1
|
de Menezes RPB, de Assis EB, de Sousa NF, de Souza JMS, da França Rodrigues KA, Scotti L, Tavares JF, da Silva MS, Scotti MT. Exploring Lamiaceae diterpenoids as potential multitarget therapeutics for leishmaniasis and chagas disease. Mol Divers 2025:10.1007/s11030-025-11200-y. [PMID: 40287545 DOI: 10.1007/s11030-025-11200-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/13/2025] [Indexed: 04/29/2025]
Abstract
Neglected tropical diseases such as Leishmaniasis and Chagas disease remain critical public health challenges. This study applied ligand-based virtual screening to a dataset of 4,150 secondary metabolites from the Lamiaceae family, aiming to identify multitarget molecules against four Leishmania species (L. infantum, L. donovani, L. amazonensis, and L. braziliensis) and Trypanosoma cruzi forms. Random forest models exhibited high accuracy (over 72%), leading to the identification of 82 molecules with potential multitarget activity across five of six predictive models. Nineteen prioritized molecules were subjected to molecular docking simulations targeting key enzymes-including sterol 14-alpha demethylase, glucose-6-phosphate dehydrogenase, dihydroorotate dehydrogenase, nucleoside diphosphate kinase, tryparedoxin peroxidase, and cruzain-with compounds 12, 18, and 19 exhibiting a high binding affinity across multiple targets. In vitro assays confirmed the predicted activity of selected molecules (3, 4, and 5) against Leishmania and T. cruzi. Importantly, these molecules represent novel findings, with antileishmanial or antitrypanosomal activities that have not been previously reported. The results highlight their potential as multitarget therapeutic candidates for neglected tropical diseases, paving the way for further biological evaluation and development.
Collapse
Affiliation(s)
- Renata Priscila Barros de Menezes
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Edileuza Bezerra de Assis
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Natália Ferreira de Sousa
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | | | | | - Luciana Scotti
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Josean Fechine Tavares
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcelo Sobral da Silva
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil
| | - Marcus Tullius Scotti
- Programa de Pós-Graduação Em Produtos Naturais E Sintéticos Bioativos, Universidade Federal da Paraíba, João Pessoa, PB, 58051-900, Brazil.
| |
Collapse
|
2
|
Meirelles GDC, Bridi H, Santana Filho PC, Reiter KC, Dos Passos AAZ, Dorneles GP, Bordignon S, Rodrigues Júnior LC, Schripsema J, Romão PRT, von Poser GL. Anti-Leishmania effect of icetexanes from Salvia procurrens. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155796. [PMID: 38852475 DOI: 10.1016/j.phymed.2024.155796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Abstract
BACKGROUND AND PURPOSE Leishmaniasis is a globally prevalent vector-borne disease caused by parasites of the genus Leishmania. The available chemotherapeutic drugs present problems related to efficacy, emergence of parasite resistance, toxicity and high cost, justifying the search for new drugs. Several classes of compounds have demonstrated activity against Leishmania, including icetexane-type diterpenes, previously isolated from Salvia and other Lamiaceae genera. Thus, in this study, compounds of Salvia procurrens were investigated for their leishmanicidal and immunomodulatory activities. METHODS The exudate of S. procurrens was obtained by rapidly dipping the aerial parts in dichloromethane. The compounds were isolated by column and centrifugal planar chromatography over silica gel. The effects on L. amazonensis growth, survival, membrane integrity, reactive oxygen species (ROS) generation, mitochondrial membrane potential and cytotoxicity of the compounds towards human erythrocytes, peripheral blood mononuclear cells and macrophages were evaluated. The effects on intracellular amastigote forms, nitric oxide (NO) and TNF-α production were also investigated. RESULTS The exudate from the leaves afforded the novel icetexane 7-hydroxyfruticulin A (1) as well as the known demethylisofruticulin A (2), fruticulin A (3) and demethylfruticulin A (4). The compounds (1-4) were tested against promastigotes of L. amazonensis and showed an effective inhibition of the parasite survival (IC50 = 4.08-16.26 μM). In addition, they also induced mitochondrial ROS production, plasma membrane permeability and mitochondrial dysfunction in treated parasites, and presented low cytotoxicity against macrophages. Furthermore, all diterpenes tested reduced the number of parasites inside macrophages, by mechanisms involving TNF-α, NO and ROS. CONCLUSION The results suggest the potential of 7-hydroxyfruticulin A (1) as well as the known demethylisofruticulin A (2),fruticulin A (3) and demethylfruticulin A (4) as candidates for use in further studies on the design of anti-leishmanial drugs.
