1
|
Wang Y, Yu Z, Zhang Z, Mu R, Song J, Yang Z, Li R, Zhang J, Zhu X, Gong M, Wu X, Wang X. Integrating metabolomics with network pharmacology to reveal the mechanism of Poria cocos in hyperuricemia treatment. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118977. [PMID: 39433165 DOI: 10.1016/j.jep.2024.118977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 10/17/2024] [Accepted: 10/19/2024] [Indexed: 10/23/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hyperuricemia is a chronic condition characterized by persistently elevated uric acid levels, often leading to gouty arthritis and renal insufficiency. Poria cocos F.A.Wolf, a traditional Chinese medicinal herb, possesses notable diuretic and anti-inflammatory properties and is widely used to treat edema, inflammation, viral infections, and tumors. Recent studies suggest that Poria cocos has the potential to lower uric acid levels and mitigate kidney damage, making it a promising candidate for hyperuricemia treatment. However, its pharmacological mechanisms require further exploration. AIM OF THE STUDY This study aims to elucidate the mechanisms by which Poria cocos alleviates hyperuricemia, using metabolomics and network pharmacology approaches. MATERIALS AND METHODS Hyperuricemia was induced in rats via a high-yeast diet combined with potassium oxonate. The effects of Poria cocos were assessed by measuring serum uric acid, creatinine, urea nitrogen levels, hepatic xanthine oxidase activity, and renal tissue morphology. Non-targeted metabolomics was employed to identify differential metabolites and explore the metabolic pathways involved in its therapeutic effects. Network pharmacology was utilized to analyze potential targets and signaling pathways, which were validated through molecular docking and ELISA analysis. RESULTS Poria cocos extract significantly reduced serum uric acid, creatinine, and urea nitrogen levels, inhibited xanthine oxidase activity, and attenuated kidney damage. Metabolomics combined with network pharmacology identified xanthine dehydrogenase and fatty acid synthase as key targets, while purine metabolism, fatty acid biosynthesis, and primary bile acid biosynthesis were identified as critical pathways. ELISA confirmed that Poria cocos suppressed xanthine dehydrogenase and fatty acid synthase expression in hyperuricemic rats. Molecular docking further verified strong binding interactions between core compounds and key targets. CONCLUSIONS Poria cocos alleviates hyperuricemia by modulating multiple compounds, targets, and pathways. Through network pharmacology and metabolomics, it reveals that Poria cocos selectively regulates xanthine dehydrogenase and fatty acid synthase, influencing purine metabolism, fatty acid biosynthesis, and primary bile acid biosynthesis pathways. These findings provide insights into its therapeutic mechanisms, supporting the clinical application of Poria cocos in treating metabolic disorders and kidney damage associated with hyperuricemia.
Collapse
Affiliation(s)
- Yiru Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zhijie Yu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zihao Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Ronghui Mu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jiayin Song
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Zijun Yang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Rongshan Li
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Jun Zhang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xuehui Zhu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Min Gong
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaohui Wu
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| | - Xu Wang
- Tianjin Key Laboratory of Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
2
|
Luo XY, Yu M, Li HJ, Kong XY, Zou ZM, Ye XC. Structural characteristics and potential antidepressant mechanism of a water-insoluble β-1,3-glucan from an edible fungus Wolfiporia cocos. Carbohydr Polym 2025; 348:122779. [PMID: 39562060 DOI: 10.1016/j.carbpol.2024.122779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/30/2024] [Accepted: 09/18/2024] [Indexed: 11/21/2024]
Abstract
A water-insoluble β-1,3-glucan (Wβ) with a molecular weight of 8.12 × 104 Da was extracted from an edible fungus Wolfiporia cocos. Its backbone was composed of 1,3-β-linked Glcp branched at the C-2, C-4, and C-6 positions, connecting more 1,3-β-linked Glcp with a triple helical structure. Wβ effectively ameliorated depressive symptoms, abnormality of neurotransmitters and inflammatory factors in chronic unpredictable mild stress (CUMS)-induced rats. Wβ also altered the composition of gut microbiota, especially Romboutsia, norank_f_Muribaculaceae and Ruminococcus. Integration of untargeted and targeted metabolomics and Western blotting analysis suggested that the short-chain fatty acids (SCFAs) and tryptophan metabolites were the most important metabolites involved in Wβ mediation. Wβ significantly modulated the levels of 7 SCFAs and 7 tryptophan metabolites, as well as the protein expression of two related enzymes (indoleamine-2,3-dioxygenase: IDO; kynurenine-3-monooxygenase: KMO). Our results suggest that Wβ exerts its antidepressant effect by influencing neurotransmitters and inflammatory factors through interactions between the gut microbiota, SCFA and tryptophan metabolites. The findings offer new insights into water-insoluble polysaccharides, especially β-glucan in structure analysis and utilization, and provide evidence that Wβ, a novel glucan from the often-discarded water-insoluble part of Wolfiporia cocos, has potential application in antidepressant health products.
