1
|
Yan LS, Kang JY, Gu CY, Qiu XY, Li JJ, Cheng BCY, Wang YW, Luo G, Zhang Y. Schisandra chinensis lignans ameliorate hepatic inflammation and steatosis in methionine choline-deficient diet-fed mice by modulating the gut-liver axis. JOURNAL OF ETHNOPHARMACOLOGY 2025; 348:119801. [PMID: 40222688 DOI: 10.1016/j.jep.2025.119801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis is used as a traditional Chinese medicine to treat a variety of diseases. Schisandra chinensis lignans (SCL) are one of the most active components extracted from Schisandrae chinensis fructus, exhibit a broad array of pharmacological properties, especially anti-inflammatory and hepatic lipid-lowering effects, suggesting SCL may have potential anti-nonalcoholic steatohepatitis (NASH) ability. However, the therapeutic efficacy of SCL against NASH and the underlying mechanism of this action remains unclear. AIM OF THE STUDY In the current study, we aimed to investigate the anti-NASH action of SCL and explore the underlying mechanism in vitro and in vivo. We also assess the involvement of the gut-liver axis in the anti-NASH effects of SCL. METHODS Palmitic acid (PA)-treated HepG2 cells, mouse primary hepatocytes (MPHs) and methionine-choline deficient (MCD) diet-fed mice were selected as NASH models. ORO staining and qRT-PCR were performed to assess hepatic steatosis and inflammatory responses, respectively. Masson's trichrome staining was used to detect the liver fibrosis. Protein expression was detected by Western blotting or immunohistochemistry. The changes of gut microbiota were analyzed using 16S rDNA sequencing in mice. The levels of metabolites in liver and feces were measured by metabolomics. RESULTS The results showed that SCL treatment alleviated steatosis and inflammation in palmitic acid (PA)-treated HepG2 cells and mouse primary hepatocytes (MPHs). SCL treatment suppressed the phosphorylation of key components involved in NF-κB signaling and enhanced the expression of fatty acid oxidation (FAO)-related enzymes (e.g. CPT1, HMGCS2, and ACOX1) in PA-treated HepG2 cells. SCL could ameliorate hepatic steatosis and inflammation in NASH mice. SCL also ameliorated intestinal barrier injury and restructured the gut microbiota in NASH mice. SCL also modulated hepatic and colonic bile acid metabolism via FXR signaling. CONCLUSION These findings indicate that SCL treatment ameliorates hepatic inflammation and steatosis in NASH mice, potentially though to the suppression of NF-κB signaling and the promotion of fatty acid β-oxidation. Moreover, SCL could restore gut microbiota-mediated bile acid homeostasis via activation of FXR/FGF15 signaling. Our study presents a pharmacological rationale for using SCL in the management of NASH.
Collapse
Affiliation(s)
- Li-Shan Yan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jian-Ying Kang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Chun-Yu Gu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Xin-Yu Qiu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Jia-Jia Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | | | - Yi-Wei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Gan Luo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| | - Yi Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, PR China.
| |
Collapse
|
2
|
Cai H, Wu Y, Zhang X. A comprehensive review on wedelolactone: natural sources, total synthesis, and pharmacological activities. Chin J Nat Med 2025; 23:169-181. [PMID: 39986693 DOI: 10.1016/s1875-5364(25)60821-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/20/2024] [Indexed: 02/24/2025]
Abstract
Plant-derived natural products have long been a vital source for developing therapeutic drugs. Wedelolactone (WDL), a coumestan isolated from Eclipta prostrata, Wedelia calendulacea, Wedelia chinensis, and Sphagneticola trilobata, demonstrates a broad spectrum of therapeutic potential, including anticancer, anti-inflammatory, anti-obesity, anti-myotoxic, antimicrobial, anti-diabetic, and tissue-protective activities. This review synthesizes information on the isolation, total synthesis, pharmacological activity, underlying mechanisms, and pharmacokinetic properties of WDL. Additionally, it offers insights into potential clinical applications and future drug discovery avenues utilizing WDL or its derivatives, either independently or in combination with other pharmaceuticals.
Collapse
Affiliation(s)
- Haiping Cai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Yue Wu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China
| | - Xiaojin Zhang
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Design and Optimization, and Department of Chemistry, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Xue L, Wang L, Xu Y, Shen Y, Shi Z, Li X, Feng H, Xie X, Xie L, Wang G, Liang Y. The regulation of GSH/GPX4-mediated lipid accumulation confirms that schisandra polysaccharides should be valued equally as lignans. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118483. [PMID: 38914150 DOI: 10.1016/j.jep.2024.118483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acetaminophen (APAP) induced liver injury (AILI) is a common cause of clinical hepatic damage and even acute liver failure. Our previous research has shown that Schisandra chinensis lignan extract (SLE) can exert a hepatoprotective effect by regulating lipid metabolism. Although polysaccharides from Schisandra chinensis (S. chinensis), like lignans, are important components of S. chinensis, their pharmacological activity and target effects on AILI have not yet been explored. AIM OF THE STUDY This study aims to quantitatively reveal the role of SCP in the pharmacological activity of S. chinensis, and further explore the pharmacological components, potential action targets and mechanisms of S. chinensis in treating AILI. MATERIALS AND METHODS The therapeutic effect of SCP on AILI was systematically determined via comparing the efficacy of SCP and SLE on in vitro and in vivo models. Network pharmacology, molecular docking and multi-omics techniques were then used to screen and verify the action targets of S. chinensis against AILI. RESULTS SCP intervention could significantly improve AILI, and the therapeutic effect was comparable to that of SLE. Notably, the combination of SCP and SLE did not produce mutual antagonistic effects. Subsequently, we found that both SCP and SLE could significantly reverse the down-regulation of GPX4 caused by the APAP modeling, and then further improving lipid metabolism abnormalities. CONCLUSIONS Hepatoprotective effects of SCP and SLE is most correlated with their regulation of GSH/GPX4-mediated lipid accumulation. This is the first exploration of the hepatoprotective effect and potential mechanism of SCP in treating AILI, which is crucial for fully utilizing S. chinensis and developing promising AILI therapeutic agents.