Collapse
Affiliation(s)
- Gabriela de Carvalho Meirelles
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Henrique Bridi
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Paulo Cesar Santana Filho
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Keli Cristine Reiter
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Aline Aparecida Zonin Dos Passos
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Gilson Pires Dorneles
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Sérgio Bordignon
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Luiz Carlos Rodrigues Júnior
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil
| | - Jan Schripsema
- Grupo Metabolômica, Universidade Estadual do Norte Fluminense, 28013-602 Campos dos Goytacazes, Rio de Janeiro, RJ, Brasil
| | - Pedro Roosevelt Torres Romão
- Laboratório de Imunologia Celular e Molecular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, RS, Brasil.
| | - Gilsane Lino von Poser
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil.
| |
Collapse
|
3
|
Libardi SH, Ahmad A, Ferreira FB, Oliveira RJ, Caruso ÍP, Melo FA, de Albuquerque S, Cardoso DR, Burtoloso ACB, Borges JC. Interaction between diterpene icetexanes and old yellow enzymes of Leishmania braziliensis and Trypanosoma cruzi. Int J Biol Macromol 2024; 259:129192. [PMID: 38216013 DOI: 10.1016/j.ijbiomac.2023.129192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 12/21/2023] [Accepted: 12/31/2023] [Indexed: 01/14/2024]
Abstract
Old Yellow Enzymes (OYEs) are flavin-dependent redox enzymes that promote the asymmetric reduction of activated alkenes. Due to the high importance of flavoenzymes in the metabolism of organisms, the interaction between OYEs from the parasites Trypanosoma cruzi and Leishmania braziliensis and three diterpene icetexanes (brussonol and two analogs), were evaluated in the present study, and differences in the binding mechanism and inhibition capacity of these molecules were examined. Although the aforementioned compounds showed poor and negligible activities against T. cruzi and L. braziliensis cells, respectively, the experiments with the purified enzymes indicated that the interaction occurs by divergent mechanisms. Overall, the ligands' inhibitory effect depends on their accessibility to the N5 position of the flavin's isoalloxazine ring. The results also indicated that the OYEs found in both parasites share structural similarities and showed affinities for the diterpene icetexanes in the same range. Nevertheless, the interaction between OYEs and ligands is directed by enthalpy and/or entropy in distinct ways. In conclusion, the binding site of both OYEs exhibits remarkable plasticity, and a large range of different molecules, including that can be substrates and inhibitors, can bind this site. This plasticity should be considered in drug design using OYE as a target.
Collapse
Affiliation(s)
- Silvia H Libardi
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Anees Ahmad
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | | | - Ronaldo J Oliveira
- Instituto de Ciências Exatas, Naturais e Educação, Universidade Federal do Triângulo Mineiro, 38064-200 Uberaba, MG, Brazil
| | - Ícaro P Caruso
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil; Instituto de Bioquímica Médica Leopoldo de Meis and Centro Nacional para Biologia Estrutural e Bioimagem, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| | - Fernando A Melo
- Instituto de Biociências, Letras e Ciências Exatas (IBILCE) - UNESP, 15054-000 São José do Rio Preto, SP, Brazil
| | - Sergio de Albuquerque
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo - USP, Ribeirão Preto, SP CEP 14040-903, Brazil
| | - Daniel R Cardoso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil
| | - Júlio C Borges
- Instituto de Química de São Carlos, Universidade de São Paulo - USP, 13560-970 São Carlos, SP, Brazil.
