1
|
Zhang J, Pan B, Yang J, Pan Q, Zhu P, Yang J, Zhang M, Xiao Q. LoniComp: a platform for gene function comparison and analysis between Lonicera japonica and Lonicera macranthoides. BMC Genomics 2025; 26:328. [PMID: 40170166 PMCID: PMC11963319 DOI: 10.1186/s12864-025-11507-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/19/2025] [Indexed: 04/03/2025] Open
Abstract
Lonicera japonica and L. macranthoides are popular medicinal plants used for treating various diseases. Recently, new chromosome level genomes of Lonicera have provided a huge resource for understanding gene function. Although LjaFGD was created for analyzing L. japonica gene functions, it is now outdated due to updated genomes and more transcriptome data. Utilizing new chromosome-level genomic and transcriptomic data, we developed co-expression networks of L. japonica and L. macranthoides. Gene annotations were performed by comparing sequences with NR, TAIR, Swissprot, and trEMBL databases. GO and KEGG annotations were predicted using InterProScan and GhostKOALA software, while gene families were identified with iTAK, HMMER, and InParanoid. To fully leverage the utilization value of public resources and data, we developed LoniComp ( www.gzybioinformatics.cn/LoniComp ) as a newer and information-rich alternative, a platform for gene function comparison and analysis by integrating genomic, transcriptomic data and processed functional annotations. It features tools like BLAST, Extract Sequence, Enrichment, Heatmap, DEG, and JBrowse2. We demonstrated its use with examples like LjFT and LjMYB12. It offers superior genomic data, transcriptomic resources, and analysis tools compared to LjaFGD, aiding researchers in gene function studies and comparison.
Collapse
Affiliation(s)
- Jingjie Zhang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Bingbing Pan
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jiangxin Yang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qi Pan
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Panpan Zhu
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Jiaotong Yang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Mian Zhang
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Qiaoqiao Xiao
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China.
| |
Collapse
|
2
|
Babiaka SB, Ekayen DE, Simoben CV, Namba-Nzanguim CT, Chi GF, Monah NL, Nubed LN, Njimoh DL, Nziko VDPN, Singla RK, Ebot-Arrey CA, Asongalem EA, Egbe AE, Abuga KO, Karpoormath R, Loveridge EJ. Natural Products in Cyperus Species (Cyperaceae): Phytochemistry, Pharmacological Activities, and Biosynthesis. Chem Biodivers 2025:e202403352. [PMID: 40134224 DOI: 10.1002/cbdv.202403352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/16/2025] [Accepted: 03/25/2025] [Indexed: 03/27/2025]
Abstract
The review provides an update on the traditional uses, geographical distribution, pharmacological activities, biosynthesis, and mechanisms of action of potent natural products derived from Cyperus species. Cyperus species are widely distributed in the tropical and subtropical regions across the globe. Cyperus is the second-largest genus in this family with about 950 species. Since 1964, a total of about 403 natural products have been isolated from 43 Cyperus species, including terpenoids (51.61%), flavonoids (17.37%), stilbenoids (6.45%), quinones (5.71%), aromatics (7.69%), coumarins (5.21%), and other compounds (5.96%). The isolated compounds displayed anticancer, antiviral, antidiabetic, antimicrobial, antidepressant, and other activities. Terpenoids and flavonoids are the most abundant class of natural products that have been isolated from Cyperus species. The biosynthesis of some terpenoids and flavonoids has been provided in the paper. Natural products isolated from Cyperus species have demonstrated interesting in vitro activities that warrant further scientific investigations.
Collapse
Affiliation(s)
- Smith B Babiaka
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
- Department of Microbial Bioactive Compounds, Interfaculty Institute for Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Doris E Ekayen
- Department of Plant Science, Faculty of Science, University of Buea, Buea, Cameroon
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, Freiburg, Germany
| | - Conrad V Simoben
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario, Canada
| | | | - Godloves F Chi
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Ndam L Monah
- Agroecology Laboratory, Faculty of Agriculture and Veterinary Medicine, University of Buea, Buea, Cameroon
| | - Lina N Nubed
- Department of Chemistry, Faculty of Science, University of Buea, Buea, Cameroon
| | - Dieudonne L Njimoh
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | | | - Rajeev K Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Christopher A Ebot-Arrey
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Emmanuel A Asongalem
- Department of Biomedical Sciences, Faculty of Health Sciences, University of Buea, Buea, Cameroon
| | - Andrew E Egbe
- Institute of Pharmaceutical Sciences, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Straße 9, Freiburg, Germany
| | - Kennedy O Abuga
- Department of Pharmaceutical Chemistry, School of Pharmacy, University of Nairobi, Nairobi, Kenya
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical Chemistry, School of Chemistry, University of KwaZulu-Natal, Durban, South Africa
| | - E Joel Loveridge
- Department of Chemistry, Swansea University, Singleton Park, Swansea, UK
| |
Collapse
|
3
|
Fadel A, Khafage A, Abdelsalam M, Abdel-Rahim MM. Comparative evaluation of three herbal extracts on growth performance, immune response, and resistance against Vibrio parahaemolyticus in Litopenaeus vannamei. BMC Vet Res 2025; 21:166. [PMID: 40082886 PMCID: PMC11905464 DOI: 10.1186/s12917-025-04588-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/10/2025] [Indexed: 03/16/2025] Open
Abstract