Collapse
Affiliation(s)
- Lijuan Xue
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Leyi Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Yexin Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Yun Shen
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Zechang Shi
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Xiaorun Li
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Haoyang Feng
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Xinrui Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Tongjiaxiang 24, Nanjing, 210009, PR China.
| |
Collapse
|
4
|
Zhang BY, Yang R, Zhu WQ, Zhu CL, Chen LX, Zhao YS, Zhang Y, Wang YQ, Jiang DZ, Tang B, Zhang XM. Schisandrin B alleviates testicular inflammation and Sertoli cell apoptosis via AR-JNK pathway. Sci Rep 2024; 14:18418. [PMID: 39117695 PMCID: PMC11310458 DOI: 10.1038/s41598-024-69389-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/05/2024] [Indexed: 08/10/2024] Open
Abstract
Bacterial testicular inflammation is one of the important causes of male infertility. Using plant-derived compounds to overcome the side effects of antibiotics is an alternative treatment strategy for many diseases. Schizandrin B (SchB) is a bioactive compound of herbal medicine Schisandra chinensis which has multiple pharmacological effects. However its effect and the mechanism against testicular inflammation are unknown. Here we tackled these questions using models of lipopolysaccharide (LPS)-induced mice and -Sertoli cells (SCs). Histologically, SchB ameliorated the LPS-induced damages of the seminiferous epithelium and blood-testicular barrier, and reduced the production of pro-inflammatory mediators in mouse testes. Furthermore, SchB decreased the levels of pro-inflammatory mediators and inhibited the nuclear factor kB (NF-κB) and MAPK (especially JNK) signaling pathway phosphorylation in LPS-induced mSCs. The bioinformatics analysis based on receptor prediction and the molecular docking was further conducted. We targeted androgen receptor (AR) and illustrated that AR might bind with SchB in its function. Further experiments indicate that the AR expression was upregulated by LPS stimulation, while SchB treatment reversed this phenomenon; similarly, the expression of the JNK-related proteins and apoptotic-related protein were also reversed after AR activator treatment. Together, SchB mitigates LPS-induced inflammation and apoptosis by inhibiting the AR-JNK pathway.
Collapse
Affiliation(s)
- Bo-Yang Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Rui Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Wen-Qian Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Chun-Ling Zhu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, 453003, China
| | - Lan-Xin Chen
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan-Sen Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yue-Qi Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Dao-Zhen Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Tang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xue-Ming Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.
| |
Collapse
|
5
|
Yang F, Yang B, Song K, Jin Y, Wang G, Li P, Yu Q, Ling F. Natural product honokiol exhibits antiviral effects against Micropterus salmoides rhabdovirus (MSRV) both in vitro and in vivo. JOURNAL OF FISH DISEASES 2024; 47:e13915. [PMID: 38191774 DOI: 10.1111/jfd.13915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/20/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Micropterus salmoides rhabdovirus (MSRV) is a formidable pathogen, presenting a grave menace to juvenile largemouth bass. This viral infection frequently leads to epidemic outbreaks, resulting in substantial economic losses within the aquaculture industry. Unfortunately, at present, there are no commercially available vaccines or pharmaceutical treatments to combat this threat. In order to address the urgent need for therapeutic strategy to resist MSRV infection, the antiviral activity of natural product honokiol against MSRV was explored in this study. Firstly, cellular morphology was directly observed in an inverted microscope when treated with honokiol after MSRV infection. The results clarified that honokiol significantly lessened cytopathic effect (CPE) induced by MSRV and protected the integrity of GCO cells. Furthermore, the viral nucleic acid expression (G gene) was detected by reverse transcription real-time quantitative PCR (RT-qPCR) and the results indicated that honokiol significantly decreased the viral loads of MSRV in a concentration-dependent manner, and honokiol showed a high antiviral activity with IC50 of 2.92 μM. Besides, honokiol significantly decreased the viral titre and suppressed apoptosis caused by MSRV. Mechanistically, honokiol primarily inhibited the initial replication of MSRV and discharge of progeny virus to exert anti-MSRV activity. More importantly, in vivo experiments suggested that honokiol (40 mg/kg) expressed a fine antiviral activity against MSRV when administrated with intraperitoneal injection, which led to a notable 40% improvement in the survival rate among infected largemouth bass. In addition, it also resulted in significant reduction in the viral nucleic acid expression within liver, spleen and kidney at 2, 4 and 6 days following infection. What is more, 100 mg/kg honokiol with oral administration also showed certain antiviral efficacy in MSRV-infected largemouth bass via improving the survival rate by 10.0%, and decreasing significantly the viral nucleic acid expression in liver, spleen and kidney of largemouth bass on day 2. In summary, natural product honokiol is a good candidate to resist MSRV infection and has promising application prospects in aquaculture.
