1
|
Hussain MK, Ahmad M, Khatoon S, Khan MV, Azmi S, Arshad M, Ahamad S, Saquib M. Phytomolecules as Alzheimer's therapeutics: A comprehensive review. Eur J Med Chem 2025; 288:117401. [PMID: 39999743 DOI: 10.1016/j.ejmech.2025.117401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
Alzheimer's disease (AD) is a leading neurodegenerative disorder recognized by progressive cognitive decline and behavioral changes. The pathology of AD is characterized by the accumulation of amyloid-β (Aβ) plaques and the hyperphosphorylation of tau protein, which leads to synaptic loss and subsequent neurodegeneration. Additional contributors to disease progression include metabolic, vascular, and inflammatory factors. Glycogen synthase kinase-3β (GSK-3β) is also implicated, as it plays a crucial role in tau phosphorylation and the progression of neurodegeneration. This review provides a comprehensive analysis of various phytomolecules and their potential to target multiple aspects of AD pathology. We examined natural products from diverse classes, including stilbenes, flavonoids, phenolic acids, alkaloids, coumarins, terpenoids, chromenes, cannabinoids, chalcones, phloroglucinols, and polycyclic polyprenylated acylphloroglucinols (PPAPs). The key mechanisms of action of these phytomolecules include modulating tau protein dynamics to reduce aggregation, inhibiting acetylcholinesterase (AChE) to maintain neurotransmitter levels and enhance cognitive function, and inhibiting β-secretase (BACE1) to decrease Aβ production. Additionally, some phytomolecules were found to influence GSK-3β activity, thereby impacting tau phosphorylation and neurodegeneration. By addressing multiple targets, Aβ production, tau hyperphosphorylation, AChE activity, and GSK-3β, these natural products offer a promising multi-targeted approach to AD therapy. This review highlights their potential to develop effective treatments that not only mitigate core pathological features but also manage the complex, multifactorial aspects of AD progression.
Collapse
Affiliation(s)
- Mohd Kamil Hussain
- Department of Chemistry, Govt Raza P.G. College, M.J.P Rohilkahand University, Rampur, Bareilly, 244901, India.
| | - Moazzam Ahmad
- Defence Research & Development Organization, Selection Centre East, Prayagraj, 211001, India
| | | | - Mohsin Vahid Khan
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Sarfuddin Azmi
- Scientific Research Center, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Md Arshad
- Department of Zoology, Aligarh Muslim University, Aligarh, 202002, India
| | - Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India.
| | - Mohammad Saquib
- Department of Chemistry, University of Allahabad, Prayagraj (Allahabad), 211002, India; Department of Chemistry, G. R. P. B. Degree College, P. R. S. University, Prayagraj (Allahabad), 211010, UP, India.
| |
Collapse
|
2
|
Wang M, Li M, Jiang Y, Wang S, Yang X, Naseem A, Algradi AM, Hao Z, Guan W, Chen Q, Zhang L, Kuang H, Yang B, Liu Y. Saponins from Astragalus membranaceus (Fisch.) Bge Alleviated Neuronal Ferroptosis in Alzheimer's Disease by Regulating the NOX4/Nrf2 Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:7725-7740. [PMID: 40119801 DOI: 10.1021/acs.jafc.4c10497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease of the central nervous system caused by loss of neuronal or myelin function, accompanied by ferroptosis. Astragalus membranaceus (Fisch.) Bge. (A. membranaceus) is one of China's homologous lists of medicines and food, and its active component saponins have neuroprotective effects. This study examines the mechanism of saponins from A. membranaceus (AS) in treating AD. UPLC-Q-TOF-MS analyzed the composition of AS. Ferroptosis models were established to evaluate the anti-AD efficacy. As a result, AS treatment inhibited ferroptosis in SAMP8 mice by restoring iron homeostasis and lipid peroxidation (LPO) balance in the brain, thereby improving cognitive impairment and pathological damage. Mechanistically, AS treatment reduced Fe2+, MDA, and ROS levels and enhanced protein levels of SLC7A11, GPX4, FTH1, and FPN1. NADPH oxidase 4 (NOX4) overexpression revealed that AS treatment inhibited NOX4, thereby reducing NOX4 stability and regulating the NOX4/Nrf2 pathway in erastin-injured HT22 cells and significantly alleviating ferroptosis. Therefore, AS inhibited ferroptosis and improved AD by rebuilding iron homeostasis and LPO balance in the brain. AS has the potential to be a promising candidate medicine for AD.
