that the increased expression of p-Akt caused by peripheral inflammation in the four analyzed brain areas was reversed by CORM-2 and CoPP therapies. Both treatments also normalized the upregulation of BAX induced by CFA on the VHPC and MSA. Oxidative stress, demonstrated with the decreased expression of HO-1 on the PAG and AMG, was normalized in CORM-2 and CoPP treated animals. CoPP also increased the expression of HO-1 on VHPC, and both treatments up-regulated the NQO1 levels on the PAG of CFA-injected animals. In conclusion, both CORM-2 and CoPP treatments inhibited the nociceptive and apoptotic responses generated by peripheral inflammation and/or potentiated the antioxidant responses in several brain areas revealing the new modulatory effects of these treatments in the CNS of animals with chronic inflammatory pain.
Collapse
Affiliation(s)
- Rafael A Cazuza
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Gerard Batallé
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Xue Bai
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Christie R A Leite-Panissi
- Department of Psychology, Faculty of Philosophy Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil.
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau (IIB SANT PAU), Sant Quintí 77-79, 08041 Barcelona, Spain; Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
26
|
Dahchour A. Anxiolytic and antidepressive potentials of rosmarinic acid: A review with a focus on antioxidant and anti-inflammatory effects. Pharmacol Res 2022; 184:106421. [PMID: 36096427 DOI: 10.1016/j.phrs.2022.106421] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022]
Abstract
Depression and anxiety are the most prevalent neuropsychiatric disorders that have emerged as global health concerns. Anxiolytic and antidepressant drugs, such as benzodiazepines, selective serotonin reuptake inhibitors, monoamine oxidase inhibitors, and tricyclics, are the first line used in treating anxiety and depression. Although these drugs lack efficacy and have a delayed response time and numerous side effects, their widespread abuse and market continue to grow. Over time, traditional practices using natural and phytochemicals as alternative therapies to chemical drugs have emerged to treat many pathological conditions, including anxiety and depression. Recent preclinical studies have demonstrated that the phenolic compound, rosmarinic acid, is effective against several neuropsychiatric disorders, including anxiety and depression. In addition, rosmarinic acid showed various pharmacological effects, such as cardioprotective, hepatoprotective, lung protective, antioxidant, anti-inflammatory, and neuroprotective effects. However, the potentialities of the use of rosmarinic acid in the treatment of nervous system-related disorders, such as anxiety and depression, are less or not yet reviewed. Therefore, the purpose of this review was to present several preclinical and clinical studies, when available, from different databases investigating the effects of rosmarinic acid on anxiety and depression. These studies showed that rosmarinic acid produces advantageous effects on anxiety and depression through its powerful antioxidant and anti-inflammatory properties. This review will examine and discuss the possibility that the anxiolytic and anti-depressive effects of rosmarinic acid could be associated with its potent antioxidant and anti-inflammatory activities.
Collapse
Affiliation(s)
- Abdelkader Dahchour
- Clinical Neurosciences Laboratory, Faculty of Medicine and Pharmacy. Department of Biology, Faculty of Sciences, Sidi Mohamed Ben Abdellah University, Fez 30000, Morocco.
| |
Collapse
|
27
|
Ben Mrid R, Bouchmaa N, Ouedrhiri W, Ennoury A, ZouaouI Z, Kabach I, Nhiri M, El Fatimy R. Synergistic antioxidant effects of natural compounds on H2O2-induced cytotoxicity of human monocytes. Front Pharmacol 2022; 13:830323. [PMID: 36120290 PMCID: PMC9474927 DOI: 10.3389/fphar.2022.830323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Natural compounds are endowed with a broad spectrum of biological activities, including protection against Toxins. Most of them are known for their antioxidant and radical scavenging activities. However, the synergistic combination of these natural molecules is not well studied. Therefore, the present study aims first to investigate the effect of four potent natural molecules [rosmarinic acid (Ros-A), ellagic acid (Ella-A), curcumin (Cur), and syringic acid (Syr-A)] on H2O2 -induced cell cytotoxicity and oxidative stress on the human monocytes (THP-1) and then to evaluate their combined action effect. Optimal combinations of these molecules were predicted using an augmented mixture design approach. In the first, as preliminary antioxidant activities screening, two in vitro assays were adopted to assess the single radicals scavenging activity of these natural compounds, DPPH• and ABTS• + tests. Based on the results obtained, the multitude of optimal formulas proposed by the mixture design study led to choosing four potent compositions (comp) in addition to ellagic acid, proposed as the most efficient when applied alone. The different molecules and mixtures were used to assess their cytoprotective effect on THP-1 cells in the presence and absence of H2O2. The most potent Comp-4, as well as the molecules forming this mixture, were exploited in a second experiment, aiming to understand the effect on oxidative stress via antioxidant enzyme activities analysis in the H2O2-induced oxidative stress in the THP-1 cell line. Interestingly, the natural molecules used for THP-1 cells treatment exhibited a significant increase in the antioxidant defense and glyoxalase system as well as suppression of ROS generation evaluated as MDA content. These results indicate that the natural compounds tested here, especially the synergistic effect of Cur and Ros-A (Comp-4), could serve as cytoprotective and immunostimulant agents against H2O2-induced cytotoxicity THP-1 cells, which makes them interesting for further investigations on the molecular mechanisms in preclinical animal models.