Collapse
Affiliation(s)
- Fei Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Bin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yingjie Jin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Pengfei Li
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Qing Yu
- Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Academy of Sciences, Nanning, Guangxi, China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
6
|
Fu H, Guo C, Peng J, Shao F, Sheng S, Wang S. Transcriptomic Insights and Cytochrome P450 Gene Analysis in Kadsura coccinea for Lignan Biosynthesis. Genes (Basel) 2024; 15:270. [PMID: 38540329 PMCID: PMC10969973 DOI: 10.3390/genes15030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/17/2024] [Accepted: 02/19/2024] [Indexed: 06/15/2024] Open
Abstract
Kadsura coccinea is a medicinal plant from the Schisandraceae family that is native to China and has great pharmacological potential due to its lignans. However, there are significant knowledge gaps regarding the genetic and molecular mechanisms of lignans. We used transcriptome sequencing technology to analyze root, stem, and leaf samples, focusing on the identification and phylogenetic analysis of Cytochrome P450 (CYP) genes. High-quality data containing 158,385 transcripts and 68,978 unigenes were obtained. In addition, 36,293 unigenes in at least one database, and 23,335 across five databases (Nr, KEGG, KOG, TrEMBL, and SwissProt) were successfully annotated. The KEGG pathway classification and annotation of these unigenes identified 10,825 categorized into major metabolic pathways, notably phenylpropanoid biosynthesis, which is essential for lignan synthesis. A key focus was the identification and phylogenetic analysis of 233 Cytochrome P450 (CYP) genes, revealing their distribution across 38 families in eight clans, with roots showing specific CYP gene expression patterns indicative of their role in lignan biosynthesis. Sequence alignment identified 22 homologous single genes of these CYPs, with 6 homologous genes of CYP719As and 1 of CYP81Qs highly expressed in roots. Our study significantly advances the understanding of the biosynthesis of dibenzocyclooctadiene lignans, offering valuable insights for future pharmacological research and development.
Collapse
Affiliation(s)
- Hanyu Fu
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
| | - Chuan Guo
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Jiqing Peng
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Fengxia Shao
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| | - Song Sheng
- Yuelushan Laboratory, Qiushi Building, Hunan Agricultural University, Furong District, Changsha 410128, China
| | - Sen Wang
- College of Forestry, Central South University of Forestry & Technology, 498 South Shaoshan Road, Changsha 410004, China; (H.F.); (C.G.); (J.P.); (F.S.)
- The Belt and Road International Union Research Center for Tropical Arid Non-Wood Forest in Hunan Province, 498 South Shaoshan Road, Changsha 410004, China
| |
Collapse
|
7
|
Ren Y, Xu Z, Qiao Z, Wang X, Yang C. Flaxseed Lignan Alleviates the Paracetamol-Induced Hepatotoxicity Associated with Regulation of Gut Microbiota and Serum Metabolome. Nutrients 2024; 16:295. [PMID: 38257189 PMCID: PMC10821007 DOI: 10.3390/nu16020295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
This study examined the protective effect of flaxseed lignans on liver damage caused by an overdose of paracetamol (PAM). The findings demonstrated that administering 800 mg/kg/d flaxseed lignan prior to PAM significantly decreased the serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), and total bilirubin (TBi) levels, while it increased liver superoxide dismutase (SOD) and glutathione (GSH) levels in mice. Flaxseed lignan renovated the gut microbiota dysbiosis induced by PAM by promoting the proliferation of sulfonolipid (SL) producing bacteria such as Alistipes and lignan-deglycosolating bacteria such as Ruminococcus while inhibiting the growth of opportunistic pathogen bacteria such as Acinetobacter and Clostridium. Furthermore, flaxseed lignan modulated the serum metabolomic profile after PAM administration, specifically in the taurine and hypotaurine metabolism, phenylalanine metabolism, and pyrimidine metabolism. The study identified eight potential biomarkers, including enterolactone, cervonyl carnitine, acutilobin, and PC (20:3(5Z, 8Z, 11Z)/20:0). Overall, the results suggest that flaxseed lignan can alleviate PAM-induced hepatotoxicity and may be beneficial in preventing drug-induced microbiome and metabolomic disorders.
Collapse
Affiliation(s)
- Yongyan Ren
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China
| | - Zhenxia Xu
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China
| | - Zhixian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan 430060, China
| | - Xu Wang
- College of Animal Science and Technology, Huazhong Agricultural University, No. 1 Shizishan Street, Wuhan 430070, China
| | - Chen Yang
- Key Laboratory of Oilseeds Processing of Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, No. 2 Xudong 2nd Road, Wuhan 430062, China
| |
Collapse
|
8
|
Patel DK, Singh GK, Husain GM, Prasad SK. Ethnomedicinal Importance of Patuletin in Medicine: Pharmacological Activities and Analytical Aspects. Endocr Metab Immune Disord Drug Targets 2024; 24:519-530. [PMID: 37584350 DOI: 10.2174/1871530323666230816141740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 06/05/2023] [Accepted: 07/06/2023] [Indexed: 08/17/2023]
Abstract
BACKGROUND Plant-derived bioactive molecules have been a major source of therapeutic agents for human and veterinarian purposes. Different traditional medicine system across the globe had relied on natural resources to meet their demand of healthcare. Still in modern world, pharmaceutical industries look for phytochemicals to develop new drugs. The current review explores patuletin, a flavonoid for its diverse reported pharmacological activities along with its analytical techniques. METHODS Scientific data published on patuletin was collected from Scopus, Science Direct, Pubmed, Google, and Google Scholar. The collected data were analyzed and arranged as per specific pharmacological activities performed using in-vitro or in-vivo methods. Analytical methods of patuletin have been presented next to pharmacological activities Results: Available scientific literature indicates patuletin has anti-inflammatory, cytotoxic, genotoxic, hepatoprotective, antiproliferative, antiplatelet, antinociceptive, and antioxidant activity. In addition to these activities, its biological potential on breast cancer, rheumatoid arthritis, aldose reductase, and different types of microorganisms has been also presented in this work. Analytical data on patuletin signified the importance of patuletin for the standardization of herbal products and derived medicine. CONCLUSION It may be concluded that patuletin with its diverse biological activities and readily available analytical methods, holds the potential to be translated into a new drug entity.