| |
Collapse
|
4
|
Rodrigues ACJ, Carloto ACM, Gonçalves MD, Concato VM, Detoni MB, dos Santos YM, Cruz EMS, Madureira MB, Nunes AP, Pires MFMK, Santos NC, Marques REDS, Bidoia DL, Borges Figueiredo F, Pavanelli WR. Exploring the leishmanicidal potential of terpenoids: a comprehensive review on mechanisms of cell death. Front Cell Infect Microbiol 2023; 13:1260448. [PMID: 37799331 PMCID: PMC10550302 DOI: 10.3389/fcimb.2023.1260448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 08/24/2023] [Indexed: 10/07/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease with a wide spectrum of clinical manifestations, ranging from visceral to cutaneous, with millions of new cases and thousands of deaths reported each year. The species of Leishmania and the immune response of the host determine the severity of the disease. Leishmaniasis remains challenging to diagnose and treat, and there is no vaccine available. Several studies have been conducted on the use of herbal medicines for the treatment of leishmaniasis. Natural products can provide an inexhaustible source of chemical diversity with therapeutic potential. Terpenes are a class of natural products derived from a single isoprene unit, a five-carbon compound that forms the basic structure of isoprenoids. This review focuses on the most important and recent advances in the treatment of parasites of the genus Leishmania with different subclasses of terpenes. Several mechanisms have been proposed in the literature, including increased oxidative stress, immunomodulatory role, and induction of different types of parasite cell death. However, this information needs to be brought together to provide an overview of how these compounds can be used as therapeutic tools for drug development and as a successful adjuvant strategy against Leishmania sp.
Collapse
Affiliation(s)
- Ana Carolina Jacob Rodrigues
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
- Cell Biology Laboratory, Carlos Chagas Institute- Fiocruz, Curitiba, Brazil
| | - Amanda Cristina Machado Carloto
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Virgínia Márcia Concato
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Mariana Barbosa Detoni
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Yasmin Munhoz dos Santos
- Laboratory of Experimental Immunoparasitology, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Ellen Mayara Souza Cruz
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Maria Beatriz Madureira
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Angélica Paulina Nunes
- Laboratory for Metabolic Disorders of Reproduction, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Maria Fernanda Maya Kuriki Pires
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | - Natália Concimo Santos
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Danielle Lazarin Bidoia
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| | | | - Wander Rogério Pavanelli
- Laboratory of Immunoparasitology of Neglected Diseases and Cancer, Department of Pathological Sciences, State University of Londrina, Londrina, Brazil
| |
Collapse
|
5
|
Santana Filho PC, Brasil da Silva M, Malaquias da Silva BN, Fazolo T, Dorneles GP, Braun de Azeredo J, Alf da Rosa M, Rodrigues Júnior LC, Peres A, Santos Canto RF, Torres Romão PR. Seleno-indoles trigger reactive oxygen species and mitochondrial dysfunction in Leishmania amazonensis. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
6
|
Baldissera FG, Fazolo T, da Silva MB, de Santana Filho PC, da Silva VD, Rivillo Perez DM, Klitzke JS, de Oliveira Soares EG, Rodrigues Júnior LC, Peres A, Dallegrave E, Navegantes-Lima KC, Monteiro MC, Schrekker HS, Torres Romão PR. Imidazolium salts as an alternative for anti-Leishmania drugs: Oxidative and immunomodulatory activities. Front Immunol 2023; 13:1096312. [PMID: 36733394 PMCID: PMC9886892 DOI: 10.3389/fimmu.2022.1096312] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/30/2022] [Indexed: 01/18/2023] Open
Abstract
In this study we explored the previously established leishmanicidal activity of a complementary set of 24 imidazolium salts (IS), 1-hexadecylimidazole (C16Im) and 1-hexadecylpyridinium chloride (C16PyrCl) against Leishmania (Leishmania) amazonensis and Leishmania (Leishmania) infantum chagasi. Promastigotes of L. amazonensis and L. infantum chagasi were incubated with 0.1 to 100 μM of the compounds and eight of them demonstrated leishmanicidal activity after 48 h - C10MImMeS (IC50 L. amazonensis = 11.6), C16MImPF6(IC50 L. amazonensis = 6.9), C16MImBr (IC50 L. amazonensis = 6), C16M2ImCl (IC50 L. amazonensis = 4.1), C16M4ImCl (IC50 L. amazonensis = 1.8), (C10)2MImCl (IC50 L. amazonensis = 1.9), C16Im (IC50 L. amazonensis = 14.6), and C16PyrCl (IC50 L. amazonensis = 4).The effect of IS on reactive oxygen species production, mitochondrial membrane potential, membrane integrity and morphological alterations of promastigotes was determined, as well as on L. amazonensis-infected macrophages. Their cytotoxicity against macrophages and human erythrocytes was also evaluated. The IS C10MImMeS, C16MImPF6, C16MImBr, C16M2ImCl, C16M4ImCl and (C10)2MImCl, and the compounds C16Im and C16PyrCl killed and inhibited the growth of promastigote forms of L. amazonensis and L. infantum chagasi in a concentration-dependent manner, contributing to a better understanding of the structure-activity relationship of IS against Leishmania. These IS induced ROS production, mitochondrial dysfunction, membrane disruption and morphological alterations in infective forms of L. amazonensis and killed intracellular amastigote forms in very low concentrations (IC50 amastigotes ≤ 0.3), being potential drug candidates against L. amazonensis.