Collapse
Affiliation(s)
- Xin-Yao Luo
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meng Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Hui-Jun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin-Yu Kong
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Zhong-Mei Zou
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Hubei Shizhen Laboratory, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
3
|
Song SZ, Xie JN, Zhang JW, Gong AX. Mechanism of Banxia Houpo Decoction in Treating Gastroesophageal Reflux Disease: An Integrated Approach of Compound Analysis, Network Pharmacology and Empirical Verification. Chin J Integr Med 2025:10.1007/s11655-025-3825-x. [PMID: 39808229 DOI: 10.1007/s11655-025-3825-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 01/16/2025]
Abstract
OBJECTIVE To elucidate the mechanism of Banxia Houpo Decoction (BHD) in treating gastroesophageal reflux disease (GERD) by integrating and utilizing the compound analysis, network pharmacology, and empirical verification. METHODS Ultra-high performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS) was utilized to identify the primary compounds in BHD. Network pharmacology was employed to retrieve target genes. A GERD rat model was developed and 32 SD rats were randomly divided into model, BHD-L (3 g/kg), BHD-H (6 g/kg), and mosapride (0.75 mg/kg) groups using a random number table, 8 rats in each group. Eight rats without the construction of a GERD model were selected as the blank group. Esophageal damage was evaluated through visualization and histopathology evaluation. 5-hydroxytryptamine (5-HT) levels in serum and lower esophageal sphincter (LES) were determined by ELISA. LES contractility was measured with a force transducer, and serotonin transporter (SERT) and 5-HT4R expressions in LES were assessed by RT-PCR, Western blot, and immunofluorescence staining, respectively. RESULTS UPLC-HRMS analysis identified 37 absorption peaks and 157 compounds in BHD. Functional enrichment identified SERT as a significant target for LES contractility. Histopathological findings indicated less severe esophageal mucosal damage in the BHD-H group compared with the model group. Although serum 5-HT levels showed no significant difference, 5-HT concentration in LES tissue was notably higher in the BHD-H group (P<0.05). Within the range from 10-10 to 10-7 mmol/L, LES contractility in the BHD-H and mosapride groups was significantly increased (P<0.05). Within the range from 3 × 10-7 to 3 × 10-6 mmol/L 5-HT, LES contractility in the BHD-H group was increased (P<0.05). No significant difference was detected within the range from 10-5 to 10-4 mmol/L 5-HT. Notably, SERT expression in the BHD-H group assessed by RT-PCR, Western blot, and immunofluorescence staining were significantly lower than that in the model group (all P<0.01); while 5-HT4R expression remained unchanged. CONCLUSION BHD may increase LES contractility by inhibiting SERT expression in LES tissue.
Collapse
Affiliation(s)
- Shun-Zhe Song
- Digestive Endoscopy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Jiang-Nan Xie
- Digestive Endoscopy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Jing-Wen Zhang
- Digestive Endoscopy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China
| | - Ai-Xia Gong
- Digestive Endoscopy, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning Province, 116000, China.
| |
Collapse
|
4
|
Cheng X, Zhang W, Huang C, Hu P, Li H, Li Y, Xiong Y, Liu W. Uncovering the material basis and mechanism of Jianwei Xiaoshi tablet against functional dyspepsia using ultra-high-performance liquid chromatography-mass spectrometry and network pharmacology. Biomed Chromatogr 2024; 38:e5990. [PMID: 39165031 DOI: 10.1002/bmc.5990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/24/2024] [Accepted: 08/04/2024] [Indexed: 08/22/2024]
Abstract
Functional dyspepsia (FD) is a common digestive disease. Jianwei Xiaoshi (JWXS) tablet is composed of Radix Pseudostellariae (TZS), Pericarpium Citri Reticulatae (CP), Rhizoma Dioscoreae (SY), fired Hordei Fructus Germinatus (CMY) and Crataegi Fructus (SZ). It is a commonly used drug in the treatment of FD in China and has good therapeutic effects. However, there is very little research about the substance basis and action mechanism of JWXS tablet. In this research, ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS) and network pharmacology were used to explore the substance basis and action mechanism of the JWXS tablet. Finally, 19, 79, 22, 22 and 39 constituents were identified in the extracts of TZS, CP, SY, CMY and SZ, respectively. Based on these findings, a total of 104 ingredients were identified in JWXS tablet and 29 potentially absorbed ingredients were detected in rat plasma. The results of network pharmacology indicated that the inhibition of gastric acid secretion, the regulation of gastrointestinal motility, inflammation and immune response were the key approaches for treating FD with JWXS tablet. The material basis and potential action mechanism of JWXS tablet in treating FD were comprehensively clarified for the first time. This study will improve our understanding of JWXS tablet.
Collapse
Affiliation(s)
- Xiaoxu Cheng
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Wanqiao Zhang
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Chaodong Huang
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Pei Hu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Hongchang Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Yiguang Li
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Yanxia Xiong
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| | - Wenjun Liu
- Research and Development Department, Jiangzhong Pharmaceutical Co., Ltd., Nanchang, China
- National Key Laboratory for the Modernization of Classical and Famous Prescriptions of Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Deng L, Huang G. Preparation, structure and application of polysaccharides from Poria cocos. RSC Adv 2024; 14:31008-31020. [PMID: 39351410 PMCID: PMC11440477 DOI: 10.1039/d4ra04005h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Poria cocos polysaccharides (PCPs) are fungal polysaccharides derived from the traditional Chinese medicine Poria cocos. They are considered an important active ingredient for their pharmacological activity. Herein, the extraction, separation and purification, structure, and application of PCPs are reviewed. Additional research is necessary to fully understand the advanced structure of PCPs, which has implications for their structure-activity relationship. Their application mostly involves the medical industry, with less involvement in other fields. This article highlights the current research status on PCPs in the above-mentioned areas and some problems that need to be solved in future research. Additionally, it points the way for further studies on PCPs in the hopes that they will be more widely and realistically used in various industries.
Collapse
Affiliation(s)
- Laiqing Deng
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
6
|
Liu R, Luo Y, Ma J, Zhang Q, Sheng Y, Li J, Li H, Zhao T. Traditional Chinese medicine for functional gastrointestinal disorders and inflammatory bowel disease: narrative review of the evidence and potential mechanisms involving the brain-gut axis. Front Pharmacol 2024; 15:1444922. [PMID: 39355776 PMCID: PMC11443704 DOI: 10.3389/fphar.2024.1444922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/23/2024] [Indexed: 10/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) are common clinical disorders characterized by recurrent diarrhea and abdominal pain. Although their pathogenesis has not been fully clarified, disruptions in intestinal motility and immune function are widely accepted as contributing factors to both conditions, and the brain-gut axis plays a key role in these processes. Traditional Chinese Medicine (TCM) employs a holistic approach to treatment, considers spleen and stomach impairments and liver abnormality the main pathogenesis of these two diseases, and offers a unique therapeutic strategy that targets these interconnected pathways. Clinical evidence shows the great potential of TCM in treating FGIDs and IBD. This study presents a systematic description of the pathological mechanisms of FGIDs and IBD in the context of the brain-gut axis, discusses clinical and preclinical studies on TCM and acupuncture for the treatment of these diseases, and summarizes TCM targets and pathways for the treatment of FGIDs and IBD, integrating ancient wisdom with contemporary biomedical insights. The alleviating effects of TCM on FGID and IBD symptoms are mainly mediated through the modulation of intestinal immunity and inflammation, sensory transmission, neuroendocrine-immune network, and microbiota and their metabolism through brain-gut axis mechanisms. TCM may be a promising treatment option in controlling FGIDs and IBD; however, further high-quality research is required. This review provides a reference for an in-depth exploration of the interventional effects and mechanisms of TCM in FGIDs and IBD, underscoring TCM's potential to recalibrate the dysregulated brain-gut axis in FGIDs and IBD.