Collapse
Affiliation(s)
- Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, Uttar Pradesh, India
| | - Gireesh Kumar Singh
- Department of Pharmacy, School of Health Science, Central University of South Bihar Gaya, 824236, India
| | - Gulam Mohammed Husain
- National Research Institute of Unani Medicine for Skin Disorders (Under CCRUM, Ministry of Ayush, Govt. of India), Opp. ESI Hospital, AG Colony Road, Erragadda, Hyderabad, 500 038, Telangana State, India
| | - Satyendra K Prasad
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra, 440033, India
| |
Collapse
|
9
|
Xue L, Liu K, Yan C, Dun J, Xu Y, Wu L, Yang H, Liu H, Xie L, Wang G, Liang Y. Schisandra lignans ameliorate nonalcoholic steatohepatitis by regulating aberrant metabolism of phosphatidylethanolamines. Acta Pharm Sin B 2023; 13:3545-3560. [PMID: 37655337 PMCID: PMC10465965 DOI: 10.1016/j.apsb.2023.04.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/16/2023] [Accepted: 04/19/2023] [Indexed: 09/02/2023] Open
Abstract
Nonalcoholic steatohepatitis (NASH) is a spectrum of chronic liver disease characterized by hepatic lipid metabolism disorder. Recent reports emphasized the contribution of triglyceride and diglyceride accumulation to NASH, while the other lipids associated with the NASH pathogenesis remained unexplored. The specific purpose of our study was to explore a novel pathogenesis and treatment strategy of NASH via profiling the metabolic characteristics of lipids. Herein, multi-omics techniques based on LC-Q-TOF/MS, LC-MS/MS and MS imaging were developed and used to screen the action targets related to NASH progress and treatment. A methionine and choline deficient (MCD) diet-induced mouse model of NASH was then constructed, and Schisandra lignans extract (SLE) was applied to alleviate hepatic damage by regulating the lipid metabolism-related enzymes CES2A and CYP4A14. Hepatic lipidomics indicated that MCD-diet led to aberrant accumulation of phosphatidylethanolamines (PEs), and SLE could significantly reduce the accumulation of intrahepatic PEs. Notably, exogenous PE (18:0/18:1) was proved to significantly aggravate the mitochondrial damage and hepatocyte apoptosis. Supplementing PE (18:0/18:1) also deteriorated the NASH progress by up regulating intrahepatic proinflammatory and fibrotic factors, while PE synthase inhibitor exerted a prominent hepatoprotective role. The current work provides new insights into the relationship between PE metabolism and the pathogenesis of NASH.
Collapse
Affiliation(s)
- Lijuan Xue
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Keanqi Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Caixia Yan
- Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Junling Dun
- Analytical Applications Center, Shimadzu (China) Co., Ltd., Shanghai 200233, China
| | - Yexin Xu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Linlin Wu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Huizhu Yang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Huafang Liu
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Lin Xie
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Guangji Wang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Liang
- Key Lab of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
10
|
Cui Y, Ma Y, Li Y, Song H, Dong Z. Influence of schisantherin A on the pharmacokinetics of lenvatinib in rats and its potential mechanism. J Gastrointest Oncol 2022; 13:802-811. [PMID: 35557593 PMCID: PMC9086034 DOI: 10.21037/jgo-22-174] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2023] Open
Abstract
BACKGROUND Lenvatinib (LEN) is approved as first-line therapy for advanced hepatocellular carcinoma (HCC). Schisantherin A (STA) can exert hepatoprotective and anti-tumor effects. The clinical combination of LEN and STA is very common, especially for patients with advanced HCC, but the effect of STA on the pharmacokinetics of LEN is unclear. This study aimed to investigate the effects of STA on the pharmacokinetics of LEN in rats and explore its potential mechanism. METHODS Male Sprague-Dawley (SD) rats were orally administered different doses of STA or vehicle control for 7 consecutive days, and 1.2 mg/kg of LEN was given on day 7. The messenger RNA (mRNA) and protein expression levels in the intestines and liver were investigated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blot. RESULTS It was revealed that STA increased the oral bioavailability of LEN. The area under the curve from time 0 to infinity (AUC0-∞) and maximum plasma concentration (Cmax) of LEN after co-administration with STA (20 mg/kg) increased by 54.3% (3,396.73±989.35 vs. 5,240.03±815.49 µg/L/h) and 54.8% (490.64±124.20 vs. 759.66±152.75 µg/L), respectively. The clearance decreased from 0.38±0.12 to 0.23±0.04 L/h/kg, and the apparent volume of distribution (Vz) decreased from 10.83±3.19 to 6.35±1.38 L/kg in the presence of 20 mg/kg STA. In addition, the expression of P-glycoprotein (P-gp) mRNA and protein in the intestines was markedly decreased. CONCLUSIONS This study showed that STA increased the bioavailability of LEN, probably due to inhibition of P-gp in the intestine, thereby increasing systemic absorption of LEN. Thus, there is an interaction between the two drugs, and careful monitoring must be conducted when they are used in combination.