Collapse
Affiliation(s)
- Reda Ben Mrid
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Reda Ben Mrid, ; Najat Bouchmaa,
| | - Najat Bouchmaa
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
- *Correspondence: Reda Ben Mrid, ; Najat Bouchmaa,
| | - Wessal Ouedrhiri
- Laoratory of Inorganic Chemistry, Department of Chemistry, University of Helsinki, Helsinki, Finland
| | - Abdelhamid Ennoury
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Science and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Zakia ZouaouI
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Science and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Imad Kabach
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Science and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Mohamed Nhiri
- Laboratory of Biochemistry and Molecular Genetics, Faculty of Science and Technology, Abdelmalek Essaadi University, Tangier, Morocco
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), Ben-Guerir, Morocco
| |
Collapse
|
28
|
Gao L, Zhang C, Li Q, Peng X, Shima G, Cao H, Hao P, Li C, Zhang Z. Network Pharmacology and Experimental Analyses of the Mechanism of Analgesic and Glucose Intolerance Through Glucocorticoid Signaling in C57 Mice Treated with Water Extract of Prunella vulgaris L. Spica. Nat Prod Commun 2022; 17. [DOI: 10.1177/1934578x221111032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
The aim of this study was to confirm the anti-inflammatory effect and explore the adverse effects and underlying mechanisms of Prunella vulgaris L., which has been extensively used for hundreds of years in East Asia. Network pharmacology studies predicted that glucocorticoids (GCs), GC-targeting molecules, and brain-derived neurotrophic factor (BDNF) were intensively involved in the anti-inflammation and glucose intolerance. To attest the effects and underlying mechanisms, C57 male mice were randomly divided into 5 groups, control (C), dexamethasone (Dex), water extract of P. vulgaris (PE 35 or 70 mg), and PE (70 mg) + mifepristone (PEM). After a 3-week treatment, acetic acid-induced writhing and hot plate tests confirmed the peripheral and central analgesic effects, respectively. Plasma GCs and BDNF were significantly increased. Coincidently, plasma pro-inflammatory cytokines, including IL1β, IL6, and IL10, were decreased by PE treatment, which were blocked by the application of mifepristone ( P < 0.5). Western blots confirmed GC receptor (GR) translocation, and decreased cyclooxygenase 2 in the lumber spine by PE treatment. Food intake was impeded after a 4-week PE treatment, but the ratio of bodyweight gain to food intake was increased in a time-dependent manner. An intraperitoneal glucose tolerance test disclosed that PE treatment impaired glucose disposal in mice. Quantitative polymerase chain reaction (PCR) showed that hepatic GC-responsive genes such as GC-induced leucine zipper protein and glucose-6-phosphatase catalytic subunit 1 were up-regulated, and hypothalamic neuropeptide Y and agouti-related protein expressions were decreased by PE treatment. Hypothalamic BDNF was up-regulated, whereas hepatic BDNF was down-regulated. The regulation of these genes by PE was reversed by mifepristone administration. In conclusion, PE treatment plays analgesic and glucose regulation roles simultaneously through GC-induced signaling pathways, and P. vulgaris may provide a natural ligand of GR for the treatment of inflammation with glucose dysregulation.
Collapse
Affiliation(s)
- Li Gao
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Chaoyun Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Qiuying Li
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Xiaojuan Peng
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Guanghan Shima
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Hongwei Cao
- Tiandao Wines & Spirits Co., Ltd, Handan, Hebei, China
| | - Pengfei Hao
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Chao Li
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| | - Zhongming Zhang
- Zhang Zhongjing College of Chinese Medicine, Nanyang Institute of Technology, Nanyang, Henan, China
- Henan Key Laboratory of Zhang Zhongjing Formulae and Herbs for Immunoregulation, Nanyang Institute of Technology, Nanyang, Henan, China
| |
Collapse
|
29
|
Rosmarinic Acid Attenuates the Lipopolysaccharide-Provoked Inflammatory Response of Vascular Smooth Muscle Cell via Inhibition of MAPK/NF-κB Cascade. Pharmaceuticals (Basel) 2022; 15:ph15040437. [PMID: 35455434 PMCID: PMC9029490 DOI: 10.3390/ph15040437] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022] Open
Abstract
Rosmarinic acid (RA) is a phenolic compound that has several bioactivities, such as anti-inflammatory and antioxidant activities. Here, we further investigate the anti-inflammatory effect of RA on rat A7r5 aortic smooth muscle cells with exposure to lipopolysaccharide (LPS). Our findings showed that low-dose RA (10–25 μM) did not influence the cell viability and morphology of A7r5 cells and significantly inhibited LPS-induced mRNA expression of the pro-inflammatory mediators TNFα, IL-8, and inducible NO synthase (iNOS). Consistently, RA reduced the production of TNFα, IL-8, and NO by A7r5 cells with exposure to LPS. Signaling cascade analysis showed that LPS induced activation of Erk, JNK, p38 mitogen-activated protein kinase (MAPK), and NF-κB, and RA treatments attenuated the activation of the three MAPKs and NF-κB. Moreover, cotreatment with RA and Erk, JNK, p38 MAPK, or NF-κB inhibitors further downregulated the mRNA expression of TNFα, IL-8, and iNOS, and decreased the production of TNFα, IL-8, and NO by A7r5 cells. Taken together, these findings indicate that RA may ameliorate the LPS-provoked inflammatory response of vascular smooth muscle cells by inhibition of MAPK/NF-κB signaling.
Collapse
|
30
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
31
|
A Emara A, A Sleem B, K Nageeb A, H Ahmed N, T Mohamed N, I Hassanin M, M Mohamed R, E Hassan M, R Shamroukh M, K Mohamed M, M Hassaan M, M Maddy R, S Elneklawi M, Bondok MS, Ali AA, A Hussein M. Antitumor and Protective Activity of TVLE against CdCl 2-Induced Renal Damage in Rats. Pak J Biol Sci 2022; 25:313-321. [PMID: 35638525 DOI: 10.3923/pjbs.2022.313.321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objective:</b> Cadmium is a heavy metal that has a wide range of applications in human existence. Cadmium may bind to the protein metallothionein and decrease kidney function once it enters the body. The purpose of this study was to investigate the renal protective activity of TVLE against CdCl<sub>2</sub>-induced renal toxicity in rats. <b>Materials and Methods:</b> TVLE was prepared and characterized using instrumental analysis and spectral data. Furthermore, the IC<sub>50</sub> of TVLE against the Vero renal carcinoma cell line was calculated. Adult albino rats were used to assess the renal protective activity of TVLE (150 and 300 mg kg<sup>1</sup> b.wt.) in CdCl<sub>2</sub>-treated rats. <b>Results:</b> IC<sub>50 </sub>of TVLE against Vero cell line equals 148.25 μg mL<sup>1</sup>. The daily oral administration of TVLE at concentrations of 150 and 300 mg kg<sup>1</sup> b.wt. for 21 days to CdCl<sub>2</sub>-treated rates resulted in a significant improvement in tumour volume and tumour weight, urea, creatinine, uric acid, TNF-α, NOx, TBARs, GSH, CAT, SOD, GPx and VEGF-C gene expression in CdCl<sub>2</sub>-treated rats. Furthermore, TVLE almost normalized these effects in renal histoarchitecture. <b>Conclusion:</b> The biochemical, histological and MRI examinations of the current study suggested that TVLE have renal protective activity against CdCl<sub>2</sub>-induced renal toxicity in rats.