This study evaluated the effects of dietary supplementation with herbal extracts from Artemisia herba-alba, Lonicera japonica, and Lilium candidum on growth performance, survival, feed utilization, antioxidant capacity, and immune response in Litopenaeus vannamei. The efficacy of these herbal-supplemented diets was assessed in enhancing resistance against Vibrio parahaemolyticus-induced Acute Hepatopancreatic Necrosis Disease (Vp AHPND). A total of 2,400 shrimp post-larvae (initial weight 0.74 ± 0.02 g) were randomly assigned to four triplicate groups. Shrimp were fed isonitrogenous and isocaloric diets: T1 (control, basal diet), T2 (basal diet + 250 mg/kg A. herba-alba), T3 (basal diet + 250 mg/kg L. japonica), and T4 (basal diet + 250 mg/kg L. candidum). Herbal-supplemented groups showed significantly improved (P ≤ 0.05) growth performance, feed utilization, and survival rates compared to the control, with T4 exhibiting the highest values. Significant enhancements of immune assays were observed in total hemocyte count, phagocytosis activity, total protein, glutathione peroxidase, and lysozyme activity in herbal-supplemented groups. Antioxidant indicators (catalase, superoxide dismutase, and phenoloxidase) were boosted while malondialdehyde levels decreased in herbal-treated shrimp. Following V. parahaemolyticus challenge, herbal diets effectively reduced cumulative mortality in L. vannamei. Histopathological examination revealed milder AHPND-associated alterations in A. herba-alba and L. candidum-treated groups, contrasting with atrophy, necrosis, and epithelial cell sloughing observed in the positive control. These findings demonstrate the immunostimulatory potential of A. herba-alba, L. japonica, and L. candidum as dietary supplements to enhance growth performance, immune function, and disease resistance in L. vannamei aquaculture, offering a promising strategy for sustainable shrimp farming.
Collapse
Affiliation(s)
- Amr Fadel
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Amal Khafage
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt
| | - Mohamed Abdelsalam
- Department of Aquatic Animal Medicine and Management, Faculty of Veterinary Medicine, Cairo University, P.O. 11221, Giza, Egypt
| | | |
Collapse
|
4
|
Song Y, Lin L, Zhao M. A new perspective to explore the bioactive ingredients of honeysuckle tea infusion by structure, function and stability characterization of self-assembled nano/microaggregates. Food Res Int 2025; 204:115923. [PMID: 39986770 DOI: 10.1016/j.foodres.2025.115923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/27/2025] [Accepted: 02/03/2025] [Indexed: 02/24/2025]
Abstract
The self-assembled nano/microaggregates formed by the interaction of polyphenols and polysaccharide are key bioactive ingredients in substitute tea infusions, but lack in-depth investigation. Taking honeysuckle tea infusion as a mode infusion, the self-assembled nano/microaggregates were characterized as compact advanced spherical submicroparticles with a particle size of about 155 nm and composed of 47.75 % esterification pectin, 6.53 % of 20 kinds of small molecular substances (mainly phenolic acids and flavonoids) and a small amount of protein at 3.49 % through hydrogen bonding and hydrophobic interaction. The submicroparticles exhibited 1.03 and 1.25 times greater ABTS+ scavenging activity than honeysuckle tea and particle-deficient tea infusion, respectively. During productive and storage processes, the submiroparticles showed notable stability under diverse external physical and chemical conditions. The submicroparticles were verified as the key bioactive ingredients in honeysuckle tea infusion, contributing greatly to its antioxidant activity and stability. This study provided a new perspective for the bioactive ingredients in plant-based beverages.
Collapse
Affiliation(s)
- Yaxin Song
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641 China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641 China
| | - Lianzhu Lin
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641 China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641 China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000 China.
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641 China; Guangdong Food Green Processing and Nutrition Regulation Technology Research Center, Guangzhou 510641 China; Chaozhou Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Chaozhou 521000 China
| |
Collapse
|
5
|
Zhang S, Liu Z, Li J, Liu Q, Zhang Y, Pu G. Cloning and functional verification of Geraniol-10-Hydroxylase gene in Lonicera japonica. PeerJ 2025; 13:e18832. [PMID: 39822969 PMCID: PMC11737341 DOI: 10.7717/peerj.18832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 12/17/2024] [Indexed: 01/19/2025] Open
Abstract
Background Geraniol 10-hydroxylase (G10H) is a cytochrome P450 monooxygenase involved in regulation, which is involved in the biosynthesis of monoterpene. However, G10H is not characterized at the enzymatic mechanism and regulatory function in Lonicera japonica. Methods and Results A gene related to the biosynthesis of monoterpenoid, geraniol 10-hydroxylase, has been cloned from the medicinal plant Lonicera japonica. The gene, LjG10H, encodes a peptide of 498 amino acids with a predicted molecular weight of 54.45 kDa. LjG10H shares a homology of 72.93-83.90% with G10H from other plants. Phylogenetic analysis suggests that the protein encoded by this gene belongs to the cytochrome P450 monooxygenase family. Tissue-specific expression analysis revealed that LjG10H is most highly expressed in flowers. Through heterologous expression in E. coli, the LjG10H protein was purified and its catalytic activity was studied. The results show that the enzyme can catalyze the hydroxylation of geraniol to 10-hydroxygeraniol. Additionally, analysis of Lonicera japonica seedlings with silenced LjG10H revealed a reduction in monoterpenoid content. Conclusions This study demonstrates that LjG10H plays an important role in the biosynthetic pathway of iridoids. This is the first article that ascribes G10H to be associated with the biosynthetic pathway of iridoid. This study provides a theoretical basis for the functional mechanism of LjG10H in regulating iridoid synthesis and provides a valuable resource for molecular breeding studies.