Collapse
Affiliation(s)
- RuiXuan Liu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - YunTian Luo
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - JinYing Ma
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qi Zhang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yudong Sheng
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiashan Li
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongjiao Li
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - TianYi Zhao
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Dong B, Peng Y, Wang M, Peng C, Li X. Multi-omics integrated analyses indicated that non-polysaccharides of Sijunzi decoction ameliorated spleen deficiency syndrome via regulating microbiota-gut-metabolites axis and exerted synergistic compatibility. JOURNAL OF ETHNOPHARMACOLOGY 2024; 331:118276. [PMID: 38697408 DOI: 10.1016/j.jep.2024.118276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As a classical traditional Chinese medicine formula to invigorating spleen and replenishing qi, Sijunzi decoction (SJZD) is composed of four herbs, which is applied to cure spleen deficiency syndrome (SDS) clinically. The non-polysaccharides (NPSs) of SJZD (SJZD_NPS) are important pharmacodynamic material basis. However, the amelioration mechanism of SJZD_NPS on SDS has not been fully elaborated. Additionally, the contribution of herbs compatibility to efficacy of this formula remains unclear. AIM OF THE STUDY The aim was to explore the underlying mechanisms of SJZD_NPS on improving SDS, and uncover the scientific connotation in SJZD compatibility. MATERIALS AND METHODS A strategy integrating incomplete formulae (called "Chai-fang" in Chinese) comparison, pharmacodynamics, gut microbiome, and metabolome was employed to reveal the role of each herb to SJZD compatibility against SDS. Additionally, the underlying mechanism harbored by SJZD_NPS was further explored through targeted metabolomics, network pharmacology, molecular docking, pseudo-sterile model, and metagenomics. RESULTS SJZD_NPS significantly alleviated diarrhea, disordered secretion of gastrointestinal hormones and neurotransmitters, damage of ileal morphology and intestinal barrier in SDS rats, which was superior to the NPSs of Chai-fang. 16S rRNA gene sequencing and metabolomics analyses revealed that SJZD_NPS effectively restored the disturbed gut microbiota community and abnormal metabolism caused by SDS, showing the most evident recovery. Moreover, SJZD_NPS recalled the levels of partial amino acids, short chain fatty acids and bile acids, which possessed strong binding affinity towards potential targets. The depletion of gut microbiota confirmed that the SDS-amelioration efficacy of SJZD_NPS is dependent on the intact gut microbiome, with the relative abundance of potential probiotics such as Lactobacillus_johnsonii and Lactobacillus_taiwanensis been enriched. CONCLUSION NPSs in SJZD can improve SDS-induced gastrointestinal-nervous system dysfunction through regulating microbiota-gut-metabolites axis, with four herbs exerting synergistic effects, which indicated the compatibility rationality of SJZD.
Collapse
Affiliation(s)
- Bangjian Dong
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ying Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mengyue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chongsheng Peng
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaobo Li
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
8
|
Chen SH, Wu HS, Jiang XF, Zhou C, Bian XR, He X, Li B, Dong YJ, Wang KG, Shen SH, Lv GY, Zhi YH. Bioinformatics and LC-QTOF-MS based discovery of pharmacodynamic and Q-markers of Pitongshu against functional dyspepsia. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118096. [PMID: 38537841 DOI: 10.1016/j.jep.2024.118096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/08/2024] [Accepted: 03/21/2024] [Indexed: 04/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Pitongshu (PTS) is a clinically effective empirical formula for the treatment of FD. The efficacy and safety of PTS have been demonstrated in randomized, controlled, double-blind trials, but there is a lack of understanding of the systematic evaluation of the efficacy of PTS and its material basis. OBJECTIVE To investigate the efficacy of PTS in Functional dyspepsia (FD) mice and possible Q-markers. METHOD In this study, we used "irregular feeding + chronic unpredictable chronic stimulation" to establish a mice model of FD with hepatogastric disharmony. The efficacy of PTS was assessed from hair condition, behavioral, pain, gastrointestinal function, and serum 5-HT, GAS, MTL levels in mice by instillation of different doses of PTS. In addition, the composition of drugs in blood was analyzed by LC-QTOF-MS and potential Q-markers were selected by combining network pharmacology, molecular docking and actual content. RESULT Our study showed that different doses of PTS increased pain threshold and writhing latency, decreased the number of writhings, increased gastric emptying rate and small intestinal propulsion rate, decreased total acidity of gastric contents and gastric acid secretion, and increased serum levels of 5-HT, GAS, and MTL in mice to different degrees. Enrichment analysis showed that PTS may be anti-FD through multiple pathways such as Serotonergic synapse, thyroid hormone signaling pathway, cholinergic synapse, and dopaminergic synapse. In addition, potential active ingredient substances were explored by LC-QTOF-MS combined with bioinformatics. Combined with the actual contentselected six constituents, hesperidin, neohesperidin, naringin, paeoniflorin, magnolol and honokiol, possible as Q-markers. CONCLUSION PTS may exert its anti-FD effects through multi-component, multi-target and multi-pathway". Constituents, hesperidin, neohesperidin, naringin, paeoniflorin, magnolol and honokiol may be the Q-markers of its anti-FD effects.
Collapse
Affiliation(s)
- Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Han-Song Wu
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Xiao-Feng Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Cong Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Xue-Ren Bian
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Ying-Jie Dong
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, Zhejiang, 310014, China; College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China; Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, zhejiang 313200, China
| | - Kun-Gen Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China; Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China.
| | - Shu-Hua Shen
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China; Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China.