Collapse
|
32
|
Hernandez-Leon A, Moreno-Pérez GF, Martínez-Gordillo M, Aguirre-Hernández E, Valle-Dorado MG, Díaz-Reval MI, González-Trujano ME, Pellicer F. Lamiaceae in Mexican Species, a Great but Scarcely Explored Source of Secondary Metabolites with Potential Pharmacological Effects in Pain Relief. Molecules 2021; 26:7632. [PMID: 34946714 PMCID: PMC8705283 DOI: 10.3390/molecules26247632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 02/07/2023] Open
Abstract
The search for molecules that contribute to the relief of pain is a field of research in constant development. Lamiaceae is one of the most recognized families world-wide for its use in traditional medicine to treat diseases that include pain and inflammation. Mexico can be considered one of the most important centers of diversification, and due to the high endemism of this family, it is crucial for the in situ conservation of this family. Information about the most common genera and species found in this country and their uses in folk medicine are scarcely reported in the literature. After an extensive inspection in bibliographic databases, mainly Sciencedirect, Pubmed and Springer, almost 1200 articles describing aspects of Lamiaceae were found; however, 217 articles were selected because they recognize the Mexican genera and species with antinociceptive and/or anti-inflammatory potential to relieve pain, such as Salvia and Agastache. The bioactive constituents of these genera were mainly terpenes (volatile and non-volatile) and phenolic compounds such as flavonoids (glycosides and aglycone). The aim of this review is to analyze important aspects of Mexican genera of Lamiaceae, scarcely explored as a potential source of secondary metabolites responsible for the analgesic and anti-inflammatory properties of these species. In addition, we point out the possible mechanisms of action involved and the modulatory pathways investigated in different experimental models. As a result of this review, it is important to mention that scarce information has been reported regarding species of this family from Mexican genera. In fact, despite Calosphace being one of the largest subgenera of Salvia in the world, found mainly in Mexico, it has been barely investigated regarding its potential biological activities and recognized bioactive constituents. The scientific evidence regarding the different bioactive constituents found in species of Lamiaceae demonstrates that several species require further investigation in preclinical studies, and of course also in controlled clinical trials evaluating the efficacy and safety of these natural products to support their therapeutic potential in pain relief and/or inflammation, among other health conditions. Since Mexico is one of the most important centers of diversification, and due to the high endemism of species of this family, it is crucial their rescue, in situ conservation, and investigation of their health benefits.
Collapse
Affiliation(s)
- Alberto Hernandez-Leon
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (A.H.-L.); (G.F.M.-P.); (F.P.)
| | - Gabriel Fernando Moreno-Pérez
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (A.H.-L.); (G.F.M.-P.); (F.P.)
- Programa de Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
| | - Martha Martínez-Gordillo
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - María Guadalupe Valle-Dorado
- Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico;
| | - María Irene Díaz-Reval
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima 28045, Mexico;
| | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (A.H.-L.); (G.F.M.-P.); (F.P.)
| | - Francisco Pellicer
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City 14370, Mexico; (A.H.-L.); (G.F.M.-P.); (F.P.)
| |
Collapse
|
33
|
Huang L, Chen J, Quan J, Xiang D. Rosmarinic acid inhibits proliferation and migration, promotes apoptosis and enhances cisplatin sensitivity of melanoma cells through inhibiting ADAM17/EGFR/AKT/GSK3β axis. Bioengineered 2021; 12:3065-3076. [PMID: 34224305 PMCID: PMC8806498 DOI: 10.1080/21655979.2021.1941699] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
Rosmarinic acid (RA), a naturally occurring polyphenolic compound, exerts multiple biological properties including anti-cancer. The metalloprotease, a disintegrin and metalloproteinase 17 (ADAM17), can activate ligands of the epidermal growth factor receptor (EGFR) and contribute to tumor progression. We aimed to investigate whether RA could exhibit anti-cancer effects in melanoma cells through down-regulating ADAM17. The human melanoma A375 cells were exposed to RA, then cell viability, migration, invasion, apoptosis, melanin content and the expression of ADAM17/EGFR/AKT/GSK3β were evaluated. The viability of cells exposed to RA in the presence of cisplatin (Cis) was measured by CCK-8. Cells were overexpressed with ADAM17 in the absence or presence of RA and ADAM17 inhibitor (TACE prodomain; TPD) co-treatment, then the above cellular processes were also observed. Results showed that A375 cells treated with RA showed significant lower cell viability, proliferation, migrative and invasive abilities, melanin content and expression of related proteins including MMP2 and MMP9, compared with normal cells. RA enhanced the ratio of TUINEL-positive cells, the expression of pro-apoptotic proteins, but reduced Bcl-2 expression. RA co-treatment increased the inhibitory effect of Cis on cell viability. RA inhibited the expression of ADAM17/EGFR/AKT/GSK3β, which was further suppressed by TPD. Moreover, ADAM17 overexpression blocked all the effects of RA whereas TPD treatment generated an opposite function. In conclusion, RA exerted obvious inhibitory effect on melanoma cell proliferation, migration and invasion, but promotive effect on cells apoptosis. Addition, the showing of this characteristic of RA may rely on inhibiting the expression of ADAM17/EGFR/AKT/GSK3β axis.
