1
|
Basheer I, Wang H, Li G, Jehan S, Raza A, Du C, Ullah N, Li D, Sui G. β-caryophyllene sensitizes hepatocellular carcinoma cells to chemotherapeutics and inhibits cell malignancy through targeting MAPK signaling pathway. Front Pharmacol 2024; 15:1492670. [PMID: 39734415 PMCID: PMC11671526 DOI: 10.3389/fphar.2024.1492670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/27/2024] [Indexed: 12/31/2024] Open
Abstract
Background β-caryophyllene (BCP) is a naturally occurring bicyclic sesquiterpene extracted from various plants, and widely used as a medicinal agent for various diseases. During hepatocellular carcinoma (HCC) development, cancer cells generally exhibit increased cell proliferation due to mutations or aberrant expression of key regulatory genes. The current study determines the cytotoxic effects of BCP alone or in combination with doxorubicin (DOX) and cisplatin (DDP) on HCC cells, and elucidates the underlying mechanism of BCP to exert its anticancer activities. Materials and methods HepG2, SMMC-7721 HCC cells, and HL-7702 normal liver cells were treated with BCP, DOX, and DDP individually or combinatorially. Cell proliferation assay, flow cytometric assay, and Western blot were employed to evaluate the cytotoxic effects of these treatments. Transwell assays were used to examine BCP's effects on HCC cell migration and invasion. RNA-seq analysis was used to determine BCP's primary target genes in HepG2 cells. Integrative analysis of differentially expressed genes (DEGs) of RNA-seq data with an HCC TCGA dataset identified BCP-targeted genes that were verified by RT-qPCR analysis. Ectopic gene expression, cell viability, and colony formation assay were performed to validate the primary targets of BCP. Results BCP selectively inhibited HCC cell proliferation while exhibited relatively low toxicity in normal liver cells; however, DOX and DDP showed higher toxicity in normal cells than that in HCC cells. In combinatorial treatments, BCP synergistically enhanced cytotoxicity of DOX and DDP in HCC cells but this effect was markedly reduced in HL-7702 cells. BCP treatment reduced migration and invasion of HCC cells. Furthermore, RNA-seq analyses of BCP-treated HepG2 cells identified 433 protein-coding DEGs. Integrative analyses revealed five BCP-targeted DEGs regulating the MAPK signaling pathway. Among these five genes, three displayed a significantly positive correlation of their expression with the overall survival of HCC patients. As a primary target, PGF was significantly downregulated by BCP treatment, and its exogenous expression desensitized HCC cells to BCP-mediated inhibition. Discussion BCP inhibits malignant properties of HCC and synergistically sensitizes the anticancer activity of DOX and DDP. In HCC cells, BCP primarily targets the PGF gene and MAPK signaling pathway.
Collapse
Affiliation(s)
- Irum Basheer
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Hai Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangyue Li
- Intelligent Biomedical Labs, Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Shah Jehan
- Department of Vascular Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ali Raza
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Chentao Du
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Najeeb Ullah
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Dangdang Li
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Guangchao Sui
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
2
|
Chen Y, Wang Y, He L, Wang L, Zhao J, Yang Z, Li Q, Shi R. Zein/fucoidan-coated phytol nanoliposome: preparation, characterization, physicochemical stability, in vitro release, and antioxidant activity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:7536-7549. [PMID: 38747177 DOI: 10.1002/jsfa.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/11/2024] [Accepted: 04/30/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND To improve phytol bioavailability, a novel method of magnetic stirring and high-pressure homogenization (HPH) combination was used to prepare zein/fucoidan-coated phytol nanoliposomes (P-NL-ZF). The characterization, the simulated in vitro digestion, and the antioxidant activity of these phytol nanoliposomes from the different processes have been studied. RESULTS Based on the results of dynamic light scattering (DLS) and gas chromatography-mass spectrometer (GC-MS) analysis, P-NL-ZF prepared through the combination of magnetic stirring and HPH exhibited superior encapsulation efficiency at 76.19% and demonstrated exceptional physicochemical stability under a series of conditions, including storage, pH, and ionic in comparison to single method. It was further confirmed that P-NL-ZF by magnetic stirring and HPH displayed a uniform distribution and regular shape through transmission electron microscopy (TEM). Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC) analysis showed that electrostatic interactions and hydrogen bonding were the primary driving forces for the formation of composite nanoliposomes. Additionally, an in vitro digestion study revealed that multilayer composite nanoliposomes displayed significant and favorable slow-release properties (58.21%) under gastrointestinal conditions compared with traditional nanoliposomes (82.36%) and free phytol (89.73%). The assessments of chemical and cell-based antioxidant activities demonstrated that the coating of zein/fucoidan on phytol nanoliposomes resulted in enhanced effectiveness in scavenging activity of ABTS free radical and hydroxyl radical and mitigating oxidative damage to HepG2 cells. CONCLUSION Based on our studies, the promising delivery carrier of zein/fucoidan-coated nanoliposomes is contributed to the encapsulation of hydrophobic natural products and enhancement of their biological activity. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yadan Chen
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| | - Yanbin Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liang He
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Liling Wang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Jianchen Zhao
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Zhenya Yang
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Qin Li