Collapse
Affiliation(s)
- Fernanda Giesel Baldissera
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil,Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Tiago Fazolo
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil,Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Matheus Brasil da Silva
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Paulo Cesar de Santana Filho
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Vinícius Demétrio da Silva
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - David Max Rivillo Perez
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Joice Sandra Klitzke
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Eduardo Giovanni de Oliveira Soares
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Luiz Carlos Rodrigues Júnior
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil,Graduate Program in Pharmaceutical Science, Graduate Program in Neuroscience and Cellular Biology, Faculty of Pharmacy, Universidade Federal do Pará, Belém, PA, Brazil
| | - Alessandra Peres
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil,Graduate Program in Pharmaceutical Science, Graduate Program in Neuroscience and Cellular Biology, Faculty of Pharmacy, Universidade Federal do Pará, Belém, PA, Brazil
| | - Eliane Dallegrave
- Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Kely Campos Navegantes-Lima
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Marta Chagas Monteiro
- Graduate Program in Biosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil,*Correspondence: Henri Stephan Schrekker, ; Marta Chagas Monteiro,
| | - Henri Stephan Schrekker
- Laboratory of Technological Processes and Catalysis, Institute of Chemistry, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil,*Correspondence: Henri Stephan Schrekker, ; Marta Chagas Monteiro,
| | - Pedro Roosevelt Torres Romão
- Laboratory of Cellular and Molecular Immunology, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil,Graduate Program in Health Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil,Graduate Program in Pharmaceutical Science, Graduate Program in Neuroscience and Cellular Biology, Faculty of Pharmacy, Universidade Federal do Pará, Belém, PA, Brazil
| |
Collapse
|
7
|
Naeini AA, Ziegelmeier AA, Chain WJ. Recent Developments with Icetexane Natural Products. Chem Biodivers 2022; 19:e202200793. [PMID: 36215180 PMCID: PMC11067433 DOI: 10.1002/cbdv.202200793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022]
Abstract
Icetexane diterpenoids are a diverse family of natural products sourced from several species of terrestrial plants. Icetexanes exhibit a broad array of biological activities and together with their complex 6-7-6 tricyclic scaffolds, they have piqued the interest of synthetic organic chemists, natural products chemists, and biological investigators over the past four decades and were reviewed 13 years ago. This review summarizes icetexane natural products isolated since 2009, provides an overview of new synthetic approaches to the icetexane problem, and proposes an additional classification of icetexanes based on novel structures that are unlike previously isolated materials.