Collapse
Affiliation(s)
- Min Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Mengmeng Li
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yikai Jiang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Siyi Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Xu Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Anam Naseem
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Adnan Mohammed Algradi
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Zhichao Hao
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Wei Guan
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Qingshan Chen
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Lili Zhang
- Construction of traditional Chinese medicine biogenetics, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Bingyou Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| | - Yan Liu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education Heilongjiang Touyan Innovation Team Program, Heilongjiang University of Chinese Medicine, Harbin 150040, People's Republic of China
| |
Collapse
|
3
|
Huang Y, Sun J, Li S, Shi Y, Yu L, Wu A, Wang X. Isoliquiritigenin mitigates intervertebral disc degeneration induced by oxidative stress and mitochondrial impairment through a PPARγ-dependent pathway. Free Radic Biol Med 2024; 225:98-111. [PMID: 39366471 DOI: 10.1016/j.freeradbiomed.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/06/2024]
Abstract
OBJECTIVES Oxidative stress, mitochondrial dysfunction, and apoptosis play significant roles in the degradation of extracellular matrix (ECM) in nucleus pulposus cells (NPCs), ultimately contributing to intervertebral disc degeneration (IVDD). This study investigates the potential of isoliquiritigenin (ISL), a natural extract known for its antioxidant, anti-inflammatory, and anti-atherosclerotic properties, to alleviate IVDD. METHODS The viability of NPCs treated with ISL and tert-butyl hydroperoxide (TBHP) was assessed using the CCK-8 assay. Various techniques, including Western blot, qRT-PCR, immunofluorescence (IF), and immunohistochemistry, were employed to measure the expression of ECM components, oxidative stress markers, and apoptosis-related proteins. Mitochondrial function was evaluated through Western blot and IF analyses. Network pharmacology predicted ISL targets, and the expression levels of PPARγ were assessed using the aforementioned methods. The role of PPARγ in the therapeutic effects of ISL on IVDD was examined through siRNA knockdown. The therapeutic impact of ISL on puncture-induced IVDD in rats was evaluated using X-ray, MRI, and histological staining techniques. RESULTS In vitro, ISL reduced oxidative stress in NPCs, restored mitochondrial function, inhibited apoptosis, and improved the ECM phenotype. In vivo, ISL slowed the progression of IVDD in a rat model. Further analysis revealed that ISL enhances PPARγ activity and promotes its expression by direct binding, contributing to the delay of IVDD progression. CONCLUSION This study demonstrates that ISL effectively treats puncture-induced IVDD in rats by inhibiting oxidative stress, restoring mitochondrial function, and reducing NPC apoptosis through a PPARγ-dependent mechanism. By balancing ECM synthesis and degradation, ISL presents a novel therapeutic approach for IVDD and identifies a promising target for treatment.