Collapse
Affiliation(s)
- Lin Huang
- Department of Dermatology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Jiangyan Chen
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Jin Quan
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| | - Debing Xiang
- Department of Oncology, Jiangjin Central Hospital of Chongqing, Chongqing, China
| |
Collapse
|
34
|
Rahbardar MG, Eisvand F, Rameshrad M, Razavi BM, Hosseinzadeh H. In Vivo and In Vitro Protective Effects of Rosmarinic Acid against Doxorubicin-Induced Cardiotoxicity. Nutr Cancer 2021; 74:747-760. [PMID: 34085575 DOI: 10.1080/01635581.2021.1931362] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 02/22/2021] [Accepted: 05/07/2021] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is an anticancer medicine that may trigger cardiomyopathy. Rosmarinic acid (RA) has shown antioxidant, anti-inflammatory, and anticancer effects. This investigation assessed the cardioprotective effect of RA on DOX-induced-toxicity in both in vivo and in vitro experiments. Male rats were randomized on 7 groups: (1) control, (2) DOX (2 mg/kg, per 48 h, 12d, i.p), (3) RA (40 mg/kg, 12d, i.p.), (4-6) RA (10, 20, 40 mg/kg, 16d, i.p.)+ DOX, (7) Vitamin E (200 mg/kg, per 48 h, 16d, i.p.) + DOX and then indices of cardiac function were estimated. Also, DOX and rosmarinic acid effects were examined on MCF7 cells (breast cancer cells line) to clarify that both cardiotoxicity and anticancer effects were analyzed. DOX increased heart to body weight ratio, RRI, QA, STI, QRS duration and voltage, attenuated HR, blood pressure, Max dP/dt, Min dP/dt, LVDP, enhanced MDA, declined GSH amount, and caused fibrosis and necrosis in cardiac tissue. Administration of RA ameliorated the toxic effects of DOX. In vitro studies showed that RA did not affect the cytotoxic effect of DOX. RA as an antioxidant, anti-inflammatory, and cardioprotective compound could be a promising compound to help minimize DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
| | - Farhad Eisvand
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
35
|
Amraie E, Pouraboli I, Rajaei Z. Neuroprotective effects of Levisticum officinale on LPS-induced spatial learning and memory impairments through neurotrophic, anti-inflammatory, and antioxidant properties. Food Funct 2021; 11:6608-6621. [PMID: 32648872 DOI: 10.1039/d0fo01030h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Levisticum officinale (Apiaceae) has been identified as a medicinal plant in traditional medicine, with the anti-inflammatory, antioxidant, and anticholinesterase activities. The present study aims to evaluate the effects of Levisticum officinale extract (LOE) on lipopolysaccharide (LPS)-induced learning and memory deficits and to examine its potential mechanisms. LOE was administered to adult male Wistar rats at doses of 100, 200, and 400 mg kg-1 for a week. Later, LPS was intraperitoneally injected at a dose of 1 mg kg-1 to induce neuroinflammation, and treatment with LOE continued for 3 more weeks. Behavioral, biochemical, and molecular analyses were performed at the end of the experiment. Moreover, quantitative immunohistochemical assessments of the expression of Ki-67 (intracellular proliferation marker) in the hippocampus were performed. The results revealed that LPS injection caused spatial memory impairment in the rats. Daily LOE treatment at applied doses for 4 weeks attenuated spatial learning and memory deficits in LPS-injected rats. Furthermore, LPS significantly increased the mRNA expression level of interleukin-6 in the hippocampus, which was accompanied by decreased brain-derived neurotrophic factor (BDNF) mRNA expression levels. Moreover, LPS increased the levels of malondialdehyde, reduced the antioxidant enzyme activities of catalase and superoxide dismutase in the hippocampus, and impaired neurogenesis. However, pre-treatment with LOE at a dose of 100 mg kg-1 significantly reversed the LPS-induced changes, and improved neurogenesis. In conclusion, the beneficial effect of LOE on the improvement of learning and memory could be attributed to its anti-inflammatory and antioxidant activities, along with its ability to increase BDNF expression and neurogenesis in the hippocampus.
Collapse
Affiliation(s)
- Esmaeil Amraie
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Iran Pouraboli
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Ziba Rajaei
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
36
|
Shanaida M, Hudz N, Jasicka-Misiak I, Wieczorek PP. Polyphenols and Pharmacological Screening of a Monarda fistulosa L. dry Extract Based on a Hydrodistilled Residue By-Product. Front Pharmacol 2021; 12:563436. [PMID: 33995001 PMCID: PMC8118672 DOI: 10.3389/fphar.2021.563436] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 02/15/2021] [Indexed: 02/02/2023] Open
Abstract
This study aimed to determine the composition and content of polyphenols in the dry extract obtained from the hydrodistilled residue by-product of the wild bergamot (Monarda fistulosa L., Lamiaceae Martinov family) herb (MFDE) and to evaluate its safety and pharmacological properties. The total phenolic content (TPC) in the MFDE was 120.64 mg GAE/g. The high-performance liquid chromatography (HPLC) analysis showed the presence of a plethora of phenolic compounds, including hydroxycinnamic acids and flavone derivatives in the MFDE, with rosmarinic acid and luteolin-7-O-glucoside being the main components. With an IC50 value of 0.285 mg/mL, it was found to be a strong DPPH radical scavenger. The acute toxicity study results indicate that the oral administration of MFDE to rats at the doses of 500–5,000 mg/kg did not produce any side effects or death in animals which indicates its safety. The results of the in vivo assay showed that the MFDE dose-dependently inhibited paw oedema and significantly reduced the number of writings in mice induced by the acetic acid injection suggesting its potent anti-inflammatory and analgesic activities, respectively. The conducted studies revealed that M. fistulosa hydrodistilled residue by-product could be regarded as a new natural source of polyphenols with valuable pharmacological properties.