Collapse
Affiliation(s)
- Ali Amiri Naeini
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - Alexandre A Ziegelmeier
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| | - William J Chain
- Department of Chemistry & Biochemistry, University of Delaware, Newark, DE 19716, United States
| |
Collapse
|
8
|
Synthesis, Structure−Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New Plasmodium falciparum Inhibitors. Pharmaceuticals (Basel) 2022; 15:ph15070814. [PMID: 35890113 PMCID: PMC9321043 DOI: 10.3390/ph15070814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/17/2022] Open
Abstract
Malaria is a parasitic disease caused by protozoan parasites from the genus Plasmodium. Plasmodium falciparum is the most prevalent species worldwide and the causative agent of severe malaria. The spread of resistance to the currently available antimalarial therapy is a major concern. Therefore, it is imperative to discover and develop new antimalarial drugs, which not only treat the disease but also control the emerging resistance. Brussonol is an icetexane derivative and a member of a family of diterpenoids that have been isolated from several terrestrial plants. Here, the synthesis and antiplasmodial profiling of a series of brussonol derivatives are reported. The compounds showed inhibitory activities in the low micromolar range against a panel of sensitive and resistant P. falciparum strains (IC50s = 5-16 μM). Moreover, brussonol showed fast-acting in vitro inhibition and an additive inhibitory behavior when combined with the antimalarial artesunate (FICindex~1). The mode of action investigation indicated that brussonol increased the cytosolic calcium levels within the parasite. Hence, the discovery of brussonol as a new scaffold endowed with antiplasmodial activity will enable us to design derivatives with improved properties to deliver new lead candidates for malaria.
Collapse
|
9
|
Ortiz-Mendoza N, Aguirre-Hernández E, Fragoso-Martínez I, González-Trujano ME, Basurto-Peña FA, Martínez-Gordillo MJ. A Review on the Ethnopharmacology and Phytochemistry of the Neotropical Sages ( Salvia Subgenus Calosphace; Lamiaceae) Emphasizing Mexican Species. Front Pharmacol 2022; 13:867892. [PMID: 35517814 PMCID: PMC9061990 DOI: 10.3389/fphar.2022.867892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Salvia is the most diverse genus within the mint family (Lamiaceae), many of its species are well-known due to their medicinal and culinary uses. Most of the ethnopharmacological and phytochemical studies on Salvia are centred on species from the European and Asian clades. However, studies about the most diverse clade, the Neotropical sages (Salvia subgenus Calosphace; 587 spp.), are relatively scarce. This review aims to compile the information on the traditional medicinal uses, pharmacological and phytochemistry properties of the Neotropical sages. To do so, we carried out a comprehensive review of the articles available in different online databases published from the past to 2022 (i.e., PubMed, Scopus, and Web of Science, among others) and summarized the information in tables. To uncover phylogenetic patterns in the distribution of four different groups of metabolites (mono-, sesqui-, di-, and triterpenes), we generated presence-absence matrices and plotted the tip states over a dated phylogeny of Salvia. We found several studies involving Mexican species of Salvia, but only a few about taxa from other diversity centres. The main traditional uses of the Mexican species of Calosphace are medicinal and ceremonial. In traditional medicine 56 species are used to treat diseases from 17 categories according to the WHO, plus cultural-bound syndromes. Pharmacological studies reveal a wide range of biological properties (e.g., antinociceptive, anti-inflammatory, anxiolytic, cytotoxic, and antidiabetic, etc.) found in extracts and isolated compounds of 38 Neotropical sages. From extracts of these species, at least 109 compounds have been isolated, identified and evaluated pharmacologically; 73 of these compounds are clerodanes, 21 abietanes, six flavonoids, five sesquiterpenoids, and four triterpenoids. The most characteristic metabolites found in the Neotropical sages are the diterpenes, particularly clerodanes (e.g., Amarisolide A, Tilifodiolide), that are found almost exclusively in this group. The Neotropical sages are a promising resource in the production of herbal medication, but studies that corroborate the properties that have been attributed to them in traditional medicine are scarce. Research of these metabolites guided by the phylogenies is recommended, since closely related species tend to share the presence of similar compounds and thus similar medicinal properties.