Collapse
Affiliation(s)
- Shuping Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Zhenhua Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Jia Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Yongqing Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| | - Gaobin Pu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China
| |
Collapse
|
6
|
Bermúdez-Oria A, Rubio-Senent F, Rodríguez-Gutiérrez G, Fernández-Bolaños J. Antioxidant activity and inhibitory effects on angiotensin I-converting enzyme and α-glucosidase of trans-p-coumaroyl-secologanoside (comselogoside) and its inclusion complex with β-cyclodextrin. Bioaccessibility during simulated in vitro gastrointestinal digestion. Food Chem 2024; 460:140724. [PMID: 39121769 DOI: 10.1016/j.foodchem.2024.140724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 08/12/2024]
Abstract
This study explored the impact of complexing comselogoside (COM) with β-cyclodextrin (β-CD) on antioxidant capacity and investigated its in vitro inhibitory effects against α-glucosidase and angiotensin I-converting enzyme (ACE). The COM: β-CD complex in three molar ratios (1:2, 1:1, and 2:1) showed significantly higher antioxidant activity compared to free COM, assessed by DPPH and ferric reducing power assays. COM exhibited weak to moderate α-glucosidase inhibition (IC50 1221 μM) and notable ACE inhibition (IC50 119.4 μM). Encapsulation improved ACE inhibition notably for the 1:2 and 2:1 M ratios. The cleavage of secoiridoid moiety of COM by β-glucosidase further enhanced ACE inhibition from IC50 of 63.91 to 41.75 μg/mL in the hydrolysed mixture. In vitro gastrointestinal digestion revealed 34-40% bioaccessibility of COM and its β-CD complex. This study demonstrates the potential of encapsulated COM as a functional food or supplement for preventing and treating diabetes, hypertension, and oxidative stress-related diseases.
Collapse
Affiliation(s)
- Alejandra Bermúdez-Oria
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Fátima Rubio-Senent
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Guillermo Rodríguez-Gutiérrez
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain
| | - Juan Fernández-Bolaños
- Department of Food Phytochemistry, Instituto de la Grasa (Spanish National Research Council, CSIC), Ctra. de Utrera km. 1, Pablo de Olavide University Campus, Building 46, 41013 Seville, Spain.
| |
Collapse
|
7
|
Hu Y, Qian W, Fan S, Yang Y, Liao H, Zhuang G, Gao S. Ultrasonic-Assisted Extraction of Phenolic Compounds from Lonicera similis Flowers at Three Harvest Periods: Comparison of Composition, Characterization, and Antioxidant Activity. Molecules 2024; 29:3280. [PMID: 39064860 PMCID: PMC11279271 DOI: 10.3390/molecules29143280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Lonicera similis Hemsl. (L. similis) is a promising industrial crop with flowers rich in phenolic compounds. In this study, an ultrasound-assisted extraction (UAE) was designed to extract phenolic compounds from L. similis flowers (LSFs). A contrastive analysis on the phenolic compounds' yield and characterization and the antioxidant activity of the extracts at three harvest stages (PGS I, PGS II, and PGS III) are reported. The results indicate that the optimal conditions are a sonication intensity of 205.9 W, ethanol concentration of 46.4%, SLR of 1 g: 31.7 mL, and sonication time of 20.1 min. Under these optimized conditions, the TPC values at PGS I, PGS II, and PGS III were 117.22 ± 0.55, 112.73 ± 1.68, and 107.33 ± 1.39 mg GAE/g, respectively, whereas the extract of PGS I had the highest TFC (68.48 ± 2.01 mg RE/g). The HPLC analysis showed that chlorogenic acid, rutin, quercetin, isoquercitrin, and ferulic acid are the main components in the phenolic compounds from LSFs, and their contents are closely corrected with the harvest periods. LSF extracts exhibited a better antioxidant activity, and the activity at PGS I was significantly higher than those at PGS II and PGS III. The correlation analysis showed that kaempferol and ferulic acid, among the eight phenolic compounds, have a significant positive correlation with the antioxidant activity, while the remaining compounds have a negative correlation. Minor differences in extracts at the three harvest stages were found through SEM and FTIR. These findings may provide useful references for the optimal extraction method of phenolic compounds from LSFs at three different harvest periods, which will help to achieve a higher phytochemical yield at the optimal harvest stage (PGS I).