Collapse
Affiliation(s)
- Mariia Shanaida
- Department of Pharmacognosy and Medical Botany, I. Horbachevsky Ternopil National Medical University, Ternopil, Ukraine
| | - Nataliia Hudz
- Department of Drug Technology and Biopharmaceutics, Danylo Halytsky Lviv National Medical University, Lviv, Ukraine
| | | | | |
Collapse
|
37
|
Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021; 139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/29/2021] [Accepted: 03/31/2021] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is globally considered as one of the most debilitating disorders, which interferes with daily activities and life of the affected patients. Despite many developments in related recognizing and treating procedures, post-SCI neuropathic pain (NP) is still a clinical challenge for clinicians with no distinct treatments. Accordingly, a comprehensive search was conducted in PubMed, Medline, Scopus, Web of Science, and national database (SID and Irandoc). The relevant articles regarding signaling pathways, therapeutic targets and pharmacotherapy of post-SCI pain were also reviewed. Data were collected with no time limitation until November 2020. The present study provides the findings on molecular mechanisms and therapeutic targets, as well as developing the critical signaling pathways to introduce novel neuroprotective treatments of post-SCI pain. From the pathophysiological mechanistic point of view, post-SCI inflammation activates the innate immune system, in which the immune cells elicit secondary injuries. So, targeting the critical signaling pathways for pain management in the SCI population has significant importance in providing new treatments. Indeed, several receptors, ion channels, excitatory neurotransmitters, enzymes, and key signaling pathways could be used as therapeutic targets, with a pivotal role of n-methyl-D-aspartate, gamma-aminobutyric acid, and inflammatory mediators. The current review focuses on conventional therapies, as well as crucial signaling pathways and promising therapeutic targets for post-SCI pain to provide new insights into the clinical treatment of post-SCI pain. The need to develop innovative delivery systems to treat SCI is also considered.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Abbaszadeh
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Neuroscience, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Masoumeh Jorjani
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
38
|
Brown T, Sykes D, Allen AR. Implications of Breast Cancer Chemotherapy-Induced Inflammation on the Gut, Liver, and Central Nervous System. Biomedicines 2021; 9:biomedicines9020189. [PMID: 33668580 PMCID: PMC7917715 DOI: 10.3390/biomedicines9020189] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Breast Cancer is still one of the most common cancers today; however, with advancements in diagnostic and treatment methods, the mortality and survivorship of patients continues to decrease and increase, respectively. Commonly used treatments today consist of drug combinations, such as doxorubicin and cyclophosphamide; docetaxel, doxorubicin, and cyclophosphamide; or doxorubicin, cyclophosphamide, and paclitaxel. Although these combinations are effective at destroying cancer cells, there is still much to be understood about the effects that chemotherapy can have on normal organ systems such as the nervous system, gastrointestinal tract, and the liver. Patients can experience symptoms of cognitive impairments or “chemobrain”, such as difficulty in concentrating, memory recollection, and processing speed. They may also experience gastrointestinal (GI) distress symptoms such as diarrhea and vomiting, as well as hepatotoxicity and long term liver damage. Chemotherapy treatment has also been shown to induce peripheral neuropathy resulting in numbing, pain, and tingling sensations in the extremities of patients. Interestingly, researchers have discovered that this array of symptoms that cancer patients experience are interconnected and mediated by the inflammatory response.
Collapse
Affiliation(s)
- Taurean Brown
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - DeLawrence Sykes
- Department of Biology, Pomona College, Claremont, CA 91711, USA;
| | - Antiño R. Allen
- Division of Radiation Health, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Department of Neurobiology & Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
- Correspondence: ; Tel.: +1-501-686-7335
| |
Collapse
|
39
|
Wang J, Zhao X, Yuan X, Hao J, Chang Z, Li Q, Zhao X. Rapid screening of bioactive compound in Sanzi Yangqin Decoction and investigating of binding mechanism by immobilized β 2-adrenogic receptor chromatography coupled with molecular docking. J Pharm Biomed Anal 2021; 197:113957. [PMID: 33601158 DOI: 10.1016/j.jpba.2021.113957] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/09/2021] [Accepted: 02/04/2021] [Indexed: 11/25/2022]
Abstract
Screening bioactive compounds from traditional Chinese medicines plays pivotal role in preventing and curing diseases. Sanzi Yangqin Decoction (SYD) is a commonly used prescription for the treatment of cough, asthma and some other respiratory diseases for hundreds of years in practice. This reminds us that there may exist some bioactive compounds strongly binding with the recognized receptors mediating these diseases like β2-adrenegic receptor (β2-AR). Therefore, this work intends to screen bioactive compounds from SYD and revealed the binding mechanism by immobilized β2-AR chromatography and molecular docking. Taking advantages of a 3-high based enzymatic trans-methylation reaction (high speed, high specificity and high activity), the immobilization of β2-AR was successfully achieved. Representative chromatographic peaks of SYD on the immobilized β2-AR column was collected and recognized as rosmarinic acid and sinapine thiocyanate. Tension changes of the trachea ring showed that the two compounds were in a concentration-dependent manner when exerting their effects and the concentration ranges were 10-9-10-4 mol/L and 10-12-10-7 mol/L, respectively. Molecular docking revealed Ser203, Ser204, Ser207, Tyr316 and Asn312 were the main residues for the two compounds to bind with β2-AR. We concluded that the proposed method is becoming an alternative in rapid recognizing bioactive compounds from complex matrix.