Collapse
Affiliation(s)
- Nancy Ortiz-Mendoza
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Eva Aguirre-Hernández
- Laboratorio de Productos Naturales, Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - María Eva González-Trujano
- Laboratorio de Neurofarmacología de Productos Naturales, Dirección de Investigaciones en Neurociencias del Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Francisco A. Basurto-Peña
- Jardin Botánico, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Martha J. Martínez-Gordillo
- Departamento de Biología Comparada, Herbario de la Facultad de Ciencias, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
10
|
Maciel MSP, Reis ASD, Fidelis QC. Antileishmanial potential of species from the family Lamiaceae: chemical and biological aspects of non-volatile compounds. Acta Trop 2022; 228:106309. [PMID: 35032468 DOI: 10.1016/j.actatropica.2022.106309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 01/08/2022] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Leishmaniasis is a neglected tropical disease present in more than 90 countries and annually affects about 1 million people worldwide. It is caused by the genus Leishmania protozoa that are transmitted to humans by insect bites. This disease is a serious public health problem, which can cause death, disability, and mutilation. The drugs used in treatment have high toxicity, low efficiency, high costs, and possible antiparasitic resistance. Medicinal plant-based treatments have been used for leishmaniasis by population from endemic areas. Among the main botanical families used against leishmaniasis, in different parts of the world, the family Lamiaceae stands out. In this review, the antileishmanial activity of extracts, fractions, and non-volatile compounds of Lamiaceae species are presented. Leishmania species present in the Old and New World were evaluated and discussed. Altogether there are forty-two Lamiaceae species, belonging to twenty-six genera, and ninety-one constituents, isolated from eighteen species of this family, verified in antileishmanial assays. Chemical and biological aspects of extracts, fractions and non-volatile constituents are discussed in order to define a profile of antileishmanial plants of this family, based on the antileishmanial activities results. Notes are presented to guide future investigations to expand chemical and biological knowledge of Lamiaceae species and highlight its most promising antileishmanial agents.
Collapse
Affiliation(s)
- Maria Simone Pereira Maciel
- Program in Health and Technology, Center for Social Science, Health and Technology, Federal University of Maranhão, Av. Da Universidade, S/N, Dom Afonso Felipe Gregory, Imperatriz, Maranhão, Brazil, 65915-240
| | - Aramys Silva Dos Reis
- Department of Medicine, Center for Social Sciences, Health and Technology, Federal University of Maranhão, Av. Da Universidade, S/N, Dom Afonso Felipe Gregory, Imperatriz, Maranhão, Brazil, 65915-240
| | - Queli Cristina Fidelis
- Department of Science and Technology, Balsas Campus, Federal University of Maranhão, Balsas, Maranhão, Brazil, 65800-000.
| |
Collapse
|
11
|
Uncommon Terpenoids from Salvia Species: Chemistry, Biosynthesis and Biological Activities. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27031128. [PMID: 35164392 PMCID: PMC8838292 DOI: 10.3390/molecules27031128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/05/2022] [Accepted: 02/06/2022] [Indexed: 11/20/2022]
Abstract
The search for new bioactive compounds from plant sources has been and continues to be one of the most important fields of research in drug discovery. However, Natural Products research has continuously evolved, and more and more has gained a multidisciplinary character. Despite new developments of methodologies and concepts, one intriguing aspect still persists, i.e., different species belonging to the same genus can produce different secondary metabolites, whereas taxonomically different genera can produce the same compounds. The genus Salvia L. (Family Lamiaceae) comprises myriad distinct medicinal herbs used in traditional medicine worldwide that show different pharmacological activities due to the presence of a variety of interesting specialized metabolites, including mono-, sesqui-, di-, sester-, tri-, tetra-, and higher terpenoids as well as phenylpropanoids, phenolic acid derivatives, lignans, flavonoids, and alkaloids. We herein summarize the research progress on some uncommon terpenoids, isolated from members of the genus Salvia, which are well recognized for their potential pharmacological activities. This review also provides a current knowledge on the biosynthesis and occurrence of some interesting phytochemicals from Salvia species, viz. C23-terpenoids, sesterterpenoids (C25), dammarane triterpenoids (C30), and uncommon triterpenoids (C20+C10). The study was carried out by searching various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, and ProQuest. Therefore, 106 uncommon terpenoids were identified and summarized. Some of these compounds possessed a variety of pharmacological properties, such as antibacterial, antiviral, antiparasitic, cytotoxic and tubulin tyrosine ligase inhibitory activities. Due to the lack of pharmacological information for the presented compounds gathered from previous studies, biological investigation of these compounds should be reinvestigated.