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, No. 548, Binwen Road, Binjiang District, Hangzhou, Zhejiang, 310014, China.
| | - Yi-Hui Zhi
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310006, China; Kun-Gen Wang National Famous Chinese Medicine Doctor Studio, Hangzhou, Zhejiang, 310006, China.
| |
Collapse
|
9
|
Bai Y, Ning N, Zhao J, Chen G, Du Y, Huang S, Jiang X, Feng X, Feng Y, Nan Y, Yuan L. Explore the mechanism of Astragalus membranaceus and Poria cocos drug pair in improving immunity based on network pharmacology. Medicine (Baltimore) 2024; 103:e38531. [PMID: 38905394 PMCID: PMC11191921 DOI: 10.1097/md.0000000000038531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024] Open
Abstract
The aim of this study was to investigate the key targets and molecular mechanisms of the drug pair Astragalus membranaceus and Poria cocos (HFDP) in the treatment of immunity. We utilized network pharmacology, molecular docking, and immune infiltration techniques in conjunction with data from the GEO database. Previous clinical studies have shown that HFDP has a positive impact on immune function. We first identified the active ingredients and targets of HFDP from the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database, respectively. Next, we retrieved the differentially expressed genes (DEGs) related to immunity from the GEO databases. The intersection targets of the drugs and diseases were then analyzed using the STRING database for protein-protein interaction (PPI) network analysis, and the core targets were determined through topological analysis. Finally, the intersection genes were further analyzed using the DAVID database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. Subsequently, by analyzing the expression and prognostic survival of 12 core targets, 5 core target genes were identified, and molecular docking between the hub genes and immunity was performed. Finally, we used the CIBERSORT algorithm to analyze the immune infiltration of immunity genes In this study, 34 effective ingredients of HFDP, 530 target genes, and 568 differential genes were identified. GO and KEGG analysis showed that the intersection genes of HFDP targets and immunity-related genes were mainly related to complement and coagulation cascades, cytokine receptors, and retinol metabolism pathways. The molecular docking results showed that the 5 core genes had obvious affinity for the active ingredients of HFDP, which could be used as potential targets to improve the immunity of HFDP. Our findings suggest that HFDP is characterized by "multiple components, multiple targets, and multiple pathways" in regulating immunity. It may play an essential role in regulating immunity by regulating the expression and polymorphism of the central target genes ESR1, JUN, CYP3A4, CYP2C9, and SERPINE1.
Collapse
Affiliation(s)
- Yuting Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xilong Jiang
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - Xuelan Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
10
|
Seo CS, Kim SY, Kim DS. Simultaneous Analysis of Thirteen Compounds in Yeokwisan Using High-Performance Liquid Chromatography-Photodiode Array Detection and Ultra-Performance Liquid Chromatography-Tandem Mass Spectrometry and Their Antioxidant Effects. Pharmaceuticals (Basel) 2024; 17:727. [PMID: 38931394 PMCID: PMC11206242 DOI: 10.3390/ph17060727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
Yeokwisan (YWS) is an herbal medicine prescription consisting of six oriental herbal medicines, developed to treat reflux esophagitis. We focused on developing an analytical method capable of simultaneously quantifying 13 compounds in YWS samples using high-performance liquid chromatography-photodiode array detection (HPLC-PDA) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) and exploring their antioxidant effects. All compounds examined in both analytical systems were chromatographically separated on a SunFireTM C18 (4.6 × 250 mm, 5 μm) column and an Acquity UPLC BEH C18 (2.1 × 100 mm, 1.7 μm) column using gradient elution of a water-acetonitrile mobile phase. Antioxidant effects were evaluated based on radical scavenging activity (DPPH and ABTS tests) and ferrous ion chelating activity. In two analytical methods, the coefficient of determination of the regression equation was ≥0.9965, the recovery range was 81.11-108.21% (relative standard deviation (RSD) ≤ 9.33%), and the precision was RSD ≤ 11.10%. Application of the optimized analysis conditions gave quantitative analysis results for YWS samples of 0.02-100.36 mg/g. Evaluation of the antioxidant effects revealed that baicalein and baicalin exhibit significant antioxidant activity, suggesting that they play an important role in the antioxidant effects of YWS.
Collapse
Affiliation(s)
| | | | - Dong-Seon Kim
- KM Science Research Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea; (C.-S.S.); (S.-Y.K.)
| |
Collapse
|
11
|
Wang Y, Jia Y, Liu X, Yang K, Lin Y, Shao Q, Ling J. Effect of Chaihu-Shugan-San on functional dyspepsia and gut microbiota: A randomized, double-blind, placebo-controlled trial. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117659. [PMID: 38151181 DOI: 10.1016/j.jep.2023.117659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/20/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chaihu-Shugan-San (CSS) is a classic traditional Chinese medicine (TCM) formula from the Ming Dynasty "Jingyue's Complete Works". In China, it is prevalent for the treatment of a wide range of ailments, with a particular emphasis on functional gastrointestinal disorders (FGIDs). Clinical evidence suggests that CSS has been found to be a highly effective therapeutic approach for the treatment of Functional Dyspepsia (FD), however, there is a limited amount of high-quality clinical evidence, particularly randomized, double-blind, placebo-controlled trials to support this claim. AIM OF THE STUDY To evaluate the therapeutic efficacy of Chaihu-Shugan-San (CSS) for treating functional dyspepsia (FD) by comparing it to placebos, as well as to investigate the impact of CSS on the gut microbiota in individuals diagnosed with FD. MATERIALS AND METHODS This was a randomized double-blind, placebo-controlled clinical trial implemented at Shuguang Hospital in Shanghai. Between May 2021 and December 2022, 94 participants satisfying the Rome IV diagnostic criteria for FD were enrolled. They were assigned randomly to either the CSS group or the placebo group, with an equal allocation ratio of 1:1. Patients in both groups received the intervention for four weeks. The primary outcome was the dyspepsia symptom scores evaluated by using single dyspepsia symptom scale (SDS) after four weeks of treatment. The secondary outcomes were the solid gastric empties rate measured by a barium strip method, Hamilton anxiety scale (HAMA), Hamilton depression scale (HAMD), and Functional dyspepsia Quality of life scale (FDDQL). In addition, after unblinding, 30 patients in the CSS group were randomly selected and divided into before and after treatment of the FD groups (FD1, FD2), and 30 healthy participants were selected as healthy control group (HC), and the gut microbiota was analyzed by 16S rRNA sequencing. RESULTS After four weeks of treatment, the SDS score exhibited a significant improvement in the CSS group compared to the placebo group (t = 4.882; P <0.001). The difference in barium strip gastric emptying rate in the CSS group showed a significant ascent compared to the control group (P < 0.01). The HAMA, HAMD, and FDDQL scores in the CSS group showed a statistically significant increase compared to the control group (all P < 0.01). The results of 16S rRNA sequencing revealed that FD patients had less diverse and abundant microbiota than the healthy people. Additionally, the application of CSS resulted in the modulation of certain bacterial populations, leading to both up-regulation and down-regulation of their quantities. CONCLUSIONS These findings suggested that CSS is more effective compared to a placebo in treating FD, relieves anxiety and depression, increases gastric emptying rate in FD patients, and that CSS also affects the bacterial community structure in FD patients. TRIAL REGISTRATION ChiCTR, ChiCTR2100045793. Registered 25 Mach 2021.