Collapse
Affiliation(s)
- Yunyi Hu
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| | - Wenzhang Qian
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| | - Shaojun Fan
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| | - Yao Yang
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China;
| | | | - Shun Gao
- Department of Forestry, Faculty of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (Y.H.); (W.Q.); (S.F.); (Y.Y.)
| |
Collapse
|
8
|
Cao S, Gao S, Ni C, Xu Y, Pang B, Zhang J, Zhang Y, Wang Y, Geng Z, Li S, Zhao R, Han B, Cui X, Bao Y. Study on the therapeutic mechanism of HJ granules in a rat model of urinary tract infection caused by Escherichia coli. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118056. [PMID: 38490287 DOI: 10.1016/j.jep.2024.118056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Urinary tract infections (UTIs) are globally prevalent infectious diseases, predominantly caused by uropathogenic Escherichia coli (UPEC). The misuse of antibiotics has led to the emergence of several drug-resistant strains. Traditional Chinese Medicine (TCM) has its own advantages in the treatment of UTIs. HJ granules is a herbal formula used for the treatment of UTIs. However, its mechanism of action is not clear. AIM OF THE STUDY The aim of this study was to investigate the therapeutic efficacy and mechanism of action of HJ granules in a rat model of UTI caused by Escherichia coli (E coli) CFT073. MATERIALS AND METHODS SD rats were selected to establish a rat UTI model by injecting UPEC strain CFT073 into the bladder using the transurethral placement method. HJ granules were administered to rats after modelling and the efficacy of HJ granule was investigated by measuring urinary decanalogue, inflammatory factors in bladder tissue and pathological changes in the bladder after 3d of administration. Expression of sonic hedgehog (SHH), NOD-like receptor thermoprotein domain 3 (NLRP3), apoptosis-associated speck-like protein (ASC) and activation of cysteinyl aspartate specific proteinase-1 (caspase-1) were detected by western blotting and immunofluorescence staining in rat bladder tissue. NLRP3, ASC and caspase-1, a cysteine-containing aspartic protein, were expressed and activated. RESULTS The results showed that infection of rats with UPEC resulted in increased pH and erythrocytes in bladder irrigation fluid; increased expression of IL-1β, IL-6 and SHH and decreased expression of IL-10 in bladder tissue; and significant upregulation of the expression of both SHH and NLRP3 inflammasom and significant activation of NLRP3 inflammasom. HJ granules significantly increased the concentration of IL-10 in the bladder, inhibited the expression of SHH and NLRP3 inflammasom in bladder tissue, and suppressed the activation of NLRP3 inflammasom, thereby reducing inflammatory lesions in bladder tissue. CONCLUSION HJ granules may improve bladder injury and treat UTIs by inhibiting the expression and activation of NLRP3 inflammasom.
Collapse
Affiliation(s)
- Shan Cao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shuangrong Gao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Chen Ni
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yingli Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bo Pang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jingsheng Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yaxin Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Zihan Geng
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Shurang Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ronghua Zhao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Bing Han
- Heilongjiang Jiren Pharmaceutical Co., Ltd., Harbin, 150000, China.
| | - Xiaolan Cui
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yanyan Bao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
9
|
Huang L, Luo S, Tong S, Lv Z, Wu J. The development of nanocarriers for natural products. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1967. [PMID: 38757428 DOI: 10.1002/wnan.1967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/01/2024] [Accepted: 04/24/2024] [Indexed: 05/18/2024]
Abstract
Natural bioactive compounds from plants exhibit substantial pharmacological potency and therapeutic value. However, the development of most plant bioactive compounds is hindered by low solubility and instability. Conventional pharmaceutical forms, such as tablets and capsules, only partially overcome these limitations, restricting their efficacy. With the recent development of nanotechnology, nanocarriers can enhance the bioavailability, stability, and precise intracellular transport of plant bioactive compounds. Researchers are increasingly integrating nanocarrier-based drug delivery systems (NDDS) into the development of natural plant compounds with significant success. Moreover, natural products benefit from nanotechnological enhancement and contribute to the innovation and optimization of nanocarriers via self-assembly, grafting modifications, and biomimetic designs. This review aims to elucidate the collaborative and reciprocal advancement achieved by integrating nanocarriers with botanical products, such as bioactive compounds, polysaccharides, proteins, and extracellular vesicles. This review underscores the salient challenges in nanomedicine, encompassing long-term safety evaluations of nanomedicine formulations, precise targeting mechanisms, biodistribution complexities, and hurdles in clinical translation. Further, this study provides new perspectives to leverage nanotechnology in promoting the development and optimization of natural plant products for nanomedical applications and guiding the progression of NDDS toward enhanced efficiency, precision, and safety. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Nanotechnology Approaches to Biology > Nanoscale Systems in Biology.