Collapse
|
12
|
Xu JB, Xie XY, Zhou QQ, Zhu JY. Abieshanesides A and B, two unique ent-18,19-dinoricetexane diterpenoid glycosides from Abies beshanzuensis M.H. Wu. Fitoterapia 2021; 156:105096. [PMID: 34883224 DOI: 10.1016/j.fitote.2021.105096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/24/2022]
Abstract
Two unprecedented ent-18,19-dinoricetexane diterpenoid glycosides, named abieshanesides A (1) and B (2), together with seven known compounds, have been isolated from the dead trunks and branches of Abies beshanzuensis M.H. Wu. To our knowledge, abieshanesides A and B represent the first ent-18,19-dinoricetexane diterpenoid glycosides found in natural sources. Their structures and absolute configurations were elucidated by using a combination of spectroscopic techniques and comparison of experimental and calculated electronic circular dichroism (ECD) data. The MTT experiments showed that (E)-resveratrol (7) could inhibit viability of MH7A cells with the IC50 value of 12.5 μM. Compound 7 was able to block MH7A cell proliferation and was associated with G0/G1-phase cell cycle arrest. Flow cytometric analysis showed that the treatment by 7 significantly induced the proliferation of MH7A cells in a dose-dependent manner.
Collapse
Affiliation(s)
- Jin-Biao Xu
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Xiao-Yan Xie
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qing-Qing Zhou
- Department of Pharmacy, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of pharmacy, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jian-Yong Zhu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| |
Collapse
|
13
|
Campos-Xolalpa N, Alonso-Castro ÁJ, Ortíz-Sanchez E, Zapata-Morales JR, González-Chávez MM, Pérez S. Anti-inflammatory and antitumor activities of the chloroform extract and anti-inflammatory effect of the three diterpenes isolated from Salvia ballotiflora Benth. BMC Complement Med Ther 2021; 21:17. [PMID: 33413289 PMCID: PMC7791881 DOI: 10.1186/s12906-020-03179-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/07/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Drugs used for the treatment of diseases associated with chronic inflammation, such as cancer and rheumatoid arthritis have the potential to cause undesirable side-effects, which might result in patients ending treatment prematurely. However, plants are a viable option for the treatment of inflammatory diseases. In this study, we assessed the in vivo and in vitro anti-inflammatory activity, and the antitumor effects of the chloroform extract of Salvia ballotiflora (ECL). The pro-apoptotic effects of ECL in CT26 cells were also determined. METHODS The chloroform extract of Salvia ballotiflora (ECL) was standardized using 19-deoxyicetexone (DEOX) as a phytochemical marker. The anti-inflammatory activity of ECL was determined on acute and chronic inflammatory models using the TPA-induced mouse ear edema assay. The antitumor activity of ECL was evaluated by the subcutaneous inoculation of CT26 cells on the back of Balb/c mice. In vitro CT26 cell death induced by ECL was determined by Annexin V/propidium iodide staining assay using flow cytometry. ECL and the diterpenes isolated from the chloroform extract included 19-deoxyicetexone (DEOX), icetexone (ICT), and 7,20-dihydroanastomosine (DAM), which were tested in LPS-stimulated J774A.1 macrophages to quantify pro-inflammatory cytokine levels. The in vitro anti-arthritic activity of ECL was determined using the bovine serum protein (BSP) denaturation assay. RESULTS ECL exerted anti-inflammatory activities in acute (84% of inhibition, 2 mg/ear) and chronic models (62.71%, at 100 mg/kg). ECL showed antitumor activity at 200 mg/kg and 300 mg/kg, reducing tumor volume by 30 and 40%, respectively. ECL (9.5 μg/mL) induced in vitro apoptosis in CT26 cells by 29.1% (48 h of treatment) and 93.9% (72 h of treatment). ECL (10 μg/ml) decreased levels of NO (53.7%), pro-inflammatory cytokines IL-6 (44.9%), IL-1β (71.9%), and TNF-α (40.1%), but increased the production of the anti-inflammatory cytokine IL-10 (44%). The diterpenes DEOX, ICT, and DAM decreased levels of NO (38.34, 47.63, 67.15%), IL-6 (57.84, 60.45, 44.26%), and TNF-α (38.90, 31.30, 32.83%), respectively. ECL showed in vitro antiarthritic activity (IC50 = 482.65 μg/mL). CONCLUSIONS ECL exhibited anti-inflammatory and anti-tumor activities. Furthermore, the diterpenes DEOX, DAM, and ICT showed anti-inflammatory activity by reducing levels of NO, TNF-α, and IL-6.