Collapse
Affiliation(s)
- Yujiao Wang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yuebo Jia
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Xuejiao Liu
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Keming Yang
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Yunzhi Lin
- Department of TCM, Shanghai Pudong New District Zhoupu Hospital, Shanghai, 201318, China.
| | - Qin Shao
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Jianghong Ling
- Department of Gastroenterology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
12
|
Zhang X, Lin W, Lei S, Zhang S, Cheng Y, Chen X, Lu Y, Zhao D, Zhang Y, Guo C. The anti-hyperlipidemic effects of Poria cocos (Schw.) Wolf extract: Modulating cholesterol homeostasis in hepatocytes via PPARα pathway. JOURNAL OF ETHNOPHARMACOLOGY 2024; 321:117532. [PMID: 38048892 DOI: 10.1016/j.jep.2023.117532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Poria cocos (Schw.) Wolf (Polyporaceae, P.cocos), which is born on the pine root, has a history of more than two thousand years of medicine in China. P.cocos was first recorded in the Shennong's Herbal Classic, studies have proved its lipid-lowering effect. AIM OF STUDY The aim of study was to investigate the underlying mechanism of P.cocos extract on hyperlipidemia. MATERIALS AND METHODS Male Sprague-Dawley (SD) rats aged 9-12 weeks were intraperitoneally (IP) injected with Triton-WR 1339 to establish an acute hyperlipidemia model. At 0 h and 20 h after the model was established, low and high doses of P.cocos extract or simvastatin were given twice. After 48 h, the rats were sacrificed, and liver and serum samples were collected for analysis. The cell model was constructed by treating L02 cells with 1% fat emulsion-10% FBS-RPMI 1640 medium for 48 h. At the same time, low and high doses of P.cocos extract and simvastatin were administered. Oil red O staining was used to evaluate the lipid accumulation in the cells, and H&E staining was used to evaluate the liver lesions of rats. Real-time quantitative PCR and western blotting were used to detect the expressions of lipid metabolism-related genes. RESULTS P.cocos extract relieved lipid accumulation in vitro and alleviated hyperlipidemia in vivo. Both gene and protein expressions of peroxisome proliferator-activated receptor α (PPARα) were shown to be up-regulated by P.cocos extract. Additionally, P.cocos extract down-regulated the expressions of fatty acid synthesis-related genes sterol regulatory element-binding protein-1 (SREBP-1), Acetyl-CoA Carboxylase 1 (ACC1) and fatty acid synthase (FAS), while up-regulated the expressions of cholesterol metabolism-related genes liver X receptor-α (LXRα), ATP-binding cassette transporter A1 (ABCA1), cholesterol 7alpha-hydroxylase (CYP7A1) and low density lipoprotein receptor (LDLR), which were reversed by the treatment with the PPARα inhibitor GW6471. CONCLUSION P.cocos extract ameliorates hyperlipidemia and lipid accumulation by regulating cholesterol homeostasis in hepatocytes through PPARα pathway. This study provides evidence that supplementation with P.cocos extract could be a potential strategy for the treatment of hyperlipidemia.
Collapse
Affiliation(s)
- Xinyu Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Wei Lin
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Shuyue Lei
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Siqi Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yujie Cheng
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xijing Chen
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yang Lu
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Di Zhao
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yongjie Zhang
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Chaorui Guo
- Clinical Pharmacokinetics Laboratory, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
13
|
Zeng W, Chen Y, Zhang H, Peng L, Li Y, Liu B, Liang H, Du B, Li P. Probiotic-fermented Qushi decoction alleviates reserpine-induced spleen deficiency syndrome by regulating spleen function and gut microbiota dysbiosis. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7702-7711. [PMID: 37439120 DOI: 10.1002/jsfa.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/03/2023] [Accepted: 07/13/2023] [Indexed: 07/14/2023]
Abstract
BACKGROUND Spleen deficiency syndrome (SDS) is associated with elevated inflammatory factors and dysregulation of gastrointestinal motility hormones and intestinal microbiota. Qushi decoction (QD), a traditional formula, has not been reported using modern scientific research methods for changes in its probiotic fermented QD (FQD) composition and its potential mechanisms to alleviate SDS. Therefore, the aim of this study was to investigate the splenic protection of FQD in SDS rats by modulating gastrointestinal motility hormones and intestinal microbiota. RESULTS The results showed that FQD increased total polysaccharides, total protein, total flavonoids and the other active ingredients compared to QD, effectively improved splenic inflammation and apoptosis in SDS rats, and modulated gastrointestinal motility hormones to alleviate diarrhea and other symptoms. In addition, the dysregulation of the gut microbiota was reversed by increasing the levels of Bifidobacterium and decreasing the levels of Escherichia-Shigella and Proteobacteria, which may be related to the regulation of bacterial metabolites to alleviate SDS. CONCLUSION These results suggest that FQD is an effective formula for improving SDS. Our findings show that FQD beneficial to the implications for the treatment of SDS. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Wenshen Zeng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yang Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Huan Zhang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Luwei Peng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yaqi Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Liu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Hongbo Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Bing Du
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pan Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Wu T, Zhu W, Chen L, Jiang T, Dong Y, Wang L, Tong X, Zhou H, Yu X, Peng Y, Wang L, Xiao Y, Zhong T. A review of natural plant extracts in beverages: Extraction process, nutritional function, and safety evaluation. Food Res Int 2023; 172:113185. [PMID: 37689936 DOI: 10.1016/j.foodres.2023.113185] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 06/19/2023] [Accepted: 06/27/2023] [Indexed: 09/11/2023]
Abstract
The demand for foods and beverages with therapeutic and functional features has increased as a result of rising consumer awareness of health and wellness. In natural, plants are abundant, widespread, and inexpensive, in addition to being rich in bioactive components that are beneficial to health. The bioactive substances contained in plants include polyphenols, polysaccharides, flavonoids, aromatics, aliphatics, terpenoids, etc., which have rich active functions and application potential for plant-based beverages. In this review, various existing extraction processes and their advantages and disadvantages are introduced. The antioxidant, anti-inflammatory, intestinal flora regulation, metabolism regulation, and nerve protection effects of plant beverages are described. The biotoxicity and sensory properties of plant-based beverages are also summarized. With the diversification of the food industry and commerce, plant-based beverages may become a promising new category of health functional foods in our daily lives.