- The Key Laboratory of Biochemical Utilization of Zhejiang Province, Department of Forest Foods, Zhejiang Academy of Forestry, Hangzhou, China
| | - Rui Shi
- Department of Food Science and Technology, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
3
|
Weng YX, Wang HC, Chu YL, Wu YZ, Liao JA, Su ZY. Essential oil from Citrus depressa peel exhibits antimicrobial, antioxidant and cancer chemopreventive effects. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:3982-3991. [PMID: 38252712 DOI: 10.1002/jsfa.13280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 01/24/2024]
Abstract
BACKGROUND Many diseases may be caused by pathogens and oxidative stress resulting from carcinogens. Earlier studies have highlighted the antimicrobial and antioxidant effects of plant essential oils (EO). It is crucial to effectively utilize agricultural waste to achieve a sustainable agricultural economy and protect the environment. The present study aimed to evaluate the potential benefits of EO extracted from the discarded peels of Citrus depressa Hayata (CD) and Citrus microcarpa Bunge (CM), synonyms of Citrus deliciosa Ten and Citrus japonica Thunb, respectively. RESULTS Gas chromatography-mass spectrometry analysis revealed that the main compounds in CD-EO were (R)-(+)-limonene (38.97%), γ-terpinene (24.39%) and linalool (6.22%), whereas, in CM-EO, the main compounds were (R)-(+)-limonene (48.00%), β-pinene (13.60%) and γ-terpinene (12.07%). CD-EO exhibited inhibitory effects on the growth of common microorganisms, including Candida albicans, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. However, CM-EO showed only inhibitory effects on E. coli. Furthermore, CD-EO exhibited superior antioxidant potential, as demonstrated by its ability to eliminate 1,1-diphenyl-2-picrylhydrazyl and 2,2'-azinobis-3-ethylbenzthiazoline-6-sulfonate free radicals. Furthermore, CD-EO at a concentration of 100 μg mL-1 significantly inhibited 12-O-tetradecanoylphorbol-13-acetate-induced cancer transformation in mouse epidermal JB6 P+ cells (P < 0.05), possibly by up-regulating protein expression of nuclear factor erythroid 2-related factor 2 and its downstream antioxidant enzymes, such as NAD(P)H:quinone oxidoreductase 1, heme oxygenase-1 and UGT1A. CONCLUSION These findings suggest that CD-EO exhibits inhibitory effects on pathogenic microorganisms, possesses antioxidant properties and has cancer chemopreventive potential. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yu-Xiang Weng
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Hsiao-Chi Wang
- Department of Oral Hygiene and Healthcare, Cardinal Tien Junior College of Healthcare and Management, New Taipei City, Taiwan, ROC
| | - Yung-Lin Chu
- Department of Food Science, College of Agriculture, National Pingtung University of Science and Technology, Pingtung County, Taiwan, ROC
| | - Yun-Zhen Wu
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Jie-An Liao
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| | - Zheng-Yuan Su
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan, ROC
| |
Collapse
|
4
|
Ramírez-Santos J, Calzada F, Ordoñez-Razo RM, Mendieta-Wejebe JE, Velázquez-Domínguez JA, Argüello-García R, Velázquez C, Barbosa E. In Vivo, In Vitro and In Silico Anticancer Activity of Ilama Leaves: An Edible and Medicinal Plant in Mexico. Molecules 2024; 29:1956. [PMID: 38731446 PMCID: PMC11085222 DOI: 10.3390/molecules29091956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Ilama leaves are an important source of secondary metabolites with promising anticancer properties. Cancer is a disease that affects a great number of people worldwide. This work aimed to investigate the in vivo, in vitro and in silico anticancer properties of three acyclic terpenoids (geranylgeraniol, phytol and farnesyl acetate) isolated from petroleum ether extract of ilama leaves. Their cytotoxic activity against U-937 cells was assessed using flow cytometry to determine the type of cell death and production of reactive oxygen species (ROS). Also, a morphological analysis of the lymph nodes and a molecular docking study using three proteins related with cancer as targets, namely, Bcl-2, Mcl-1 and VEGFR-2, were performed. The flow cytometry and histomorphological analysis revealed that geranylgeraniol, phytol and farnesyl acetate induced the death of U-937 cells by late apoptosis and necrosis. Geranylgeraniol and phytol induced a significant increase in ROS production. The molecular docking studies showed that geranylgeraniol had more affinity for Bcl-2 and VEGFR-2. In the case of farnesyl acetate, it showed the best affinity for Mcl-1. This study provides information that supports the anticancer potential of geranylgeraniol, phytol and farnesyl acetate as compounds for the treatment of cancer, particularly with the potential to treat non-Hodgkin's lymphoma.
Collapse
Affiliation(s)
- Jesica Ramírez-Santos
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (J.R.-S.); (J.E.M.-W.); (E.B.)
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico
| | - Fernando Calzada
- Unidad de Investigación Médica en Farmacología, UMAE Hospital de Especialidades 2° Piso CORSE Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06720, Mexico
| | - Rosa María Ordoñez-Razo
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital Pediatría, 2° Piso, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc 330, Col. Doctores, Mexico City 06725, Mexico;
| | - Jessica Elena Mendieta-Wejebe
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (J.R.-S.); (J.E.M.-W.); (E.B.)
| | - José Antonio Velázquez-Domínguez
- Instituto Politécnico Nacional, Escuela Nacional de Medicina y Homeopatía, Av. Guillermo Massieu Helguera 239, La Purísima Ticoman, Gustavo A. Madero, Mexico City 07320, Mexico;
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, Mexico City 07360, Mexico;
| | - Claudia Velázquez
- Área Académica de Farmacia, Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Km 4.5, Carretera Pachuca-Tulancingo, Unidad Universitaria, Pachuca 42076, Mexico;
| | - Elizabeth Barbosa
- Instituto Politécnico Nacional, Escuela Superior de Medicina, Sección de Estudios de Posgrado e Investigación, Plan de San Luis y Salvador Díaz Mirón S/N, Col. Casco de Santo Tomás, Mexico City 11340, Mexico; (J.R.-S.); (J.E.M.-W.); (E.B.)