Collapse
Affiliation(s)
- Nimsi Campos-Xolalpa
- Doctorado en Ciencias Biólogicas y de la Salud, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Delegación Coyoacán, CP 04960, Ciudad de México, Mexico
| | - Ángel Josabad Alonso-Castro
- Departament of Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N C.P, 36050, Guanajuato, GTO, Mexico
| | - Elizabeth Ortíz-Sanchez
- Instituto Nacional de Cancerología, Subdirección de Investigación Básica, Av. San Fernando 22, Belisario Domínguez, 14080, CDMX, CO, Mexico
| | - Juan Ramon Zapata-Morales
- Departament of Farmacia, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Noria Alta S/N C.P, 36050, Guanajuato, GTO, Mexico
| | - Marco Martin González-Chávez
- Centro de Investigación y Estudios de Posgrado, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, Zona Universitaria, 78210, San Luis Potosí, SLP, Mexico
| | - Salud Pérez
- Department of Sistemas Biológicos, Universidad Autónoma Metropolitana-Xochimilco, Calzada del Hueso 1100, Col. Villa Quietud, Delegación Coyoacán, CP 04960, Ciudad de México, Mexico.
| |
Collapse
|
14
|
Zheng G, Kadir A, Zheng X, Jin P, Liu J, Maiwulanjiang M, Yao G, Aisa HA. Spirodesertols A and B, two highly modified spirocyclic diterpenoids with an unprecedented 6-isopropyl-3H-spiro[benzofuran-2,1′-cyclohexane] motif from Salvia deserta. Org Chem Front 2020. [DOI: 10.1039/d0qo00735h] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Two highly modified spirocyclic diterpenoids with an unprecedented 6-isopropyl-3H-spiro[benzofuran-2,1′-cyclohexane] motif and four new icetexane diterpenoids were isolated from Salvia deserta. 1 showed more potent cytotoxicity than cis-platin.
Collapse
Affiliation(s)
- Guijuan Zheng
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| | - Abdukriem Kadir
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| | - Xiaofeng Zheng
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan, Hubei 430030
| | - Pengfei Jin
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan, Hubei 430030
| | - Junjun Liu
- Hubei Key Laboratory of Natural Medicinal Chemistry and Resource Evaluation
- School of Pharmacy
- Tongji Medical College
- Huazhong University of Science and Technology
- Wuhan, Hubei 430030
| | - Maitinuer Maiwulanjiang
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| | - Guangmin Yao
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| | - Haji Akber Aisa
- Key Laboratory of Plant Resources and Chemistry of Arid Zone
- Xinjiang Technical Institute of Physics and Chemistry
- Chinese Academy of Sciences
- Urumqi, Xinjiang 830011
- People' Republic of China
| |
Collapse
|
15
|
Mohammadhosseini M, Venditti A, Akbarzadeh A. The genusPerovskiaKar.: ethnobotany, chemotaxonomy and phytochemistry: a review. TOXIN REV 2019. [DOI: 10.1080/15569543.2019.1691013] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Majid Mohammadhosseini
- Department of Chemistry, College of Basic Sciences, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Ahmad A, Burtoloso ACB. Total Synthesis of (±)-Brussonol and (±)-Komaroviquinone via a Regioselective Cross-Electrophile Coupling of Aryl Bromides and Epoxides. Org Lett 2019; 21:6079-6083. [DOI: 10.1021/acs.orglett.9b02221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anees Ahmad
- Instituto de Química de Sao Carlos, Universidade de Sao Paulo, CEP 13560-970, Sao Carlos, SP, Brazil
| | - Antonio C. B. Burtoloso
- Instituto de Química de Sao Carlos, Universidade de Sao Paulo, CEP 13560-970, Sao Carlos, SP, Brazil
| |
Collapse
|