Collapse
Affiliation(s)
- Tong Wu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Wanying Zhu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Linyan Chen
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tao Jiang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Yuhe Dong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Letao Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Xinyang Tong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Hui Zhou
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Institute of Plant Resources, Dalian Minzu University, Dalian, China
| | - Xi Yu
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ling Wang
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Ying Xiao
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao
| | - Tian Zhong
- Faculty of Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macao.
| |
Collapse
|
15
|
Liu T, Zhang M, Asif IM, Wu Y, Li B, Wang L. The regulatory effects of fucoidan and laminarin on functional dyspepsia mice induced by loperamide. Food Funct 2023. [PMID: 37377021 DOI: 10.1039/d3fo00936j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Gastrointestinal dysmotility is a common cause of functional dyspepsia. As two kinds of polysaccharides derived from brown algae, fucoidan and laminarin possess many physiological properties; however, their relative abilities in regulating gastrointestinal motility have not been illustrated yet. In this study, we aimed to investigate the regulatory effect of fucoidan and laminarin on functional dyspepsia mice induced by loperamide. Mice with gastrointestinal dysmotility were treated with fucoidan (100 and 200 mg per kg bw) and laminarin (50 and 100 mg per kg bw). As a result, fucoidan and laminarin reversed the dysfunction mainly through regulating gastrointestinal hormones (motilin and ghrelin), the cholinergic pathway, the total bile acid level, c-kit protein expression, and gastric smooth muscle contraction-related gene expression (ANO1 and RYR3). Moreover, fucoidan and laminarin intervention modulated the gut microbiota profile including the altered richness of Muribaculaceae, Lachnospiraceae, and Streptococcus. The results indicated that fucoidan and laminarin may restore the rhythm of the migrating motor complex and regulate gut microecology. In conclusion, we provided evidence to support that fucoidan and laminarin might have potential abilities to regulate gastrointestinal motility.
Collapse
Affiliation(s)
- Tianxu Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Mengting Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Ismail Muhammad Asif
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Yonglin Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Bin Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| | - Ling Wang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
- Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, 430070, Hubei, China
| |
Collapse
|
16
|
Chen CY, Zhang R, Zhang LJ, Hu ZY, Wang SP, Mei X, Mi W, Zhang JY. Biotransformation and bioaccessibility of active ingredients from Radix Astragali by Poria cocos during solid-state fermentation and in vitro digestion and antioxidant activity evaluation. Sci Rep 2023; 13:6888. [PMID: 37106016 PMCID: PMC10140279 DOI: 10.1038/s41598-023-33969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Radix Astragali is one of the most famous and frequently used health food supplements and herbal medicines. Among more than 227 components of Radix Astragali, Astragaloside IV (AG IV) is famous functional compound and is commonly used as a quality marker for Radix Astragali. However, the relatively low content of AG IV in Radix Astragali (< 0.04%, w/w) severely limits its application. The purpose of this study is to improve the biotransformation of AG IV and its bioaccessibility during in vitro digestion by Poria cocos solid fermenting Radix Astragali. The optimum fermentation conditions were as follows: Inoculation amount 8 mL; fermentation time 10 d; fermentation humidity 90%. Through fermentation, the content of AG IV was increased from 384.73 to 1986.49 μg/g by 5.16-fold. After in vitro digestion, the contents of genistin, calycosin, formononetin, AG IV, Astragaloside II (AG II) and total flavonoids in fermented Radix Astragali (FRA) of enteric phase II (ENTII) were 34.52 μg/g, 207.32 μg/g, 56.76 μg/g, 2331.46 μg/g, 788.31 μg/g, 3.37 mg/g, which were 2.08-fold, 2.51-fold, 1.05-fold, 8.62-fold, 3.22-fold and 1.50-fold higher than those of control, respectively. The Scanning electron microscopy (SEM) of FRA showed rough surface and porous structure. The DPPH and ABTS radical scavenging rate of FRA were higher than those of control. These results showed that the Poria cocos solid fermentation could increase the content of the AG IV in Radix Astragali and improve the bioaccessibility and antioxidant activity of Radix Astragali, which is providing new ideas for future development and utilization of Radix Astragali.