| |
Collapse
|
5
|
Di Giacomo S, Percaccio E, Vitalone A, Ingallina C, Mannina L, Macone A, Di Sotto A. Characterization of the Chemopreventive Properties of Cannabis sativa L. Inflorescences from Monoecious Cultivars Grown in Central Italy. PLANTS (BASEL, SWITZERLAND) 2023; 12:3814. [PMID: 38005711 PMCID: PMC10675481 DOI: 10.3390/plants12223814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
Hemp bioproducts hold great promise as valuable materials for nutraceutical and pharmaceutical applications due to their diverse bioactive compounds and potential health benefits. In line with this interest and in an attempt to valorize the Lazio Region crops, this present study investigated chemically characterized hydroalcoholic and organic extracts, obtained from the inflorescences of locally cultivated Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties. In order to highlight the possible chemopreventive power of the tested samples, a bioactivity screening was performed, which included studying the antimutagenic activity, radical scavenging power, cytotoxicity in human hepatoma HepG2 cells, leakage of lactate dehydrogenase (LDH) and modulation of the oxidative stress parameters and glucose-6-phosphate dehydrogenase (G6PDH) involved in the regulation of the cell transformation and cancer proliferation. Tolerability studies in noncancerous H69 cholangiocytes were performed, too. The organic extracts showed moderate to strong antimutagenic activities and a marked cytotoxicity in the HepG2 cells, associated with an increased oxidative stress and LDH release, and to a G6PDH modulation. The hydroalcoholic extracts mainly exhibited radical scavenging properties with weak or null activities in the other assays. The extracts were usually well-tolerated in H69 cells, except for the highest concentrations which impaired cell viability, likely due to an increased oxidative stress. The obtained results suggest a possibility in the inflorescences from the Felina 32, USO 31, Ferimon and Fedora 17 hemp varieties as source of bioactive compounds endowed with genoprotective and chemopreventive properties that could be harnessed as preventive or adjuvant healing strategies.
Collapse
Affiliation(s)
- Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
- Unit of Human Nutrition and Health, Department of Food Safety, Nutrition and Veterinary Public Health, National Institute of Health, 00161 Rome, Italy
| | - Ester Percaccio
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| | - Annabella Vitalone
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| | - Cinzia Ingallina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.I.); (L.M.)
| | - Luisa Mannina
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.I.); (L.M.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy;
| | - Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.P.); (A.V.)
| |
Collapse
|
6
|
Discovery and Anticancer Activity of the Plagiochilins from the Liverwort Genus Plagiochila. Life (Basel) 2023; 13:life13030758. [PMID: 36983914 PMCID: PMC10058164 DOI: 10.3390/life13030758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/04/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
The present analysis retraces the discovery of plagiochilins A-to-W, a series of seco-aromadendrane-type sesquiterpenes isolated from diverse leafy liverworts of the genus Plagiochila. Between 1978, with the first isolation of the leader product plagiochilin A from P. yokogurensis, and 2005, with the characterization of plagiochilin X from P. asplenioides, a set of 24 plagiochilins and several derivatives (plagiochilide, plagiochilal A-B) has been isolated and characterized. Analogue compounds recently described are also evoked, such as the plagiochianins and plagicosins. All these compounds have been little studied from a pharmacological viewpoint. However, plagiochilins A and C have revealed marked antiproliferative activities against cultured cancer cells. Plagiochilin A functions as an inhibitor of the termination phase of cytokinesis: the membrane abscission stage. This unique, innovative mechanism of action, coupled with its marked anticancer action, notably against prostate cancer cells, make plagiochilin A an interesting lead molecule for the development of novel anticancer agents. There are known options to increase its potency, as deduced from structure–activity relationships. The analysis shed light on this family of bryophyte species and the little-known group of bioactive terpenoid plagiochilins. Plagiochilin A and derivatives shall be further exploited for the design of novel anticancer targeting the cytokinesis pathway.
Collapse
|
7
|
Pro-Apoptotic and Anti-Cancer Activity of the Vernonanthura Nudiflora Hydroethanolic Extract. Cancers (Basel) 2023; 15:cancers15051627. [PMID: 36900417 PMCID: PMC10000589 DOI: 10.3390/cancers15051627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/12/2023] [Accepted: 02/17/2023] [Indexed: 03/09/2023] Open
Abstract
The mitochondrial voltage-dependent anion channel 1 (VDAC1) protein is involved in several essential cancer hallmarks, including energy and metabolism reprogramming and apoptotic cell death evasion. In this study, we demonstrated the ability of hydroethanolic extracts from three different plants, Vernonanthura nudiflora (Vern), Baccharis trimera (Bac), and Plantago major (Pla), to induce cell death. We focused on the most active Vern extract. We demonstrated that it activates multiple pathways that lead to impaired cell energy and metabolism homeostasis, elevated ROS production, increased intracellular Ca2+, and mitochondria-mediated apoptosis. The massive cell death generated by this plant extract's active compounds involves the induction of VDAC1 overexpression and oligomerization and, thereby, apoptosis. Gas chromatography of the hydroethanolic plant extract identified dozens of compounds, including phytol and ethyl linoleate, with the former producing similar effects as the Vern hydroethanolic extract but at 10-fold higher concentrations than those found in the extract. In a xenograft glioblastoma mouse model, both the Vern extract and phytol strongly inhibited tumor growth and cell proliferation and induced massive tumor cell death, including of cancer stem cells, inhibiting angiogenesis and modulating the tumor microenvironment. Taken together, the multiple effects of Vern extract make it a promising potential cancer therapeutic.
Collapse
|
8
|
Chacon FT, Raup-Konsavage WM, Vrana KE, Kellogg JJ. Secondary Terpenes in Cannabis sativa L.: Synthesis and Synergy. Biomedicines 2022; 10:biomedicines10123142. [PMID: 36551898 PMCID: PMC9775512 DOI: 10.3390/biomedicines10123142] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Cannabis is a complex biosynthetic plant, with a long history of medicinal use. While cannabinoids have received the majority of the attention for their psychoactive and pharmacological activities, cannabis produces a diverse array of phytochemicals, such as terpenes. These compounds are known to play a role in the aroma and flavor of cannabis but are potent biologically active molecules that exert effects on infectious as well as chronic diseases. Furthermore, terpenes have the potential to play important roles, such as synergistic and/or entourage compounds that modulate the activity of the cannabinoids. This review highlights the diversity and bioactivities of terpenes in cannabis, especially minor or secondary terpenes that are less concentrated in cannabis on a by-mass basis. We also explore the question of the entourage effect in cannabis, which studies to date have supported or refuted the concept of synergy in cannabis, and where synergy experimentation is headed, to better understand the interplay between phytochemicals within Cannabis sativa L.