Collapse
Affiliation(s)
- Yanjun Cui
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Yinling Ma
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Haojing Song
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhanjun Dong
- Graduate School of Hebei Medical University, Shijiazhuang, China
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
11
|
Huang S, Zhang D, Li Y, Fan H, Liu Y, Huang W, Deng C, Wang W, Song X. Schisandra sphenanthera: A Comprehensive Review of its Botany, Phytochemistry, Pharmacology, and Clinical Applications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2021; 49:1577-1622. [PMID: 34559620 DOI: 10.1142/s0192415x21500749] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Schisandra sphenanthera Rehd. et Wils (S. sphenanthera) is a single species of Schisandra genus, Magnoliaceae family, and it is a famous medicinal herb mostly growing in southern China, China Taiwan and Vietnam. S. sphenanthera is usually used for the treatments of hepatitis, Alzheimer's disease, renal transplantation, osteoporosis, and insomnia. In present studies, approximately 310 natural constituents have been isolated from S. sphenanthera, including lignans, triterpenes, volatile oils, and polysaccharides, which were mainly obtained from the fruits and stems of S. sphenanthera. Pharmocological studies have shown that the extracts and monomeric compounds of S. sphenanthera possessed wide-range bioactivities, such as antitumor, anti-oxidant, anti-inflammatory, osteoblastic, immune regulation, neuroprotective, kidney protection, hepatoprotective, and antiviral activities. However, resource availability, quality control measures, in-depth in vivo pharmacological study, and clinical application are still insufficient and deserve further studies. This review systematically summarized literatures on the botany, phytochemistry, pharmacology, development utilization, and clinical application of S. sphenanthera, in hopes of provide a useful reference for researchers for further studies of this plant.
Collapse
Affiliation(s)
- Shiqi Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Dongdong Zhang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Yuze Li
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Hao Fan
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Yuanyuan Liu
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Wenli Huang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Chong Deng
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Wei Wang
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| | - Xiaomei Song
- School of Pharmacy, Shaanxi University of Chinese Medicine, Xian Yang, Shaanxi 712046, P. R. China
| |
Collapse
|
12
|
Cui Y, Li Y, Fan L, An J, Wang X, Fu R, Dong Z. UPLC-MS/MS method for the determination of Lenvatinib in rat plasma and its application to drug-drug interaction studies. J Pharm Biomed Anal 2021; 206:114360. [PMID: 34508926 DOI: 10.1016/j.jpba.2021.114360] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/29/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022]
Abstract
Lenvatinib (LEN) is a multitargeted tyrosine kinase inhibitor registered for the first-line treatment of unresectable advanced hepatocellular carcinoma. Wuzhi capsule (WZC) is a traditional Chinese medicine preparation; it is used to decrease the aminotransferase level of the liver and protect liver function. Thus, patients with hepatocellular carcinoma (HCC) are potentially treated with a combination of LEN and WZC, but there is no information about the interaction between the two drugs. We developed a simple, rapid, and sensitive ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for the quantitative determination of lenvatinib in rat plasma. Liquid-liquid extraction of plasma samples was carried out with ethyl acetate. Chromatographic separation of analyte was performed using gradient elution with acetonitrile and 0.1% formic acid water. The positive ion multi-response monitoring mode was used, and the target of the parent and daughter ions of LEN and IS were m/z 427.1→370 and m/z 432.1→370, respectively. All the validation projects were in accordance with the guidelines. Good linearity of 0.2-1000 ng/mL (r > 0.999) was achieved. The lower limit of quantification was 0.2 ng/mL. The precision and accuracy are acceptable. The method was successfully applied to pharmacokinetics and drug interaction analysis. The results show that WZC can significantly increase the Cmax (maximum plasma concentration) and AUC (area under the concentration-time curve) of LEN. An UPLC -MS/MS method that can be used for studying drug-drug interaction as a valuable tool was developed in this study. Drug-drug interactions were observed between the WZC and LEN.
Collapse
Affiliation(s)
- Yanjun Cui
- Graduate School of Hebei Medical University, Shijiazhuang 050017,China; Department of Pharmacy, Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang 050051, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang 050051, China
| | - Liju Fan
- Graduate School of Hebei Medical University, Shijiazhuang 050017,China; Department of Pharmacy, Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang 050051, China
| | - Jing An
- Department of Pharmacy, Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang 050051, China
| | - Xiaonan Wang
- Graduate School of Hebei Medical University, Shijiazhuang 050017,China; Department of Pharmacy, Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang 050051, China
| | - Ran Fu
- Graduate School of Hebei Medical University, Shijiazhuang 050017,China; Department of Pharmacy, Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang 050051, China
| | - Zhanjun Dong
- Department of Pharmacy, Hebei General Hospital, No. 348 West Heping Road, Shijiazhuang 050051, China.