Collapse
Affiliation(s)
- Jing Wang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xue Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinyi Yuan
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Jiaxue Hao
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Zhongman Chang
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Qian Li
- College of Life Sciences, Northwest University, Xi'an 710069, China
| | - Xinfeng Zhao
- College of Life Sciences, Northwest University, Xi'an 710069, China.
| |
Collapse
|
40
|
Jafaripour L, Naserzadeh R, Alizamani E, Javad Mashhadi SM, Moghadam ER, Nouryazdan N, Ahmadvand H. Effects of Rosmarinic Acid on Methotrexate-induced Nephrotoxicity and Hepatotoxicity in Wistar Rats. Indian J Nephrol 2021; 31:218-224. [PMID: 34376933 PMCID: PMC8330652 DOI: 10.4103/ijn.ijn_14_20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/27/2020] [Accepted: 07/17/2020] [Indexed: 01/24/2023] Open
Abstract
Introduction: Methotrexate (MTX), used in the treatment of cancerous patients, causes toxicity in the different organs of the body. This study of rosmarinic acid (RA) is as an antioxidant on nephrotoxicity and hepatotoxicity induced by MTX. Methods: Rats (n = 32) were divided into four groups: sham; MTX; 100 mg\kg RA + MTX; 200 mg/kg RA + MTX. The amount of MTX was 20 mg/kg. 24 hours after injection of the last dose of MTX, the blood samples and kidneys and liver of rats were studied. The aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), urea, serum creatinine were assessed. Tissue antioxidant enzymes and malondialdehyde (MDA) levels were measured. The liver and kidney tissues were histopathologically examined. Results: MTX significantly increased the urea, creatinine, ALT, AST, ALP levels, and renal MDA and significantly decreased renal catalase (CAT), hepatic glutathione (GSH), and hepatic CAT activity. MTX induced necrosis, leukocyte infiltration, eosinophilic casts, glomerular damage in kidney tissue and necrosis, degeneration and cellular vacuolization in liver tissues. RA at 100 mg/kg caused a significant decrease in ALT and AST and at two doses significantly decreased urea, renal MDA, and liver MDA. RA at 200 mg/kg significantly increased the renal CAT and liver GSH. RA in two doses significantly decreased necrosis and Leukocyte infiltration. RA caused a significant decrease in degeneration and cellular vacuolization in liver tissues. Conclusions: RA with its antioxidant and anti-inflammatory characteristics decreased the MTX induced nephrotoxicity and hepatotoxicity.
Collapse
Affiliation(s)
- Leila Jafaripour
- Department of Anatomy, School of Medicine, Dezful University of Medical Sciences, Dezful, Iran
| | - Reza Naserzadeh
- Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | - Ehsan Alizamani
- Student Research Committee, Dezful University of Medical Sciences, Dezful, Iran
| | | | - Ebrahim Rahmani Moghadam
- Department of Anatomical Sciences, School of Medicine, Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Nouryazdan
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hassan Ahmadvand
- Department of Clinical Biochemistry, Faculty of Medicine, Lorestan University of Medical Sciences, Khorramabad, Iran.,Razi Herbal Researches Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| |
Collapse
|
41
|
Khan A, Khan A, Khalid S, Shal B, Kang E, Lee H, Laumet G, Seo EK, Khan S. 7β-(3-Ethyl- cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro- Z Notonipetranone Attenuates Neuropathic Pain by Suppressing Oxidative Stress, Inflammatory and Pro-Apoptotic Protein Expressions. Molecules 2021; 26:E181. [PMID: 33401491 PMCID: PMC7795484 DOI: 10.3390/molecules26010181] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
7β-(3-Ethyl-cis-crotonoyloxy)-1α-(2-methylbutyryloxy)-3,14-dehydro-Z-notonipetranone (ECN), a sesquiterpenoid obtained from a natural source has proved to be effective in minimizing various side effects associated with opioids and nonsteroidal anti-inflammatory drugs. The current study focused on investigating the effects of ECN on neuropathic pain induced by partial sciatic nerve ligation (PSNL) by mainly focusing on oxidative stress, inflammatory and apoptotic proteins expression in mice. ECN (1 and 10 mg/kg, i.p.), was administered once daily for 11 days, starting from the third day after surgery. ECN post-treatment was found to reduce hyperalgesia and allodynia in a dose-dependent manner. ECN remarkably reversed the histopathological abnormalities associated with oxidative stress, apoptosis and inflammation. Furthermore, ECN prevented the suppression of antioxidants (glutathione, glutathione-S-transferase, catalase, superoxide dismutase, NF-E2-related factor-2 (Nrf2), hemeoxygenase-1 and NAD(P)H: quinone oxidoreductase) by PSNL. Moreover, pro-inflammatory cytokines (tumor necrotic factor-alpha, interleukin 1 beta, interleukin 6, cyclooxygenase-2 and inducible nitric oxide synthase) expression was reduced by ECN administration. Treatment with ECN was successful in reducing the caspase-3 level consistent with the observed modulation of pro-apoptotic proteins. Additionally, ECN showed a protective effect on the lipid content of myelin sheath as evident from FTIR spectroscopy which showed the shift of lipid component bands to higher values. Thus, the anti-neuropathic potential of ECN might be due to the inhibition of oxidative stress, inflammatory mediators and pro-apoptotic proteins.
Collapse
Affiliation(s)
- Amna Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Adnan Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Sidra Khalid
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Bushra Shal
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| | - Eunwoo Kang
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Hwaryeong Lee
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Geoffroy Laumet
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA;
| | - Eun Kyoung Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Korea; (E.K.); (H.L.)
| | - Salman Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan; (A.K.); (A.K.); (S.K.); (B.S.)