Collapse
Affiliation(s)
- Francisco T. Chacon
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
| | | | - Kent E. Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033, USA
| | - Joshua J. Kellogg
- Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, State College, PA 16802, USA
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, State College, PA 16802, USA
- Correspondence: ; Tel.: +1-814-865-2887
| |
Collapse
|
9
|
Baradaran Rahimi V, Askari VR. A mechanistic review on immunomodulatory effects of selective type two cannabinoid receptor β-caryophyllene. Biofactors 2022; 48:857-882. [PMID: 35648433 DOI: 10.1002/biof.1869] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/13/2022] [Indexed: 12/16/2022]
Abstract
β-Caryophyllene (BCP) is a plant-derived compound and occurs naturally in various foods and spices, including cinnamon, citrus, fruits, clove, curry, and pepper. BCP showed different pharmacological effects, such as antioxidant and antimicrobial properties. This article tried to gather updated knowledge of the anti-inflammatory, antioxidant, and immunomodulatory effects of BCP and searched using various databases and appropriate keywords until April 2022. Several studies showed that the anti-inflammatory effects of BCP are mainly provided through cannabinoid receptor 2 (CB2 ) receptor activation and the peroxisome proliferator-activated receptor (PPAR) γ pathway. It has also been demonstrated that BCP suppresses both protein and mRNA expression levels of interleukin (IL)-6 and reduces relevant proinflammatory cytokines but increases the anti-inflammatory cytokine IL-13. Previous results indicated that the antioxidant effects of β-caryophyllene were suggested through different pathways, including activation of nuclear factor erythroid 2-related factor-2 (Nrf2)/heme oxygenase-1 (HO-1)/antioxidant axis and inhibition of the HMG-CoA reductase activity, and oxidative stress biomarkers levels. Furthermore, various results showed immunomodulatory effects of BCP through inhibiting microglial cells, CD4+ and CD8+ T lymphocytes, modulated Th1 /Treg immune balance through the activation of the CB2 receptor, and reducing mitogen-activated protein kinases (p38MAPK) and NF-kB activation and increased ionized calcium-binding adaptor molecule-1 (Iba-1) and IL-1β.
Collapse
Affiliation(s)
- Vafa Baradaran Rahimi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Mahmoudinoodezh H, Telukutla SR, Bhangu SK, Bachari A, Cavalieri F, Mantri N. The Transdermal Delivery of Therapeutic Cannabinoids. Pharmaceutics 2022; 14:pharmaceutics14020438. [PMID: 35214170 PMCID: PMC8876728 DOI: 10.3390/pharmaceutics14020438] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 02/07/2023] Open
Abstract
Recently, several studies have indicated an increased interest in the scientific community regarding the application of Cannabis sativa plants, and their extracts, for medicinal purposes. This plant of enormous medicinal potential has been legalised in an increasing number of countries globally. Due to the recent changes in therapeutic and recreational legislation, cannabis and cannabinoids are now frequently permitted for use in clinical settings. However, with their highly lipophilic features and very low aqueous solubility, cannabinoids are prone to degradation, specifically in solution, as they are light-, temperature-, and auto-oxidation-sensitive. Thus, plant-derived cannabinoids have been developed for oral, nasal-inhalation, intranasal, mucosal (sublingual and buccal), transcutaneous (transdermal), local (topical), and parenteral deliveries. Among these administrations routes, topical and transdermal products usually have a higher bioavailability rate with a prolonged steady-state plasma concentration. Additionally, these administrations have the potential to eliminate the psychotropic impacts of the drug by its diffusion into a nonreactive, dead stratum corneum. This modality avoids oral administration and, thus, the first-pass metabolism, leading to constant cannabinoid plasma levels. This review article investigates the practicality of delivering therapeutic cannabinoids via skin in accordance with existing literature.
Collapse
Affiliation(s)
- Haleh Mahmoudinoodezh
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (H.M.); (S.R.T.); (A.B.)
| | - Srinivasa Reddy Telukutla
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (H.M.); (S.R.T.); (A.B.)
| | | | - Ava Bachari
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (H.M.); (S.R.T.); (A.B.)
| | - Francesca Cavalieri
- Applied Chemistry and Environmental Science, RMIT University, Melbourne, VIC 3000, Australia;
| | - Nitin Mantri
- The Pangenomics Lab, School of Science, RMIT University, Bundoora, VIC 3083, Australia; (H.M.); (S.R.T.); (A.B.)
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- Correspondence:
| |
Collapse
|
11
|
Dahham SS, Tabana Y, Asif M, Ahmed M, Babu D, Hassan LE, Ahamed MBK, Sandai D, Barakat K, Siraki A, Majid AMSA. β-Caryophyllene Induces Apoptosis and Inhibits Angiogenesis in Colorectal Cancer Models. Int J Mol Sci 2021; 22:10550. [PMID: 34638895 PMCID: PMC8508804 DOI: 10.3390/ijms221910550] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 09/21/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
Beta-Caryophyllene (BCP), a naturally occurring sesquiterpene abundantly found in cloves, hops, and cannabis, is the active candidate of a relatively new group of vascular-inhibiting compounds that aim to block existing tumor blood vessels. Previously, we have reported the anti-cancer properties of BCP by utilizing a series of in-vitro anti-tumor-related assays using human colorectal carcinoma cells. The present study aimed to investigate the effects of BCP on in-vitro, ex-vivo, and in-vivo models of anti-angiogenic assays and evaluate its anti-cancer activity in xenograft tumor (both ectopic and orthotopic) mice models of human colorectal cancer. Computational structural analysis and an apoptosis antibody array were also performed to understand the molecular players underlying this effect. BCP exhibited strong anti-angiogenic activity by blocking the migration of endothelial cells, tube-like network formation, suppression of vascular endothelial growth factor (VEGF) secretion from human umbilical vein endothelial cells and sprouting of rat aorta microvessels. BCP has a probable binding at Site#0 on the surface of VEGFR2. Moreover, BCP significantly deformed the vascularization architecture compared to the negative control in a chick embryo chorioallantoic membrane assay. BCP showed a remarkable reduction in tumor size and fluorescence molecular tomography signal intensity in all the mice treated with BCP, in a dose-dependent relationship, in ectopic and orthotopic tumor xenograft models, respectively. The histological analysis of the tumor from BCP-treated mice revealed a clear reduction of the density of vascularization. In addition, BCP induced apoptosis through downregulation of HSP60, HTRA, survivin, and XIAP, along with the upregulation of p21 expressions. These results suggest that BCP acts at multiple stages of angiogenesis and could be used as a promising therapeutic candidate to halt the growth of colorectal tumor cells.