| |
Collapse
|
13
|
Chen L, Ji N, Zhang M, Chen W. The Influence of Wuzhi Capsule on the Pharmacokinetics of Cyclophosphamide. Recent Pat Anticancer Drug Discov 2021; 17:195-203. [PMID: 34758719 DOI: 10.2174/1574892816666211110152119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/15/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cyclophosphamide is approved for the treatment of a variety of tumors, yet the use of cyclophosphamide is limited by kidney and liver toxicity. In the clinic, the Wuzhi capsule is approved to attenuate cyclophosphamide toxicity in the kidney and liver. OBJECTIVE We aimed to investigate the effects of the principal ingredients of Wuzhi capsule, schisandrin A (SIA) and schisantherin A (STA), on the pharmacokinetics of cyclophosphamide. METHODS The essential pharmacokinetic data and physicochemical parameters of SIA, STA, and cyclophosphamide were collected. Physiologically based pharmacokinetic (PBPK) models of SIA, STA, and cyclophosphamide were built in Simcyp Simulator and verified using published clinical pharmacokinetic data. The verified PBPK models were used to predict potential herb-drug interactions (HDIs) between cyclophosphamide and SIA and STA in cancer patients. RESULTS The area under the plasma concentration-time curve (AUC) of cyclophosphamide was increased by 18% and 1% when co-administered with STA and SIA at a single dose, respectively, and increased by 301% and 29% when co-administered with STA and SIA at multiple doses, respectively. The maximum concentration (Cmax) of cyclophosphamide was increased by 75% and 7% when co-administered with STA and SIA at multiple doses, respectively. CONCLUSION The AUC and Cmax of cyclophosphamide were increased when cyclophosphamide was combined with the Wuzhi capsule, compared to cyclophosphamide alone. Our study shows that the adverse drug reactions and toxicity of cyclophosphamide should be closely monitored and an effective dosage adjustment of cyclophosphamide may need to be considered when co-administered with the Wuzhi capsule.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing. China
| | - Ning Ji
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY. United States
| | - Min Zhang
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing. China
| | - Wanyi Chen
- Department of Pharmacy, Chongqing University Cancer Hospital, Chongqing. China
| |
Collapse
|
14
|
Fu Y, Xiao Z, Tian X, Liu W, Xu Z, Yang T, Hu Y, Zhou X, Fang J, Gao S, Zhang D, Mu Y, Zhang H, Hu Y, Huang C, Chen J, Liu P. The Novel Chinese Medicine JY5 Formula Alleviates Hepatic Fibrosis by Inhibiting the Notch Signaling Pathway. Front Pharmacol 2021; 12:671152. [PMID: 34630075 PMCID: PMC8493219 DOI: 10.3389/fphar.2021.671152] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/06/2021] [Indexed: 12/23/2022] Open
Abstract
Advanced liver fibrosis can lead to cirrhosis, resulting in an accelerated risk of hepatocellular carcinoma and liver failure. Fuzheng Huayu formula (FZHY) is a traditional Chinese medicine formula treated liver fibrosis in China approved by a Chinese State Food and Drug Administration (NO: Z20050546), composed of Salvia Miltiorrhiza bge., Prunus davidiana (Carr.) Franch., cultured Cordyceps sinensis (BerK.) Sacc. Mycelia, Schisandra chinensis (Turcz.) Baill., Pinus massoniana Lamb., and Gynostemma pentaphyllum (Thunb.) Makino. However, the main active substances and mechanism of FZHY are unclear. The aim of this study is to identify a novel anti-fibrotic compound, which consists of the main active ingredients of FZHY, and investigate its mechanism of pharmacological action. The main active ingredients of FZHY were investigated by quantitative analysis of FZHY extracts and FZHY-treated plasma and liver in rats. The anti-fibrotic composition of the main active ingredients was studied through uniform design in vivo, and its mechanism was evaluated in carbon tetrachloride (CCl4)- and bile duct ligation (BDL)-induced liver fibrosis models in rats and mice, and transforming growth factor beta 1-induced LX-2 cell activation model in vitro. A novel Chinese medicine, namely JY5 formula, consisting of salvianolic acid B, schisantherin A, and amygdalin, the main active ingredients of FZHY, significantly alleviated hepatic hydroxyproline content and collagen deposition in CCl4-and BDL-induced fibrotic liver in rats and mice. In addition, JY5 inhibited the activation of hepatic stellate cells (HSCs) by inactivating Notch signaling in vitro and in vivo. In this study, we found a novel JY5 formula, which exerted anti-hepatic fibrotic effects by inhibiting the Notch signaling pathway, consequently suppressing HSCs activation. These results provide an adequate scientific basis for clinical research and application of the JY5 formula, which may be a potential novel therapeutic candidate for liver fibrosis.
Collapse
Affiliation(s)
- Yadong Fu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Zhun Xiao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Xiaoting Tian
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Wei Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Zhou Xu
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Tao Yang
- Department of Cardiology, Cardiovascular Research Institute, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yonghong Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Xiaoxi Zhou
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Jing Fang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Siqi Gao
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Dingqi Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yongping Mu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Hua Zhang
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Yiyang Hu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Chenggang Huang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiamei Chen
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| | - Ping Liu
- Key Laboratory of Liver and Kidney Diseases (Ministry of Education), Institute of Liver Diseases, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Shanghai Key Laboratory of Traditional Chinese Clinical Medicine, Shanghai, China
| |
Collapse
|
15
|
Yang Y, Jian Y, Cheng S, Jia Y, Liu Y, Yu H, Cao L, Li B, Peng C, Iqbal Choudhary M, Rahman AU, Wang W. Dibenzocyclooctadiene lignans from Kadsura coccinea alleviate APAP-induced hepatotoxicity via oxidative stress inhibition and activating the Nrf2 pathway in vitro. Bioorg Chem 2021; 115:105277. [PMID: 34426147 DOI: 10.1016/j.bioorg.2021.105277] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/13/2021] [Accepted: 08/16/2021] [Indexed: 02/05/2023]
Abstract
Phytochemical investigation on the roots of Kadsura coccinea led to the isolation five previously unknown dibenzocyclooctadiene lignans, named heilaohusuins A-E (1-5). Their structures determined by NMR spectroscopy, HR-ESI-MS, and ECD spectra. Hepatoprotection effects of a series of dibenzocyclooctadiene derivatives (1-68) were investigated against acetaminophen (APAP) induced HepG2 cells. Compounds 2, 10, 13, 21, 32, 41, 46, and 49 showed remarkable protective effects, increasing the viabilities to > 52.2% (bicyclol, 52.1 ± 1.3%) at 10 μM. The structure-activity relationships (SAR) for hepatoprotective activity were summarized, according to the activity results of dibenzocyclooctadiene derivatives. Furthermore, we found that one new dibenzocyclooctadiene lignan heilaohusuin B attenuates hepatotoxicity, the mechanism might be closely correlated with oxidative stress inhibition via activating the Nrf2 pathway.