Collapse
Affiliation(s)
- Cai-Yun Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, People's Republic of China
| | - Run Zhang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Li-Jie Zhang
- School of Public Health and Management, Binzhou Medical University, Yantai, People's Republic of China
| | - Zhi-Yong Hu
- School of Public Health and Management, Binzhou Medical University, Yantai, People's Republic of China
| | - Shao-Ping Wang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xue Mei
- School of Public Health and Management, Binzhou Medical University, Yantai, People's Republic of China
| | - Wei Mi
- School of Public Health and Management, Binzhou Medical University, Yantai, People's Republic of China.
| | - Jia-Yu Zhang
- School of Pharmaceutical Science, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| |
Collapse
|
17
|
Liu R, Li T, Xu H, Yu G, Zhang T, Wang J, Sun Y, Bi Y, Feng X, Wu H, Zhang C, Sun Y. Systems biology strategy through integrating metabolomics and network pharmacology to reveal the mechanisms of Xiaopi Hewei Capsule improves functional dyspepsia. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1226:123676. [PMID: 37329776 DOI: 10.1016/j.jchromb.2023.123676] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/05/2023] [Accepted: 03/13/2023] [Indexed: 06/19/2023]
Abstract
Functional dyspepsia (FD) is one of the more common functional disorders, with a prevalence of 20-25 %. It seriously affects the quality life of patients. Xiaopi Hewei Capsule (XPHC) is a classic formula originated from the Chinese Miao minority. Clinical studies have demonstrated that XPHC can effectively alleviate the symptoms of FD, but the molecular mechanism has not been elucidated. The purpose of this work is to investigate the mechanism of XPHC on FD by integrating metabolomics and network pharmacology. The mice models of FD were established, and gastric emptying rate, small intestine propulsion rate, serum level of motilin and gastrin were evaluate to study the interventional effect of XPHC on FD. Next, a metabolomics strategy has been developed to screen differential metabolites and related metabolic pathways induced by XPHC. Then, prediction of active compounds, targets and pathways of XPHC in treating FD were carried out by commonly used network pharmacological method. Finally, two parts of the results were integrated to investigate therapeutic mechanism of XPHC on FD, which were preliminary validated based on molecular docking. Thus, twenty representative different metabolites and thirteen related pathways of XPHC in treating FD were identified. Most of these metabolites were restored using modulation after XPHC treatment. The results of the network pharmacology analysis showed ten crucial compounds and nine hub genes related to the treatment of FD with XPHC. The further integrated analysis focused on four key targets, such as albumin (ALB), epidermal growth factor receptor (EGFR), tumor necrosis factor (TNF) and roto-oncogene tyrosine-protein kinase Src (SRC), and three representative biomarkers such as citric acid, L-leucine and eicosapentaenoic acid. Furthermore, molecular docking results showed that ten bioactive compounds from XPHC have good binding interactions with the four key genes. The functional enrichment analysis indicated that the potential mechanism of XPHC in treating FD was mainly associated with energy metabolism, amino acid metabolism, lipid metabolism, inflammatory reactions and mucosal repair. Our work confirms that network pharmacology-integrated metabolomics strategyis a powerful means to reveal the therapeutic mechanisms of XPHC improves FD, which contribute its further scientific research.
Collapse
Affiliation(s)
- Runhua Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Department of Pharmacy, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing 100020, China
| | - Tianyi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haoran Xu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Gengyuan Yu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Tonghua Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiaqi Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yu Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yuelin Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xin Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Chenning Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Department of Pharmacy, Zigong First People's Hospital, Zigong, China.
| | - Yikun Sun
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
18
|
Li W, Fang K, Yuan H, Li D, Li H, Chen Y, Luo X, Zhang L, Ye X. Acid-induced Poria cocos alkali-soluble polysaccharide hydrogel: Gelation behaviour, characteristics, and potential application in drug delivery. Int J Biol Macromol 2023; 242:124383. [PMID: 37030457 DOI: 10.1016/j.ijbiomac.2023.124383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/01/2023] [Accepted: 04/05/2023] [Indexed: 04/09/2023]
Abstract
Poria cocos alkali-soluble polysaccharide (PCAP), a water-insoluble β-glucan, is the main component of the total dried sclerotia of Poria cocos. However, its gelation behaviour and properties have yet to be comprehensively studied. In this study, an acid-induced physical hydrogel based on natural PCAP is fabricated. The acid-induced gelation in PCAP is explored with respect to the pH and polysaccharide concentration. PCAP hydrogels are formed in the pH range of 0.3-10.5, and the lowest gelation concentration is 0.4 wt%. Furthermore, dynamic rheological, fluorescence, and cyclic voltammetry measurements are performed to elucidate the gelation mechanism. The results reveal that hydrogen bonds and hydrophobic interactions play a dominant role in gel formation. Subsequently, the properties of the PCAP hydrogels are investigated using rheological measurements, scanning electron microscopy, gravimetric analysis, free radical scavenging, MTT assays, and enzyme-linked immunosorbent assays. The PCAP hydrogels exhibit a porous network structure and cytocompatibility, in addition to good viscoelastic, thixotropic, water-holding, swelling, antioxidant, and anti-inflammatory activities. Furthermore, using rhein as a model drug for encapsulation, it is demonstrated that its cumulative release behaviour from the PCAP hydrogel is pH dependent. These results indicate the potential of PCAP hydrogels for application in biological medicine and drug delivery.
Collapse
Affiliation(s)
- Wan Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Kexin Fang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hao Yuan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Dongru Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Haochen Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Yin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xinyao Luo
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Lian Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiaochuan Ye
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China; Key Laboratory of Traditional Chinese Medicine Resource and Chemistry of Traditional Chinese Medicine in Hubei Province, College of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
19
|
Screening the effective components in treating dampness stagnancy due to spleen deficiency syndrome and elucidating the potential mechanism of Poria water extract. Chin J Nat Med 2023; 21:83-98. [PMID: 36871985 DOI: 10.1016/s1875-5364(23)60392-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Indexed: 03/07/2023]
Abstract
Poria is an important medicine for inducing diuresis to drain dampness from the middle energizer. However, the specific effective components and the potential mechanism of Poria remain largely unknown. To identify the effective components and the mechanism of Poria water extract (PWE) to treat dampness stagnancy due to spleen deficiency syndrome (DSSD), a rat model of DSSD was established through weight-loaded forced swimming, intragastric ice-water stimulation, humid living environment, and alternate-day fasting for 21 days. After 14 days of treatment with PWE, the results indicated that PWE increased fecal moisture percentage, urine output, D-xylose level and weight; amylase, albumin, and total protein levels; and the swimming time of rats with DSSD to different extents. Eleven highly related components were screened out using the spectrum-effect relationship and LC-MS. Mechanistic studies revealed that PWE significantly increased the expression of serum motilin (MTL), gastrin (GAS), ADCY5/6, p-PKAα/β/γ cat, and phosphorylated cAMP-response element binding protein in the stomach, and AQP3 expression in the colon. Moreover, it decreased the levels of serum ADH, the expression of AQP3 and AQP4 in the stomach, AQP1 and AQP3 in the duodenum, and AQP4 in the colon. PWE induced diuresis to drain dampness in rats with DSSD. Eleven main effective components were identified in PWE. They exerted therapeutic effect by regulating the AC-cAMP-AQP signaling pathway in the stomach, MTL and GAS levels in the serum, AQP1 and AQP3 expression in the duodenum, and AQP3 and AQP4 expression in the colon.