Collapse
Affiliation(s)
- Saad S. Dahham
- Department of Science, University of Technology and Applied Sciences, Rustaq 10 P.C:329, Oman
| | - Yasser Tabana
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Muhammad Asif
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan;
| | - Marawan Ahmed
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Loiy E. Hassan
- Department of Botany, Faculty of Science & Technology, Omdurman Islamic University, P.O. Box 382, Omdurman 14415, Sudan;
| | - Mohamed B. Khadeer Ahamed
- EMAN Research and Testing Laboratory, School of Pharmacy, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.B.K.A.); (A.M.S.A.M.)
| | - Doblin Sandai
- Infectomics Cluster, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Bertam, Kepala Batas 13200, Penang, Malaysia;
| | - Khaled Barakat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Arno Siraki
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (Y.T.); (M.A.); (K.B.); (A.S.)
| | - Amin M. S. A. Majid
- EMAN Research and Testing Laboratory, School of Pharmacy, Universiti Sains Malaysia, Gelugor 11800, Penang, Malaysia; (M.B.K.A.); (A.M.S.A.M.)
- John Curtin School of Medical Research, College of Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
12
|
Development and validation of a gas chromatography method for the determination of β-caryophyllene in clove extract and its application. Sci Rep 2021; 11:13853. [PMID: 34226604 PMCID: PMC8257650 DOI: 10.1038/s41598-021-93306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/25/2021] [Indexed: 11/21/2022] Open
Abstract
The purpose of this study is to check the effectiveness of the analysis method that separates and quantifies β-caryophyllene among clove extracts and validate according to current ICH guidelines. The β-caryophyllene was active constituent of clove buds. The developed method gave a good detection response. In the specificity test, the standard solution was detected at about 17.32 min, and the test solution was detected at 17.32 min. The linearity of β-caryophyllen was confirmed, and at this time, the correlation coefficient (R2) of the calibration curve showed a high linearity of 0.999 or more in the concentration range. The levels of LOD and LOQ were 1.28 ug/mL and 3.89 ug/mL, respectively. The accuracy was confirmed to be 101.6–102.2% and RSD 0.95 ~ 1.31%. As a result of checking the repeatability and inter-tester reproducibility to confirm the precision, the RSD was found to be 1.34 ~ 2.69%. This validated GC method was successfully applied to a soft capsule containing clove extract and other materials for clinical trials. Therefore, this method can be used as an analytical tool for quality control of various samples, including clove extracts and their products of food and pharmaceutical uses.
Collapse
|
13
|
Mahdavi S, Amiradalat M, Babashpour M, Sheikhlooei H, Miransari M. The Antioxidant, Anticarcinogenic and Antimicrobial Properties of <i>Verbascum thapsus </i> L. Med Chem 2021; 16:991-995. [PMID: 31456524 DOI: 10.2174/1573406415666190828155951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 08/15/2019] [Accepted: 08/16/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND The antioxidant, anticarcinogenic, and antimicrobial activities of Verbascum Thapsus L., known as great mullein, (an important medicinal plant containing different biochemical compounds including sesquiterpenes, flavonoids, saponins and lignins) were determined. There is not much data, to our knowledge, in this respect. METHODS The antioxidant activities of V. Thapsus were investigated by the DPPH (2, 2- diphenyl- 1-picrylhydrazyl) method. Using GC-MS, the presence of different anticarcinogenic products including 1-hexzanol (2.11%), 2-hexene (1.95%), etc. was determined in the ethanolic extract of V. Thapsus. The antimicrobial activities of V. Thapsus were determined by the minimum inhibiting concentration (MIC) and minimum bactericidal concentration (MBC) methods using the Grampositive and -negative bacterial strains. RESULTS The least concentration of V. Thapsus L. ethanolic extract (50 mg/l) resulted in only 21.26% inhibition of DPPH free radicals, however, the concentrations of 300 mg/l resulted in almost the highest inhibition (91.31%) of DPPH free radicals. The antioxidant activities of synthesized antioxidant BHT at the concentration of 300 mg/l or higher were similar to the antioxidant activities of V. Thapsus L. ethanolic extract. Both the isolated and the standard Gram-negative bacterial strains were more tolerant to the V. Thapsus ethanolic extract, compared with the Grampositive bacterial strains. Bacillus cereus was the most sensitive bacterial strain among the tested bacterial strains. CONCLUSION The medicinal plant V. Thapsus L. can be used for the treatment of different diseases, such as cancer and infectious diseases.