Collapse
Affiliation(s)
- Yupei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Shaowu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Key Laboratory of Colleges and Universities in Hunan Province for Cytobiology and Molecular Biotechnology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, PR. China
| | - Yanzhe Jia
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Yongbei Liu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Huanghe Yu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Liang Cao
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China.
| | - Caiyun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China
| | - Muhammad Iqbal Choudhary
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Atta-Ur Rahman
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Atta-ur-Rahman Belt and Road Tradition Medicine Research Center, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan 410208, People's Republic of China; H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan.
| |
Collapse
|
16
|
Fu R, Wang XN, Guo CH, Li Y, Ding CY, Li YJ, Dong ZJ. Wuzhi capsule increased systemic exposure to methotrexate by inhibiting the expression of OAT1/3 and P-gp. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:845. [PMID: 34164479 PMCID: PMC8184478 DOI: 10.21037/atm-21-1303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Methotrexate (MTX) is an important anticancer agent and immunosuppressant with a narrow therapeutic window. Wuzhi capsule (WZC) is an extract of Schisandra which is widely used to treat liver diseases. Co-administration of MTX and WZC is common in the clinical setting, but research on the interaction between WZC and MTX is limited. This study aimed to investigate the effects of WZC on the pharmacokinetics of MTX in rats and to explore the role of membrane transport proteins OAT1/3 and P-gp in the interaction of these drugs. Methods Plasma MTX concentration was detected by ultra-performance liquid chromatography-tandem mass spectrometer (UPLC-MS/MS), and the messenger RNA (mRNA) and protein expression of OAT1/3 and P-gp was evaluated by reverse transcription quantitative polymerase chain reaction (RT-qPCR) and western blotting analyses, respectively. Results The study results revealed that co-administration of WZC decreased the CLz/F and Vz/F of MTX, increased the Cmax and area under the curve [(AUC)0–24 h] of MTX, and inhibited OAT1/3 expression in the kidney and P-gp expression in the small intestine. Conclusions The findings suggested that there is a drug interaction between WZC and MTX and that OAT1/3 in the kidney and P-gp in the small intestine may be the main targets mediating the drug interaction, and attention should be paid when they are used in combination.
Collapse
Affiliation(s)
- Ran Fu
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Xiao-Nan Wang
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Cai-Hui Guo
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Ying Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Cong-Yang Ding
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Ya-Jing Li
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| | - Zhan-Jun Dong
- Department of Pharmacy, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
17
|
Jia YZ, Yang YP, Cheng SW, Cao L, Xie QL, Wang MY, Li B, Jian YQ, Liu B, Peng CY, Wang W. Heilaohuguosus A-S from the fruits of Kadsura coccinea and their hepatoprotective activity. PHYTOCHEMISTRY 2021; 184:112678. [PMID: 33550198 DOI: 10.1016/j.phytochem.2021.112678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/11/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
Phytochemical investigations on the fresh fruits of Kadsura coccinea (Lem.) A. C. Sm. have led to the isolation of fourteen undescribed 2,2'-cyclolignans named heilaohuguosus A-N, four undescribed aryltetrahydronaphthalene lignans, heilaohuguosus O-R and one tetrahydrofuran lignan, heilaohuguosu S, with twenty-seven previously described lignan analogues. Their structures and absolute configurations of heilaohuguosus A-S were established by spectroscopic methods including 1D and 2D-NMR techniques and CD experiments. All isolated compounds were evaluated for their hepatoprotective activity against APAP-induced toxicity in HepG-2 cells, four 2,2'-cyclolignans, heilaohuguosus A and L, tiegusanin I and kadsuphilol I showed good hepatoprotective activities against APAP toxicity in HepG-2 cells with cell survival rates of 53.5 ± 1.7%, 55.2 ± 1.2%, 52.5 ± 2.4%, and 54.0 ± 2.2% (positive control bicyclol, 52.1 ± 1.3%) at 10 μM, respectively.
Collapse
Affiliation(s)
- Yan-Zhe Jia
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Yu-Pei Yang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Shao-Wu Cheng
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, Key Laboratory of Colleges and Universities in Hunan Province for Cytobiology and Molecular Biotechnology, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Liang Cao
- Institute of Agriculture Environment and Agroecology, Hunan Academy of Agriculture Sciences, Changsha, 410125, PR China.
| | - Qing-Ling Xie
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Meng-Yun Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Bin Li
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Yu-Qing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, PR China.
| | - Cai-Yun Peng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, 410208, PR China.