Collapse
Affiliation(s)
- Liying Huang
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Shicui Luo
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Sen Tong
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Zhuo Lv
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| | - Junzi Wu
- The Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
- Yunnan Clinical Medical Research Center for Geriatric Diseases, Yunnan First People's Hospital, Kunming, Yunnan, China
| |
Collapse
|
10
|
Chen ZH, Zou QF, Jiang LJ, Liu CJ, Li JJ, Shi W, Chen ZF, Zhang FX. The comparative analysis of Lonicerae Japonicae Flos and Lonicerae Flos: A systematical review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 323:117697. [PMID: 38185261 DOI: 10.1016/j.jep.2023.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/30/2023] [Indexed: 01/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lonicerae Japonicae Flos (LJF) and Lonicerae Flos (LF) were once used as the same herb in China, but they were distinguished by Chinese Pharmacopoeia in 2005 in terms of their medicinal history, plant morphology, medicinal properties and chemical constituents. However, their functions, flavor, and meridian tropism are the same according to the Chinese pharmacopoeia 2020 edition, making researchers and customers confused. AIM OF THE REVIEW This review aimed to provide a comparative analysis of LJF and LF in order to provide a rational application in future research. MATERIALS AND METHODS The information was gathered from China National Knowledge Infrastructure (CNKI), SciFinder, Google Scholar, PubMed, Web of Science, and Chinese Masters and Doctoral Dissertations (all chosen articles were reviewed attentively from 1980.1 to 2023.8). RESULTS Till now, 507 chemical compounds have been isolated and identified in LJF, while 223 ones (79 overlapped compounds) are found in LF, including organic acids and derivatives, flavonoids, triterpenoids, iridoids, and essential oil components, etc. In addition, the pharmacological activities of LJF and LF, especially for their anti-influenza efficacy and mechanism, and their difference in terms of pharmacokinetic parameters, toxicology, and clinical applications were also summarized. CONCLUSION The current work offers comparative information between LJF and LF in terms of botany, traditional uses, phytochemistry, ethnopharmacology, pharmacokinetics, toxicology, and pharmacology, especially their anti-influenza activities. Despite the same clinical applications and similar chemical components in LJF and LF, differentiated components were still existed, resulting in differentiated pharmacological activities and pharmacokinetics parameters. Moreover, the research about anti-influenza mechanism and functional substances of LJF and LF is dramatically limited, restricting their clinical applications. In addition, few studies have investigated the metabolism feature of LF in vivo, which is one of the important bases for revealing the pharmacological mechanism of LF. At the same time, the toxicity of LJF and LF is not fully studied, and the toxic compounds of LJF and LF need to be screened out in order to standardize the drug use and improve their rational applications.
Collapse
Affiliation(s)
- Zi-Hao Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Qi-Feng Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Li-Jie Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Cheng-Jun Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Jin-Jin Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China
| | - Wei Shi
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Zhen-Feng Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| | - Feng-Xiang Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, PR China.
| |
Collapse
|
11
|
Ding Y, Zhao D, Wang T, Xu Z, Fu Y, Tao L. Medicinal patterns of vines used in Chinese herbal medicine: a quantitative study. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117184. [PMID: 37827301 DOI: 10.1016/j.jep.2023.117184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/27/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The botanical characteristics of twinning, climbing vine plants conceptually take shape to interlink the meridians and collaterals system throughout the human body by expelling climatic evils (e.g., wind, dampness). Thus, vines have displayed great medicinal properties in traditional Chinese medicine (TCM). AIM OF THE STUDY Although some popular vine species have been intensively investigated, the comparable features and medicinal specifications among a vast collection of taxonomic groups based on data visualization methods are relatively lacking in attention. Moreover, the translatability of vines from ancient ethnomedical evidence to modern medical system has not been well established. This review tends to quantitatively summarize the strength of vines in healthcare from the perspectives of medicinal part, traditional function, clinical spectrum, phytochemistry divergence, pharmacological attributes, toxicity as well as the progress of proprietary drug development. MATERIALS AND METHODS Medicinal vines were retrieved from databases of drug standards and curated catalogues. Synonyms of plant origin across different datasets were normalized by accepted scientific names in the World Flora Online. The distribution patterns and rank of plant origin, medicinal parts, traditional functions and target conditions, as well as the correlation between phytochemical composition and clinical applications were analyzed and visualized. RESULTS A total of 121 crude drugs from 36 families, 77 genera, 133 species of vines were obtained and analyzed. The Fabaceae, Menispermaceae and Rubiaceae were the highest ranked families of medicinal vines. Not surprisingly, stem was the most dominant medical part. Moreover, "eliminate wind" displayed a hub node in the traditional function co-occurrence network. In addition to joint impediment disorders, these vines particularly displayed a wide range of therapeutic modalities toward conditions from various organ systems. Chemotaxonomic properties-oriented phytochemical analysis was performed and the chemical diversity among medicinal vines complementarily determined a certain group of therapeutic domains. Particularly, the anti-inflammatory effect and antiarthritic effect were highlighted for treating rheumatic diseases. Using integral animal models and cultured cells, modern pharmacological actions of medicinal vines have been largely observed and validated according to their traditional ethnopharmacology. Furthermore, a small proportion of vine species are well-known toxic plants. Successful drug development pipelines in rheumatic, cardiovascular, liver, malignant and infectious diseases have offered the capacity to generate new treatment options that are being sought out from vine plants. CONCLUSIONS Medicinal vines are rich sources of Chinese Material Medica (CMM) and good fit for a variety of clinical manifestations beyond arthritis and rheumatic diseases. In addition to stem, other parts are also popular for both medicines and dietary supplements. Vine plants provide extensive biologically relevant chemical space for developing value-creating drugs. Thus, our analysis can be useful for further motivating and strengthening the preclinical and clinical research of vine-derived remedies.