Collapse
Affiliation(s)
- Saman Mahdavi
- Department of Microbiology, Maragheh Branch, Islamic Azad University, Maragheh, Iran
| | - Morteza Amiradalat
- Department of Microbiology, Maragheh Branch, Islamic Azad University, Maragheh, Iran
| | - Marzieh Babashpour
- Department of Horticulture, Maragheh Branch, Islamic Azad University, Maragheh, Iran
| | - Hosein Sheikhlooei
- Department of Chemistry, Maragheh Branch, Islamic Azad University, Maragheh, Iran
| | - Mohammad Miransari
- Department of Book & Article, AbtinBerkeh Scientific Ltd. Company, Isfahan, Iran
| |
Collapse
|
14
|
Geddo F, Antoniotti S, Querio G, Salaroglio IC, Costamagna C, Riganti C, Gallo MP. Plant-Derived Trans-β-Caryophyllene Boosts Glucose Metabolism and ATP Synthesis in Skeletal Muscle Cells through Cannabinoid Type 2 Receptor Stimulation. Nutrients 2021; 13:nu13030916. [PMID: 33809114 PMCID: PMC7999495 DOI: 10.3390/nu13030916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/25/2022] Open
Abstract
Skeletal muscle plays a pivotal role in whole-body glucose metabolism, accounting for the highest percentage of glucose uptake and utilization in healthy subjects. Impairment of these key functions occurs in several conditions including sedentary lifestyle and aging, driving toward hyperglycemia and metabolic chronic diseases. Therefore, strategies pointed to improve metabolic health by targeting skeletal muscle biochemical pathways are extremely attractive. Among them, we focused on the natural sesquiterpene and cannabinoid type 2 (CB2) receptor agonist Trans-β-caryophyllene (BCP) by analyzing its role in enhancing glucose metabolism in skeletal muscle cells. Experiments were performed on C2C12 myotubes. CB2 receptor membrane localization in myotubes was assessed by immunofluorescence. Within glucose metabolism, we evaluated glucose uptake (by the fluorescent glucose analog 2-NBDG), key enzymes of both glycolytic and oxidative pathways (by spectrophotometric assays and metabolic radiolabeling) and ATP production (by chemiluminescence-based assays). In all experiments, CB2 receptor involvement was tested with the CB2 antagonists AM630 and SR144528. Our results show that in myotubes, BCP significantly enhances glucose uptake, glycolytic and oxidative pathways, and ATP synthesis through a CB2-dependent mechanism. Giving these outcomes, CB2 receptor stimulation by BCP could represent an appealing tool to improve skeletal muscle glucose metabolism, both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Federica Geddo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (F.G.); (S.A.); (G.Q.)
| | - Susanna Antoniotti
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (F.G.); (S.A.); (G.Q.)
| | - Giulia Querio
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (F.G.); (S.A.); (G.Q.)
| | - Iris Chiara Salaroglio
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (I.C.S.); (C.C.); (C.R.)
| | - Costanzo Costamagna
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (I.C.S.); (C.C.); (C.R.)
| | - Chiara Riganti
- Department of Oncology, University of Turin, Via Santena 5/bis, 10126 Turin, Italy; (I.C.S.); (C.C.); (C.R.)
| | - Maria Pia Gallo
- Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy; (F.G.); (S.A.); (G.Q.)
- Correspondence:
| |
Collapse
|
15
|
Lai X, Gu X, Yao X, Mei J, He H, Gao X, Du Y, Zhao J, Zha L, Shi K. β-caryophyllene, a natural bicyclic sesquiterpene, induces apoptosis by inhibiting inflammation-associated proliferation in MOLT-4 leukemia cells. Pharmacogn Mag 2021. [DOI: 10.4103/pm.pm_550_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
16
|
Cheng Z, McCann S, Faraone N, Clarke JA, Hudson EA, Cloonan K, Hillier NK, Tahlan K. Production of Plant-Associated Volatiles by Select Model and Industrially Important Streptomyces spp. Microorganisms 2020; 8:microorganisms8111767. [PMID: 33187102 PMCID: PMC7697265 DOI: 10.3390/microorganisms8111767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/01/2020] [Accepted: 11/09/2020] [Indexed: 01/13/2023] Open
Abstract
The Streptomyces produce a great diversity of specialized metabolites, including highly volatile compounds with potential biological activities. Volatile organic compounds (VOCs) produced by nine Streptomyces spp., some of which are of industrial importance, were collected and identified using gas chromatography–mass spectrometry (GC-MS). Biosynthetic gene clusters (BGCs) present in the genomes of the respective Streptomyces spp. were also predicted to match them with the VOCs detected. Overall, 33 specific VOCs were identified, of which the production of 16 has not been previously reported in the Streptomyces. Among chemical classes, the most abundant VOCs were terpenes, which is consistent with predicted biosynthetic capabilities. In addition, 27 of the identified VOCs were plant-associated, demonstrating that some Streptomyces spp. can also produce such molecules. It is possible that some of the VOCs detected in the current study have roles in the interaction of Streptomyces with plants and other higher organisms, which might provide opportunities for their application in agriculture or industry.
Collapse
Affiliation(s)
- Zhenlong Cheng
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - Sean McCann
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Nicoletta Faraone
- Department of Chemistry, Acadia University, Wolfville, NS B4P 2R6, Canada;
| | - Jody-Ann Clarke
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
| | - E. Abbie Hudson
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - Kevin Cloonan
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
| | - N. Kirk Hillier
- Department of Biology, Acadia University, Wolfville, NS B4P 2R6, Canada; (S.M.); (E.A.H.); (K.C.)
- Correspondence: (N.K.H.); (K.T.)
| | - Kapil Tahlan
- Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada; (Z.C.); (J.-A.C.)
- Correspondence: (N.K.H.); (K.T.)
| |
Collapse
|
17
|
Di Sotto A, Mancinelli R, Gullì M, Eufemi M, Mammola CL, Mazzanti G, Di Giacomo S. Chemopreventive Potential of Caryophyllane Sesquiterpenes: An Overview of Preliminary Evidence. Cancers (Basel) 2020; 12:E3034. [PMID: 33081075 PMCID: PMC7603190 DOI: 10.3390/cancers12103034] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Chemoprevention is referred to as a strategy to inhibit, suppress, or reverse tumor development and progression in healthy people along with high-risk subjects and oncologic patients through using pharmacological or natural substances. Numerous phytochemicals have been widely described in the literature to possess chemopreventive properties, although their clinical usefulness remains to be defined. Among them, caryophyllane sesquiterpenes are natural compounds widely occurring in nature kingdoms, especially in plants, fungi, and marine environments. Several structures, characterized by a common caryophyllane skeleton with further rearrangements, have been identified, but those isolated from plant essential oils, including β-caryophyllene, β-caryophyllene oxide, α-humulene, and isocaryophyllene, have attracted the greatest pharmacological attention. Emerging evidence has outlined a complex polypharmacological profile of caryophyllane sesquiterpenes characterized by blocking, suppressing, chemosensitizing, and cytoprotective properties, which suggests a possible usefulness of these natural substances in cancer chemoprevention for both preventive and adjuvant purposes. In the present review, the scientific knowledge about the chemopreventive properties of caryophyllane sesquiterpenes and the mechanisms involved have been collected and discussed; moreover, possible structure-activity relationships have been highlighted. Although further high-quality studies are required, the promising preclinical findings and the safe pharmacological profile encourage further studies to define a clinical usefulness of caryophyllane sesquiterpenes in primary, secondary, or tertiary chemoprevention.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Marco Gullì
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy;
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (R.M.); (C.L.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy; (M.G.); (S.D.G.)