Collapse
|
20
|
Early oral feeding after esophagectomy accelerated gut function recovery by regulating brain-gut peptide secretion. Surgery 2022; 172:919-925. [DOI: 10.1016/j.surg.2022.04.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/18/2022] [Accepted: 04/29/2022] [Indexed: 11/24/2022]
|
21
|
Zhang DD, Li HJ, Zhang HR, Ye XC. Poria cocos water-soluble polysaccharide modulates anxiety-like behavior induced by sleep deprivation by regulating the gut dysbiosis, metabolic disorders and TNF-α/NF-κB signaling pathway. Food Funct 2022; 13:6648-6664. [PMID: 35642970 DOI: 10.1039/d2fo00811d] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Poria cocos (P. cocos) has been traditionally used as folk medicine and functional food in China for more than 2000 years. The water-soluble polysaccharide is the main component of P. cocos decoction. The effects and mechanisms of the water-soluble polysaccharide from P. cocos (PCWP) were investigated in chronic sleep deprivation (CSD)-induced anxiety in rats. CSD induced anxiety, gut dysbiosis, and inflammatory responses, and reduced neurotransmitter levels, whereas PCWP intervention ameliorated anxiety-like behaviors, increased the levels of 5-hydroxytryptamine, dopamine, norepinephrine, and γ-aminobutyric acid in the hypothalamus, regulated gastrointestinal peptide levels, reduced inflammatory factors, and inhibited the tumor necrosis factor (TNF)-α/nuclear factor (NF)-κB signaling pathway in rats with CSD. The changes in the intestinal flora composition were determined using 16S rDNA sequencing, and indicated that PCWP significantly improved species richness and diversity in the intestinal flora of rats with anxiety, and adjusted the abundance of the following dysregulated bacteria closer to that of the normal group: Rikenellaceae_RC9_gut_group, Ruminococcus, Prevotellaceae_UCG-001, Prevotellaceae_NK3B31_group, Fusicatenibacter. Metabolomics was used to analyze fecal samples to identify significantly altered metabolites in the PCWP-treated groups. Thirty-eight PCWP-related metabolites and four metabolic pathways such as sphingolipid metabolism, taurine and hypotaurine metabolism, vitamin B6 metabolism, and glycerophospholipid metabolism were explored. The results of serum metabolomics showed that 26 biomarkers were significantly changed after PCWP intervention compared with the model group. The regulatory effects of metabolic pathway enrichment on sphingolipid, phenylalanine, and taurine and hypotaurine metabolism, and validation results showed that PCWP intervention regulated the activity of enzymes involved in the above metabolic pathways. A strong correlation between intestinal bacteria and potential biomarkers was found. Our findings present new evidence supporting the potential effect of PCWP in preventing the progression of anxiety by inhibiting the TNF-α/NF-κB signaling pathway, alleviating metabolic disorders, and ameliorating the gut microflora imbalance.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Hui-Jun Li
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Han-Rui Zhang
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| | - Xiao-Chuan Ye
- Hubei Key Laboratory of Resources and Chemistry of Chinese Medicine, School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China.
| |
Collapse
|
22
|
Seo CS, Shin HK. Simultaneous Analysis for Quality Control of Traditional Herbal Medicine, Gungha-Tang, Using Liquid Chromatography–Tandem Mass Spectrometry. Molecules 2022; 27:molecules27041223. [PMID: 35209013 PMCID: PMC8877009 DOI: 10.3390/molecules27041223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/08/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Gungha-tang (GHT), a traditional herbal medicine, consists of nine medicinal herbs (Cnidii Rhizoma, Pinelliae Tuber, Poria Sclerotium, Citri Unshius Pericarpium, Citri Unshius Pericarpium Immaturus, Aurantii Fructus Immaturus, Atracylodis Rhizoma Alba, Glycyrrhizae Radix et Rhizoma, and Zingiberis Rhizoma Recens). It has been used for various diseases caused by phlegm. This study aimed to develop and verify the simultaneous liquid chromatography–tandem mass spectrometry (LC–MS/MS) analysis method, using nine marker components (liquiritin apioside, neoeriocitrin, narirutin, naringin, hesperidin, neohesperidin, liquiritigenin, glycyrrhizin, and 6-shogaol) for quality control of GHT. LC–MS/MS analysis was conducted using a Waters TQ-XS system. All marker analytes were separated on a Waters Acquity UPLC BEH C18 column (2.1 × 100 mm, 1.7 μm) using gradient elution with a distilled water solution (containing 5 mM ammonium formate and 0.1% [v/v] formic acid)–acetonitrile mobile phase. LC–MS/MS multiple reaction monitoring (MRM) analysis was carried out in negative and positive ion modes of an electrospray ionization source. The developed LC–MS/MS MRM method was validated by examining the linearity, limits of detection and quantification, recovery, and precision. LOD and LOQ values of nine markers were calculated as 0.02–8.33 ng/mL and 0.05–25.00 ng/mL. The recovery was determined to be 89.00–118.08% and precision was assessed with a coefficient of variation value of 1.74–8.64%. In the established LC–MS/MS MRM method, all markers in GHT samples were detected at 0.003–16.157 mg/g. Information gathered during the development and verification of the LC–MS/MS method will be useful for the quality assessment of GHT and other herbal medicines.
Collapse
|