Collapse
Affiliation(s)
- Yanlin Ding
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Dingping Zhao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Tingye Wang
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Zhenyu Xu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Yuxuan Fu
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China
| | - Li Tao
- College of Medicine, Yangzhou University, Yangzhou, Jiangsu, 225009, China; The State Administration of Traditional Chinese Medicine Key Laboratory of Toxic Pathogens-Based Therapeutic Approaches of Gastric Cancer, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
12
|
Yin X, Xiang Y, Huang F, Chen Y, Ding H, Du J, Chen X, Wang X, Wei X, Cai Y, Gao W, Guo D, Alolga RN, Kan X, Zhang B, Alejo‐Jacuinde G, Li P, Tran LP, Herrera‐Estrella L, Lu X, Qi L. Comparative genomics of the medicinal plants Lonicera macranthoides and L. japonica provides insight into genus genome evolution and hederagenin-based saponin biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2209-2223. [PMID: 37449344 PMCID: PMC10579715 DOI: 10.1111/pbi.14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Lonicera macranthoides (LM) and L. japonica (LJ) are medicinal plants widely used in treating viral diseases, such as COVID-19. Although the two species are morphologically similar, their secondary metabolite profiles are significantly different. Here, metabolomics analysis showed that LM contained ~86.01 mg/g hederagenin-based saponins, 2000-fold higher than LJ. To gain molecular insights into its secondary metabolite production, a chromosome-level genome of LM was constructed, comprising 9 pseudo-chromosomes with 40 097 protein-encoding genes. Genome evolution analysis showed that LM and LJ were diverged 1.30-2.27 million years ago (MYA). The two plant species experienced a common whole-genome duplication event that occurred ∼53.9-55.2 MYA before speciation. Genes involved in hederagenin-based saponin biosynthesis were arranged in clusters on the chromosomes of LM and they were more highly expressed in LM than in LJ. Among them, oleanolic acid synthase (OAS) and UDP-glycosyltransferase 73 (UGT73) families were much more highly expressed in LM than in LJ. Specifically, LmOAS1 was identified to effectively catalyse the C-28 oxidation of β-Amyrin to form oleanolic acid, the precursor of hederagenin-based saponin. LmUGT73P1 was identified to catalyse cauloside A to produce α-hederin. We further identified the key amino acid residues of LmOAS1 and LmUGT73P1 for their enzymatic activities. Additionally, comparing with collinear genes in LJ, LmOAS1 and LmUGT73P1 had an interesting phenomenon of 'neighbourhood replication' in LM genome. Collectively, the genomic resource and candidate genes reported here set the foundation to fully reveal the genome evolution of the Lonicera genus and hederagenin-based saponin biosynthetic pathway.
Collapse
Affiliation(s)
- Xiaojian Yin
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
- Key Laboratory of Soybean Molecular Design BreedingNortheast Institute of Geography and Agroecology, Chinese Academy of SciencesChangchunChina
| | - Yaping Xiang
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Feng‐Qing Huang
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Yahui Chen
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Hengwu Ding
- The Institute of Bioinformatics, College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Jinfa Du
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Xiaojie Chen
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Xiaoxiao Wang
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Xinru Wei
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Yuan‐Yuan Cai
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Wen Gao
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Dongshu Guo
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural ScienceNanjingChina
| | - Raphael N. Alolga
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Xianzhao Kan
- The Institute of Bioinformatics, College of Life SciencesAnhui Normal UniversityWuhuChina
| | - Baolong Zhang
- Provincial Key Laboratory of AgrobiologyJiangsu Academy of Agricultural ScienceNanjingChina
| | - Gerardo Alejo‐Jacuinde
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech UniversityLubbockTXUSA
| | - Ping Li
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Lam‐Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech UniversityLubbockTXUSA
| | - Luis Herrera‐Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech UniversityLubbockTXUSA
- Laboratorio Nacional de Genomica/ Unidad de Genómica Avanzada del Centro de Investigación y de Estudios Avanzados del IPNIrapuatoMexico
| | - Xu Lu
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Lian‐Wen Qi
- Clinical Metabolomics Center, School of Traditional Chinese PharmacyChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
13
|
Yang X, Yu A, Hu W, Zhang Z, Ruan Y, Kuang H, Wang M. Extraction, Purification, Structural Characteristics, Health Benefits, and Application of the Polysaccharides from Lonicera japonica Thunb.: A Review. Molecules 2023; 28:4828. [PMID: 37375383 DOI: 10.3390/molecules28124828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
Lonicera japonica Thunb. is a widely distributed plant with ornamental, economic, edible, and medicinal values. L. japonica is a phytoantibiotic with broad-spectrum antibacterial activity and a potent therapeutic effect on various infectious diseases. The anti-diabetic, anti-Alzheimer's disease, anti-depression, antioxidative, immunoregulatory, anti-tumor, anti-inflammatory, anti-allergic, anti-gout, and anti-alcohol-addiction effects of L. japonica can also be explained by bioactive polysaccharides isolated from this plant. Several researchers have determined the molecular weight, chemical structure, and monosaccharide composition and ratio of L. japonica polysaccharides by water extraction and alcohol precipitation, enzyme-assisted extraction (EAE) and chromatography. This article searched in the Chinese Pharmacopoeia, Flora of China, Web of Science, PubMed, and CNKI databases within the last 12 years, using "Lonicera. japonica polysaccharides", "Lonicera. japonica Thunb. polysaccharides", and "Honeysuckle polysaccharides" as the key word, systematically reviewed the extraction and purification methods, structural characteristics, structure-activity relationship, and health benefits of L. japonica polysaccharides to provide insights for future studies. Further, we elaborated on the potential applications of L. japonica polysaccharides in the food, medicine, and daily chemical industry, such as using L. japonica as raw material to make lozenges, soy sauce and toothpaste, etc. This review will be a useful reference for the further optimization of functional products developed from L. japonica polysaccharides.