| |
Collapse
|
18
|
Anti-Cancer Potential of Cannabinoids, Terpenes, and Flavonoids Present in Cannabis. Cancers (Basel) 2020; 12:cancers12071985. [PMID: 32708138 PMCID: PMC7409346 DOI: 10.3390/cancers12071985] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/17/2020] [Accepted: 07/19/2020] [Indexed: 02/06/2023] Open
Abstract
In recent years, and even more since its legalization in several jurisdictions, cannabis and the endocannabinoid system have received an increasing amount of interest related to their potential exploitation in clinical settings. Cannabinoids have been suggested and shown to be effective in the treatment of various conditions. In cancer, the endocannabinoid system is altered in numerous types of tumours and can relate to cancer prognosis and disease outcome. Additionally, cannabinoids display anticancer effects in several models by suppressing the proliferation, migration and/or invasion of cancer cells, as well as tumour angiogenesis. However, the therapeutic use of cannabinoids is currently limited to the treatment of symptoms and pain associated with chemotherapy, while their potential use as cytotoxic drugs in chemotherapy still requires validation in patients. Along with cannabinoids, cannabis contains several other compounds that have also been shown to exert anti-tumorigenic actions. The potential anti-cancer effects of cannabinoids, terpenes and flavonoids, present in cannabis, are explored in this literature review.
Collapse
|
19
|
Di Sotto A, Di Giacomo S, Rubini E, Macone A, Gulli M, Mammola CL, Eufemi M, Mancinelli R, Mazzanti G. Modulation of STAT3 Signaling, Cell Redox Defenses and Cell Cycle Checkpoints by β-Caryophyllene in Cholangiocarcinoma Cells: Possible Mechanisms Accounting for Doxorubicin Chemosensitization and Chemoprevention. Cells 2020; 9:E858. [PMID: 32252311 PMCID: PMC7226839 DOI: 10.3390/cells9040858] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/26/2020] [Accepted: 03/30/2020] [Indexed: 12/15/2022] Open
Abstract
Cholangiocarcinoma (CCA) is an aggressive group of biliary tract cancers, characterized by late diagnosis, low effective chemotherapies, multidrug resistance, and poor outcomes. In the attempt to identify new therapeutic strategies for CCA, we studied the antiproliferative activity of a combination between doxorubicin and the natural sesquiterpene β-caryophyllene in cholangiocarcinoma Mz-ChA-1 cells and nonmalignant H69 cholangiocytes, under both long-term and metronomic schedules. The modulation of STAT3 signaling, oxidative stress, DNA damage response, cell cycle progression and apoptosis was investigated as possible mechanisms of action. β-caryophyllene was able to synergize the cytotoxicity of low dose doxorubicin in Mz-ChA-1 cells, while producing cytoprotective effects in H69 cholangiocytes, mainly after a long-term exposure of 24 h. The mechanistic analysis highlighted that the sesquiterpene induced a cell cycle arrest in G2/M phase along with the doxorubicin-induced accumulation in S phase, reduced the γH2AX and GSH levels without affecting GSSG. ROS amount was partly lowered by the combination in Mz-ChA-1 cells, while increased in H69 cells. A lowered expression of doxorubicin-induced STAT3 activation was found in the presence of β-caryophyllene in both cancer and normal cholangiocytes. These networking effects resulted in an increased apoptosis rate in Mz-ChA-1 cells, despite a lowering in H69 cholangiocytes. This evidence highlighted a possible role of STAT3 as a final effector of a complex network regulated by β-caryophyllene, which leads to an enhanced doxorubicin-sensitivity of cholangiocarcinoma cells and a lowered chemotherapy toxicity in nonmalignant cholangiocytes, thus strengthening the interest for this natural sesquiterpene as a dual-acting chemosensitizing and chemopreventive agent.
Collapse
Affiliation(s)
- Antonella Di Sotto
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| | - Silvia Di Giacomo
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| | - Elisabetta Rubini
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Alberto Macone
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Marco Gulli
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Caterina Loredana Mammola
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.L.M.); (R.M.)
| | - Margherita Eufemi
- Department of Biochemical Science “A. Rossi Fanelli”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (E.R.); (A.M.); (M.E.)
| | - Romina Mancinelli
- Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (C.L.M.); (R.M.)
| | - Gabriela Mazzanti
- Department of Physiology and Pharmacology “V. Erspamer”, Sapienza University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy; (S.D.G.); (M.G.); (G.M.)