| |
Collapse
|
18
|
Yan C, Guo H, Ding Q, Shao Y, Kang D, Yu T, Li C, Huang H, Du Y, Wang H, Hu K, Xie L, Wang G, Liang Y. Multiomics Profiling Reveals Protective Function of Schisandra Lignans against Acetaminophen-Induced Hepatotoxicity. Drug Metab Dispos 2020; 48:1092-1103. [PMID: 32719086 DOI: 10.1124/dmd.120.000083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/30/2020] [Indexed: 12/13/2022] Open
Abstract
The action principles of traditional Chinese medicines (TCMs) feature multiactive components, multitarget sites, and weak combination with action targets. In the present study, we performed an integrated analysis of metabonomics, proteomics, and lipidomics to establish a scientific research system on the underlying mechanism of TCMs, and Schisandra lignan extract (SLE) was selected as a model TCM. In metabonomics, several metabolic pathways were found to mediate the liver injury induced by acetaminophen (APAP), and SLE could regulate the disorder of lipid metabolism. The proteomic study further proved that the hepatoprotective effect of SLE was closely related to the regulation of lipid metabolism. Indeed, the results of lipidomics demonstrated that SLE dosing has an obvious callback effect on APAP-induced lipidic profile shift. The contents of 25 diglycerides (DAGs) and 21 triglycerides (TAGs) were enhanced significantly by APAP-induced liver injury, which could further induce liver injury and inflammatory response by upregulating protein kinase C (PKCβ, PKCγ, PKCδ, and PKCθ). The upregulated lipids and PKCs could be reversed to the normal level by SLE dosing. More importantly, phosphatidic acid phosphatase, fatty acid transport protein 5, and diacylglycerol acyltransferase 2 were proved to be positively associated with the regulation of DAGs and TAGs. SIGNIFICANCE STATEMENT: Integrated multiomics was first used to reveal the mechanism of APAP-induced acute liver failure (ALF) and the hepatoprotective role of SLE. The results showed that the ALF caused by APAP was closely related to lipid regulation and that SLE dosing could exert a hepatoprotective role by reducing intrahepatic diglyceride and triglyceride levels. Our research can not only promote the application of multicomponent technology in the study of the mechanism of traditional Chinese medicines but also provide an effective approach for the prevention and treatment of ALF.
Collapse
Affiliation(s)
- Caixia Yan
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Huimin Guo
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Qingqing Ding
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Yuhao Shao
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Dian Kang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Tengjie Yu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Changjian Li
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Haoran Huang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Yisha Du
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - He Wang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Kangrui Hu
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Lin Xie
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Guangji Wang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| | - Yan Liang
- Key Laboratory of Drug Metabolism & Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, P.R. China (C.Y., H.G., Y.S., D.K., T.Y., C.L., H.H., Y.D., H.W., K.H., L.X., G.W., Y.L.) and Department of Geriatric Oncology, First Affiliated Hospital of Nanjing Medical University (Jiangsu People's Hospital), Nanjing, P.R. China (Q.D.)
| |
Collapse
|
19
|
Cheng L, Yang Z, Sun Z, Zhang W, Ren Y, Wang M, Han X, Fei L, Zhao Y, Pan H, Xie J, Nie S. Schizandrin B Mitigates Rifampicin-Induced Liver Injury by Inhibiting Endoplasmic Reticulum Stress. Biol Pharm Bull 2020; 43:145-152. [DOI: 10.1248/bpb.b19-00725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Ling Cheng
- Nanjing University of Chinese Medicine
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
- The First Affiliated Hospital of Anhui University of Chinese Medicine
| | - Zhizhou Yang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Zhaorui Sun
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Wei Zhang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Yi Ren
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Mengmeng Wang
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Xiaoqin Han
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Libo Fei
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Yang Zhao
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Hui Pan
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Ji Xie
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| | - Shinan Nie
- Nanjing University of Chinese Medicine
- Department of Emergency Medicine, Jinling Hospital, Medical School of Nanjing University
| |
Collapse
|
20
|
Jaccob AA, Ahmed ZH, Aljasani BM. Vitamin C, omega-3 and paracetamol pharmacokinetic interactions using saliva specimens as determiners. J Basic Clin Physiol Pharmacol 2019; 30:jbcpp-2019-0011. [PMID: 31393833 DOI: 10.1515/jbcpp-2019-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 07/08/2019] [Indexed: 12/25/2022]
Abstract
Background With its low side effects profile and availability as an over-the-counter drug, paracetamol has been utilized extensively worldwide as an antipyretic and analgesic agent for decades. This is associated with the increasing concern over its ease of access and/or unawareness of the consumers to this issue of paracetamol-induced hepatotoxicity. Paracetamol-induced liver injury today is a big problem where most of the researchers are interested in the possible role of the naturally available antioxidants to ameliorate hepatotoxicity through kinetic interference. So the present study was designed to evaluate the effect of vitamin C and omega-3 on the pharmacokinetic property of paracetamol. Methods Six young (average age 29) healthy volunteers participated in the study. The study included three consecutive periods, each of which preceded by overnight fasting and separated by 6 day washout periods. The first period involved the ingestion of a single paracetamol dose. The second one included the ingestion of paracetamol and vitamin C concomitantly, and the final period included paracetamol plus omega-3. Saliva samples were collected and prepared for High-performance liquid chromatography analysis. Results There was a significant increase in saliva paracetamol level after 30 min of administration when given concomitantly with vitamin C compared with the remaining groups. No significant differences in the paracetamol concentration profile between the subjects for each group were observed at 60, 90, 120 and 150 min in all treated groups. Conclusion Concurrent administration of vitamin C with paracetamol increases significantly the Cmax level (maximum measured concentration) in saliva and increases the extent of absorption and the possibility of drug-drug interaction and risk of side effects.
Collapse
Affiliation(s)
- Ausama Ayob Jaccob
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| | - Zainab Haroon Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| | - Baan Majid Aljasani
- Department of Pharmacology and Toxicology, College of Pharmacy, Basrah University, Basrah City, Iraq
| |
Collapse
|