| |
Collapse
|
42
|
Yao Y, Xu Y, Wang Y. Protective roles and mechanisms of rosmarinic acid in cyclophosphamide-induced premature ovarian failure. J Biochem Mol Toxicol 2020; 34:e22591. [PMID: 32711407 DOI: 10.1002/jbt.22591] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 05/19/2020] [Accepted: 07/14/2020] [Indexed: 12/19/2022]
Abstract
The aim of this study was to investigate the protective effect of rosmarinic acid (RA) in a premature ovarian failure (POF) mouse model and the potential mechanisms. The POF model was induced by a single intraperitoneal injection of 120 mg/kg cyclophosphamide (CP). Additionally, 40 mg/kg RA was administered for 7 days before CP injection. The concentration of sex hormones was determined by fluorescence immunohistochemistry. Histological analysis was performed after ovarian tissue sections were stained with hematoxylin and eosin. The expression of the NLRP3 inflammasome was examined by western blot analysis and polymerase chain reaction. The expression of apoptosis markers of cytochrome c and caspase-3 was also detected by western blot analysis and immunohistochemistry. The results showed that RA not only decreased the ovarian index in POF mice but also improved the abnormal secretion of reproductive hormones associated with POF. Treatment with RA suppressed the ovarian expression of the NLRP3 inflammasome and regulated the ovarian expression of apoptosis-related proteins. The results suggested that RA exhibited a protective effect against CP-induced POF potentially by suppressing apoptosis and the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Yang Yao
- Department of Central Laboratory, the First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, China
| | - Yinglei Xu
- Department of Medical Genetic, the Affiliated Hospital of Qingdao University, Qingdao, China
- Department of Prenatal Diagnosis Center, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yong Wang
- Department of Gynecology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Reproductive Endocrinology, Shanghai Key Laboratory of Embryo Original Diseases, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
43
|
Fu R, Shi M, Deng C, Zhang Y, Zhang X, Wang Y, Kai G. Improved phenolic acid content and bioactivities of Salvia miltiorrhiza hairy roots by genetic manipulation of RAS and CYP98A14. Food Chem 2020; 331:127365. [DOI: 10.1016/j.foodchem.2020.127365] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/29/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022]
|
44
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Effects of rosmarinic acid on nervous system disorders: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2020; 393:1779-1795. [PMID: 32725282 DOI: 10.1007/s00210-020-01935-w] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
Abstract
Nowadays, the worldwide interest is growing to use medicinal plants and their active constituents to develop new potent medicines with fewer side effects. Precise dietary compounds have prospective beneficial applications for various neurodegenerative ailments. Rosmarinic acid is a polyphenol and is detectable most primarily in many Lamiaceae families, for instance, Rosmarinus officinalis also called rosemary. This review prepared a broad and updated literature review on rosmarinic acid elucidating its biological activities on some nervous system disorders. Rosmarinic acid has significant antinociceptive, neuroprotective, and neuroregenerative effects. In this regard, we classified and discussed our findings in different nervous system disorders including Alzheimer's disease, epilepsy, depression, Huntington's disease, familial amyotrophic lateral sclerosis, Parkinson's disease, cerebral ischemia/reperfusion injury, spinal cord injury, stress, anxiety, and pain.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
45
|
Sakhaee MH, Sayyadi SAH, Sakhaee N, Sadeghnia HR, Hosseinzadeh H, Nourbakhsh F, Forouzanfar F. Cedrol protects against chronic constriction injury-induced neuropathic pain through inhibiting oxidative stress and inflammation. Metab Brain Dis 2020; 35:1119-1126. [PMID: 32472224 DOI: 10.1007/s11011-020-00581-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/15/2020] [Indexed: 01/05/2023]
Abstract
Injured somatosensory nervous system cause neuropathic pain which is quite difficult to treat using current approaches. It is therefore important to find new therapeutic options. We have analyzed cedrol effect on chronic constriction injury (CCI) induced neuropathic pain in rats. The mechanical and thermal hypersensitivity were evaluated using the von Frey filament, radiant heat and acetone drop methods. The changes in the levels of biomarkers of oxidative stress including malondialdehyde (MDA) and total thiol (SH), as well as inflammatory mediators including Tumour Necrosis Factor alpha (TNF-α) and Interleukin 6 (IL-6) were estimated in the lumbar portion (L4-L6) of neuropathic rats. Administration of cedrol attenuated the CCI-induced mechanical and thermal hypersensitivity. CCI produced an increase in MDA along with a reduction in SH levels in the spinal cord of the CCI rats. Reduced levels of SH were restored by cedrol. Also, the levels of MDA were reduced in the cedrol-treated CCI rats compared to the untreated CCI rats. Besides, level of TNF-α and IL-6 increased in the spinal cord of CCI group and cedrol could reverse it. The current study showed that cedrol attenuates neuropathic pain in CCI rats by inhibition of inflammatory response and attenuation of oxidative stress.
Collapse
Affiliation(s)
| | - Seyed Amir Hossein Sayyadi
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nader Sakhaee
- Department of mathematics and Natural Sciences, Harris-Stowe State University, St. Louis, MO, 63108, USA
- Department of Chemistry, Southern Illinois University Edwardsville, Edwardsville, IL, 62025, USA
| | - Hamid R Sadeghnia
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacodynamics and Toxicology Department, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fahimeh Nourbakhsh
- Medical Toxicology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Forouzanfar
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Afonso AF, Pereira OR, Cardoso SM. Health-Promoting Effects of Thymus Phenolic-Rich Extracts: Antioxidant, Anti-Inflammatory and Antitumoral Properties. Antioxidants (Basel) 2020; 9:E814. [PMID: 32882987 PMCID: PMC7555682 DOI: 10.3390/antiox9090814] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
Thymus genus comprises numerous species that are particularly abundant in the West Mediterranean region. A growing body of evidence suggests that many of these species are a rich source of bioactive compounds, including phenolic compounds such as rosmarinic acid, salvianolic acids and luteolin glycosides, able to render them potential applications in a range of industrial fields. This review collects the most relevant studies focused on the antioxidant, anti-inflammatory and anti-cancer of phenolic-rich extracts from Thymus plants, highlighting correlations made by the authors with respect to the main phenolic players in such activities.