| |
Collapse
|
20
|
Malva pseudolavatera Leaf Extract Promotes ROS Induction Leading to Apoptosis in Acute Myeloid Leukemia Cells In Vitro. Cancers (Basel) 2020; 12:cancers12020435. [PMID: 32069824 PMCID: PMC7072199 DOI: 10.3390/cancers12020435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/26/2020] [Accepted: 02/06/2020] [Indexed: 11/16/2022] Open
Abstract
Malva pseudolavatera Webb & Berthel. is a plant from the Malvaceae family that has long been included in the human diet due to its various curative effects. Many plant leaf extracts from the various species of Malva genus have been reported to possess anti-cancer properties, however, studies on M. pseudolavatera Webb & Berthel. leaves have documented anti-inflammatory and anti-oxidant effects with no emphasis on their possible anti-cancer potential. The present study explores the anti-cancer properties of Malva pseudolavatera Webb & Berthel. leaf extract on acute myeloid leukemia (AML) cell lines in vitro and deciphers the underlying molecular mechanism. Treatment of AML cell lines with M. pseudolavatera methanolic leaf extract showed a dose- and time-dependent inhibition of proliferation and a dose-dependent increase in apoptotic hallmarks such as an increase in phosphatidylserine on the outer membrane leaflet and membrane leakage in addition to DNA fragmentation. The pro-apoptotic effect was induced by reactive oxygen species (ROS) as well as an upregulation of cleaved poly(ADP-ribose) polymerase (PARP), increase in Bax/Bcl-2 ratio, andrelease of cytochrome-c from the mitochondria. Major compounds of the extract included methyl linolenate, phytol, γ-sitosterol, and stigmasterol as revealed by gas chromatography coupled with mass spectrometry, and amino acids, amino acid derivatives, tiliroside, 13-hydroxyperoxyoctadecadienoic, and quercitrin as detected by liquid chromatography coupled to mass spectrometry.
Collapse
|
21
|
β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9245420] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
β-Caryophyllene (BCP), a natural bicyclic sesquiterpene, is a selective phytocannabinoid agonist of type 2 receptors (CB2-R). It isn’t psychogenic due to the absence of an affinity to cannabinoid receptor type 1 (CB1). Among the various biological activities, BCP exerts anti-inflammatory action via inhibiting the main inflammatory mediators, such as inducible nitric oxide synthase (iNOS), Interleukin 1 beta (IL-1β), Interleukin-6 (IL-6), tumor necrosis factor-alfa (TNF-α), nuclear factor kapp a-light-chain-enhancer of activated B cells (NF-κB), cyclooxygenase 1 (COX-1), cyclooxygenase 2 (COX-2). Peroxisome proliferator-activated receptors alpha (PPAR-α) effects are also mediated by the activation of PPAR-α and PPAR-γ receptors. In detail, many studies, in vitro and in vivo, suggest that the treatment with β-caryophyllene improves the phenotype of animals used to model various inflammatory pathologies, such as nervous system diseases (Parkinson’s disease, Alzheimer’s disease, multiple sclerosis, amyotrophic lateral sclerosis, stroke), atherosclerosis, and tumours (colon, breast, pancreas, lymphoma, melanoma and glioma cancer). Furthermore, pre-clinical data have highlighted that BCP is potentially useful in Streptococcus infections, osteoporosis, steatohepatitis, and exerts anticonvulsant, analgesic, myorelaxing, sedative, and antidepressive effects. BCP is non-toxic in rodents, with a Lethal dose, 50% (LD50) greater than 5000 mg/kg. Nevertheless, it inhibits various cytochrome P450 isoforms (above all, CYP3A4), which metabolise xenobiotics, leading to adverse effects, due to drug levels over therapeutic window. All the reported data have highlighted that both pharmacological and toxicological aspects need to be further investigated with clinical trials.
Collapse
|
22
|
Bulnesia sarmientoi Supercritical Fluid Extract Exhibits Necroptotic Effects and Anti-Metastatic Activity on Lung Cancer Cells. Molecules 2018; 23:molecules23123304. [PMID: 30551590 PMCID: PMC6320997 DOI: 10.3390/molecules23123304] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/07/2018] [Accepted: 12/11/2018] [Indexed: 12/12/2022] Open
Abstract
Bulnesia sarmientoi (BS) has long been used as an analgesic, wound-healing and anti-inflammatory medicinal plant. The aqueous extract of its bark has been demonstrated to have anti-cancer activity. This study investigated the anti-proliferative and anti-metastatic effects of BS supercritical fluid extract (BSE) on the A549 and H661 lung cancer cell lines. The cytotoxicity on cancer cells was assessed by an MTT assay. After 72 h treatment of A549 and H661 cells, the IC50 values were 18.1 and 24.7 μg/mL, respectively. The cytotoxicity on MRC-5 normal cells was relatively lower (IC50 = 61.1 μg/mL). BSE arrested lung cancer cells at the S and G2/M growth phase. Necrosis of A549 and H661 cells was detected by flow cytometry with Annexin V-FITC/PI double staining. Moreover, the cytotoxic effect of BSE on cancer cells was significantly reverted by Nec-1 pretreatment, and BSE induced TNF-α and RIP-1 expression in the absence of caspase-8 activity. These evidences further support that BSE exhibited necroptotic effects on lung cancer cells. By wound healing and Boyden chamber assays, the inhibitory effects of BSE on the migration and invasion of lung cancer cells were elucidated. Furthermore, the chemical composition of BSE was examined by gas chromatography-mass analysis where ten constituents of BSE were identified. α-Guaiene, (−)-guaiol and β-caryophyllene are responsible for most of the cytotoxic activity of BSE against these two cancer cell lines. Since BSE possesses significant cytotoxicity and anti-metastatic activity on A549 and H661 cells, it may serve as a potential target for the treatment of lung cancer.
Collapse
|
23
|
Pavithra PS, Mehta A, Verma RS. Essential oils: from prevention to treatment of skin cancer. Drug Discov Today 2018; 24:644-655. [PMID: 30508640 DOI: 10.1016/j.drudis.2018.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/24/2018] [Accepted: 11/27/2018] [Indexed: 12/16/2022]
Abstract
The increasing incidence of cutaneous malignancies signifies the need for multiple treatment options. Several available reviews have emphasized the potential role of various botanical extracts and naturally occurring compounds as anti-skin-cancer agents. Few studies relate to the role of chemoprevention and therapeutic activity of essential oils (EOs) and EO components. The present review summarizes an overview of chemopreventive, anti-melanoma and anti-nonmelanoma activities of EOs from various plants and EO components in in vitro and in vivo models with special emphasis on skin cancer. Also, the mechanisms by which EOs and EO components exert their effects to induce cell death are presented.
Collapse
Affiliation(s)
- P S Pavithra
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Alka Mehta
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore 632 014, India
| | - Rama S Verma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600 036, India.
| |
Collapse
|