Collapse
Affiliation(s)
- Xinpeng Yang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ye Ruan
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Ministry of Education), Heilongjiang University of Chinese Medicine, The Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin 150000, China
| |
Collapse
|
14
|
Xu N, Du LH, Chen YC, Zhang JH, Zhu QF, Chen R, Peng GP, Wang QM, Yu HZ, Rao LQ. Lonicera japonica Thunb. as a promising antibacterial agent for Bacillus cereus ATCC14579 based on network pharmacology, metabolomics, and in vitro experiments. RSC Adv 2023; 13:15379-15390. [PMID: 37223411 PMCID: PMC10201548 DOI: 10.1039/d3ra00802a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023] Open
Abstract
Lonicera japonica Thunb. has attracted much attention for its treatment of bacterial and viral infectious diseases, while its active ingredients and potential mechanisms of action have not been fully elucidated. Here, we combined metabolomics, and network pharmacology to explore the molecular mechanism of Bacillus cereus ATCC14579 inhibition by Lonicera japonica Thunb. In vitro inhibition experiments showed that the Lonicera japonica Thunb.'s water extracts, ethanolic extract, luteolin, quercetin, and kaempferol strongly inhibited Bacillus cereus ATCC14579. In contrast, chlorogenic acid and macranthoidin B had no inhibitory effect on Bacillus cereus ATCC14579. Meanwhile, the minimum inhibitory concentrations of luteolin, quercetin, and kaempferol against Bacillus cereus ATCC14579 were 15.625 μg mL-1, 31.25 μg mL-1, and 15.625 μg mL-1. Based on the previous experimental basis, the metabolomic analysis showed the presence of 16 active ingredients in Lonicera japonica Thunb.'s water extracts and ethanol extracts, with differences in the luteolin, quercetin, and kaempferol contents between the water extracts and ethanol extracts. Network pharmacology studies indicated that fabZ, tig, glmU, secA, deoD, nagB, pgi, rpmB, recA, and upp were potential key targets. Active ingredients of Lonicera japonica Thunb. may exert their inhibitory effects by inhibiting ribosome assembly, the peptidoglycan biosynthesis process, and the phospholipid biosynthesis process of Bacillus cereus ATCC14579. An alkaline phosphatase activity assay, peptidoglycan concentration assay, and protein concentration assay showed that luteolin, quercetin, and kaempferol disrupted the Bacillus cereus ATCC14579 cell wall and cell membrane integrity. Transmission electron microscopy results showed significant changes in the morphology and ultrastructure of the cell wall and cell membrane of Bacillus cereus ATCC14579, further confirming the disruption of the cell wall and cell membrane integrity of Bacillus cereus ATCC14579 by luteolin, quercetin, and kaempferol. In conclusion, Lonicera japonica Thunb. can be used as a potential antibacterial agent for Bacillus cereus ATCC14579, which may exert its antibacterial activity by destroying the integrity of the cell wall and membrane.
Collapse
Affiliation(s)
- Nan Xu
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Li-Hua Du
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Yan-Chao Chen
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Jin-Hao Zhang
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Qian-Feng Zhu
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Rong Chen
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Guo-Ping Peng
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Qi-Ming Wang
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| | - Hua-Zhong Yu
- Key Laboratory of Hunan Forest Products and Chemical Industry Engineering, Jishou University Jishou China
| | - Li-Qun Rao
- Hunan Engineering Laboratory for Good Agricultural Practice and Comprehensive Utilization of Famous-Region Medicinal Plants, Hunan Agricultural University Changsha China
| |
Collapse
|
15
|
Lonicera japonica polysaccharides improve longevity and fitness of Caenorhabditis elegans by activating DAF-16. Int J Biol Macromol 2023; 229:81-91. [PMID: 36586650 DOI: 10.1016/j.ijbiomac.2022.12.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 12/14/2022] [Accepted: 12/25/2022] [Indexed: 12/31/2022]
Abstract
Polysaccharide is one of the main active ingredients in Lonicera japonica Thunb. (L. japonica). In this study, we examined the anti-aging activities of L.japonica polysaccharides (LJPs) and further explored the mechanisms. Polysaccharides from L.japonica including the crude LJP (CLJP) and the purified fraction (LJP-2-1) were characterized. The molecular weights of CLJP and LJP-2-1 were 1450 kDa and 1280 kDa, respectively. Meanwhile, CLJP was mainly composed of galacturonic acid (23.57 %), galactose (23.45 %) and arabinose (23.45 %). LJP-2-1 was mainly composed of galacturonic acid (51.25 %) and arabinose (22.89 %). In Caenorhabditis elegans (C. elegans), LJPs maximally prolonged mean lifespan by 13.97 %, promoted fitness with increased motility by 40.92 % and pharyngeal pumping by 25.72 %, and decreased lipofuscin accumulation by 38.9 % with intact body length and fecundity. Moreover, CLJP extended the mean lifespan of nematodes under oxidative and heat stress by 16.76 % and 14.05 % respectively by activating stress-related genes and the antioxidant system. Further, CLJP required DAF-16 to prolong the lifespan of nematodes. CLJP upregulated the expression of daf-16 and its targeted downstream genes, including sod-3, gst-4 and hsp-16.2. Moreover, nuclear accumulation of DAF-16 was promoted upon CLJP treatment. Together, our data uncover the role of LJPs in extending lifespan and healthspan through DAF-16.