Collapse
Affiliation(s)
- Andrea F. Afonso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
- Public Health Laboratory of Bragança, Local Health Unit, Rua Eng. Adelino Amaro da Costa, 5300-146 Bragança, Portugal
| | - Olívia R. Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal;
| | - Susana M. Cardoso
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| |
Collapse
|
47
|
Ghasemzadeh Rahbardar M, Hosseinzadeh H. Therapeutic effects of rosemary ( Rosmarinus officinalis L.) and its active constituents on nervous system disorders. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2020; 23:1100-1112. [PMID: 32963731 PMCID: PMC7491497 DOI: 10.22038/ijbms.2020.45269.10541] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 12/19/2022]
Abstract
Rosemary (Rosmarinus officinalis L.) is an evergreen bushy shrub which grows along the Mediterranean Sea, and sub-Himalayan areas. In folk medicine, it has been used as an antispasmodic, mild analgesic, to cure intercostal neuralgia, headaches, migraine, insomnia emotional upset, and depression. Different investigations have highlighted rosemary neuropharmacological properties as their main topics. Rosemary has significant antimicrobial, anti-inflammatory, anti-oxidant, anti-apoptotic, anti-tumorigenic, antinociceptive, and neuroprotective properties. Furthermore, it shows important clinical effects on mood, learning, memory, pain, anxiety, and sleep. The aim of the current work is to review the potential neuropharmacological effects of different rosemary extracts and its active constituents on nervous system disorders, their relevant mechanisms and its preclinical application to recall the therapeutic potential of this herb and more directions of future research projects. The data were gathered by searching the English articles in PubMed, Scopus, Google Scholar, and Web of Science. The keywords used as search terms were 'Rosmarinus officinalis', 'rosemary', 'nervous system', 'depression', 'memory', 'Alzheimer's disease' 'epilepsy', 'addiction', 'neuropathic pain', and 'disorders'. All kinds of related articles, abstracts and books were included. No time limitation was considered. Both in vitro and in vivo studies were subjected to this investigation. This review authenticates that rosemary has appeared as a worthy source for curing inflammation, analgesic, anti-anxiety, and memory boosting. It also arranges new perception for further investigations on isolated constituents, especially carnosic acid, rosmarinic acid, and essential oil to find exquisite therapeutics and support drug discovery with fewer side effects to help people suffering from nervous system disorders.
Collapse
Affiliation(s)
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Curcumin Diglutaric Acid, a Prodrug of Curcumin Reduces Pain Hypersensitivity in Chronic Constriction Injury of Sciatic Nerve Induced-Neuropathy in Mice. Pharmaceuticals (Basel) 2020; 13:ph13090212. [PMID: 32867013 PMCID: PMC7558758 DOI: 10.3390/ph13090212] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/04/2020] [Accepted: 08/21/2020] [Indexed: 02/06/2023] Open
Abstract
The drug treatment for neuropathic pain remains a challenge due to poor efficacy and patient satisfaction. Curcumin has been reported to alleviate neuropathic pain, but its clinical application is hindered by its low solubility and poor oral bioavailability. Curcumin diglutaric acid (CurDG) is a curcumin prodrug with improved water solubility and in vivo antinociceptive effects. In this study, we investigated the anti-inflammatory mechanisms underlying the analgesic effect of CurDG in the chronic constriction injury (CCI)-induced neuropathy mouse model. Repeated oral administration of CurDG at a low dose equivalent to 25 mg/kg/day produced a significant analgesic effect in this model, both anti-allodynic activity and anti-hyperalgesic activity appearing at day 3 and persisting until day 14 post-CCI surgery (p < 0.001) while having no significant effect on the motor performance. Moreover, the repeated administration of CurDG diminished the increased levels of the pro-inflammatory cytokines: TNF-α and IL-6 in the sciatic nerve and the spinal cord at the lowest tested dose (equimolar to 25 mg/kg curcumin). This study provided pre-clinical evidence to substantiate the potential of pursuing the development of CurDG as an analgesic agent for the treatment of neuropathic pain.
Collapse
|
49
|
Preparation of a Unique Bioavailable Bacoside Formulation (Cognique®) Using Polar-Nonpolar-Sandwich (PNS) Technology and Its Characterization, In Vitro Release Study, and Proposed Mechanism of Action. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2020. [DOI: 10.1007/s40883-020-00162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
50
|
Ghasemzadeh Rahbardar M, Razavi BM, Hosseinzadeh H. Investigating the ameliorative effect of alpha-mangostin on development and existing pain in a rat model of neuropathic pain. Phytother Res 2020; 34:3211-3225. [PMID: 32592535 DOI: 10.1002/ptr.6768] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 05/17/2020] [Accepted: 05/24/2020] [Indexed: 01/01/2023]
Abstract
Mangosteen fruit has been used for various disorders, including pain. The effects of alpha-mangostin, the main component of mangosteen, on the neuropathic pain caused by chronic constriction injury (CCI) were evaluated in rats. In treatment groups, alpha-mangostin (10, 50, 100 mg/kg/day, i.p.) was administered from Day 0, the day of surgery, for 14 days. The degree of heat hyperalgesia, cold, and mechanical allodynia was assessed on Days 0, 3, 5, 7, 10, and 14. The lumbar spinal cord levels of MDA, GSH, inflammatory markers (TLR-4, TNF-α, MMP2, COX2, IL-1β, iNOS, and NO), apoptotic markers (Bcl-2, Bax, and caspase-3) were measured by western blot on Days 7 and 14. Rats in the CCI group showed thermal hyperalgesia, cold, and mechanical allodynia on Days 3-14. All concentrations of alpha-mangostin alleviated CCI-induced behavioral alterations. MDA level augmented and GSH level decreased in the CCI group and alpha-mangostin (50, 100 mg/kg) reversed the alterations. An enhancement in the levels of all inflammatory markers, Bax, and caspase-3 was shown on Days 7 and 14, which was controlled by alpha-mangostin (50 mg/kg). The detected antinociceptive effects of alpha-mangostin may be mediated through antioxidant, anti-inflammatory, and antiapoptotic properties.
Collapse
Affiliation(s)
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|