Collapse
|
16
|
Metabolomics Analysis of Different Tissues of Lonicera japonica Thunb. Based on Liquid Chromatography with Mass Spectrometry. Metabolites 2023; 13:metabo13020186. [PMID: 36837805 PMCID: PMC9964630 DOI: 10.3390/metabo13020186] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/24/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
Lonicera japonica Thunb. (LJT) has been widely used as medicines or food additives in Asian countries for thousands of years. The flower buds are often medicinally used, and the other tissues are ignored. However, flowers, leaves and stems have also been reported to have antimicrobial, anti-inflammatory and antioxidant effects. In the current study, un-targeted metabolomics analysis was performed to investigate the metabolic difference among different tissues (flowers, flower buds, stems and leaves) of LJT based on liquid chromatography with mass spectrometry. A total of 171 metabolites were identified, including 28 flavonoids, 35 phenolic acids, 43 iridoids, 9 amino acids, 6 nucleotides, 16 fatty acids, 22 lipids and 12 others. Four new secondary metabolites were discovered. Some flavonoids and iridoids were not detected in leaves and stems. Principal component analysis showed significant differences among four different tissues. Some 27, 81, 113 differential metabolites were found between flowers/flower buds, leaves/flower buds, stems/flower buds, respectively. Primary metabolites showed a higher content in the flowers and flower buds. For the flavonoids, flavones were mainly accumulated in the leaves, flavonols were mainly accumulated in the flower buds, and acylated flavonol glucosides were mainly accumulated in the flowers. Most phenolic acids showed a higher content in the flowers or flower buds, while phenolic acid-glucosides showed significantly higher content in the flower buds. The most abundant iridoids in the LJT also showed a higher content in the flowers and flower buds. These results can provide new insights into the understanding of the metabolites changes in different tissues, and lay a theoretical foundation for the comprehensive utilization of LJT.
Collapse
|
17
|
Deng Z, Zhang X, Wen J, Yang X, Xue L, Ou C, Ma J, Zhan H, Cen X, Cai X, Zhang Y, Chen R, Zhang Q. Lonicerin attenuates house dust mite-induced eosinophilic asthma through targeting Src/EGFR signaling. Front Pharmacol 2022; 13:1051344. [PMID: 36618942 PMCID: PMC9817108 DOI: 10.3389/fphar.2022.1051344] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
Eosinophilic asthma is the predominant phenotype of asthma, and although these patients are sensitive to glucocorticoid therapy, they also experience many side effects. Lonicerin is a kind of bioflavonoid isolated from the Chinese herb Lonicera japonica Thunb, which has anti-inflammatory and immunomodulatory effects. The aim of this study was to elucidate the effects of lonicerin on eosinophilic asthma and its potential mechanisms. Here, we established a house dust mite (house dust mite)-induced eosinophilic asthma model in BALB/c mouse, and evaluated the effects of lonicerin on it. Our results showed that lonicerin significantly reduced airway hyperresponsiveness the number of inflammatory cells (especially eosinophils) and the elevation of interleukin (IL)-4, IL-5, IL-13 and eotaxin in bronchoalveolar lavage fluid (BALF) supernatants of mice. Additionally, lonicerin also eminently blunted inflammatory infiltration and mucus secretion, as well as mRNA levels of Mucin 5AC (MUC5AC) in lung tissue. Furthermore, results of network pharmacology and molecular docking revealed that Src kinase and epidermal growth factor receptor may be the potential targets responsible for the effects of lonicerin. Finally, in vivo experiments confirmed that lonicerin inhibited activation of the Src/EGFR pathway by decreasing their phosphorylation. Taken together, the present study demonstrated that lonicerin could suppress HDM-induced eosinophilic asthma in mice through inhibiting the activation of Src/EGFR pathway, which also provides a basis for further research as a new potentially therapeutic agent for eosinophilic asthma and its underlying mechanisms in the future.
Collapse
Affiliation(s)
- Zhenan Deng
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuefei Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Junjie Wen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaojing Yang
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lingna Xue
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Changxing Ou
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Jianjuan Ma
- Department of Pediatric Hematology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hongrui Zhan
- Department of Rehabilitation, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, China
| | - Xiaomin Cen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xuliang Cai
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Zhang
- Department of Critical Care Medicine, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| | - Riken Chen
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| | - Qingling Zhang
- State Key Laboratory of Respiratory Diseases, Department of Pulmonary and Critical Care Medicine, Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China,*Correspondence: Qingling Zhang, ; Riken Chen, ; Yu Zhang,
| |
Collapse
|