Collapse
Affiliation(s)
- Yeheng Huang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jing Sun
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Sunlong Li
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Yifeng Shi
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Lianggao Yu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Aimin Wu
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| | - Xiangyang Wang
- Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou, Zhejiang Province, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
4
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
5
|
Zhang N, Zhang S, Dong X. Plant-derived bioactive compounds and their novel role in central nervous system disorder treatment via ATF4 targeting: A systematic literature review. Biomed Pharmacother 2024; 176:116811. [PMID: 38795641 DOI: 10.1016/j.biopha.2024.116811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 05/28/2024] Open
Abstract
Central nervous system (CNS) disorders exhibit exceedingly intricate pathogenic mechanisms. Pragmatic and effective solutions remain elusive, significantly compromising human life and health. Activating transcription factor 4 (ATF4) participates in the regulation of multiple pathophysiological processes, including CNS disorders. Considering the widespread involvement of ATF4 in the pathological process of CNS disorders, the targeted regulation of ATF4 by plant-derived bioactive compounds (PDBCs) may become a viable strategy for the treatment of CNS disorders. However, the regulatory relationship between PDBCs and ATF4 remains incompletely understood. Here, we aimed to comprehensively review the studies on PDBCs targeting ATF4 to ameliorate CNS disorders, thereby offering novel directions and insights for the treatment of CNS disorders. A computerized search was conducted on PubMed, Embase, Web of Science, and Google Scholar databases to identify preclinical experiments related to PDBCs targeting ATF4 for the treatment of CNS disorders. The search timeframe was from the inception of the databases to December 2023. Two assessors conducted searches using the keywords "ATF4," "Central Nervous System," "Neurological," "Alzheimer's disease," "Parkinson's Disease," "Stroke," "Spinal Cord Injury," "Glioblastoma," "Traumatic Brain Injury," and "Spinal Cord Injury." Overall, 31 studies were included, encompassing assessments of 27 PDBCs. Combining results from in vivo and in vitro studies, we observed that these PDBCs, via ATF4 modulation, prevent the deposition of amyloid-like fibers such as Aβ, tau, and α-synuclein. They regulate ERS, reduce the release of inflammatory factors, restore mitochondrial membrane integrity to prevent oxidative stress, regulate synaptic plasticity, modulate autophagy, and engage anti-apoptotic mechanisms. Consequently, they exert neuroprotective effects in CNS disorders. Numerous PDBCs targeting ATF4 have shown potential in facilitating the restoration of CNS functionality, thereby presenting expansive prospects for the treatment of such disorders. However, future endeavors necessitate high-quality, large-scale, and comprehensive preclinical and clinical studies to further validate this therapeutic potential.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun, Liaoning 113000, China
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao street, Heping District, Shenyang, Liaoning 110000, China.
| |
Collapse
|
6
|
Gao M, Cai Q, Bian Y, Wang Z, Xu L, Peng J. Protective effect of esculentoside A against myocardial infarction via targeting C-X-C motif chemokine receptor 2. Biomed Pharmacother 2024; 174:116529. [PMID: 38569275 DOI: 10.1016/j.biopha.2024.116529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
Myocardial infarction (MI) is the primary cause of cardiac mortality. Esculentoside A (EsA), a triterpenoid saponin, has anti-inflammatory and antioxidant activities. However, its effect on MI remains unknown. In this study, the protective effect and mechanisms of EsA against MI were investigated. EsA significantly alleviated hypoxia-induced HL-1 cell injury, including increasing cell viability, inhibiting reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP) and lactate dehydrogenase (LDH) leakage. In mouse MI model by left coronary artery (LAD) ligating, EsA obviously restored serum levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI), superoxide dismutase (SOD) and malondialdehyde (MDA). In addition, the cardioprotective effect of EsA was further confirmed by infarct size, electrocardiogram and echocardiography. Mechanistically, the targeted binding relationship between EsA and C-X-C motif chemokine receptor 2 (CXCR2) was predicted by molecular docking and dynamics, and validated by small molecule pull-down and surface plasmon resonance tests. EsA inhibited CXCR2 level both in vitro and in vivo, correspondingly alleviated oxidative stress by suppressing NOX1 and NOX2 and relieved inflammation through inhibiting p65 and p-p65. It demonstrated that EsA could play a cardioprotective role by targeting CXCR2. However, the effect of EsA against MI was abolished in combination with CXCR2 overexpression both in vitro and in vivo. This study revealed that EsA showed excellent cardioprotective activities by targeting CXCR2 to alleviate oxidative stress and inflammation in MI. EsA may function as a novel CXCR2 inhibitor and a potent candidate for the prevention and intervention of MI in the future.
Collapse
Affiliation(s)
- Meng Gao
- Institute of Intergrative Medicine, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Qing Cai
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Yehua Bian
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Zhuoya Wang
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China
| | - Lina Xu
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China.
| | - Jinyong Peng
- College of Pharmacy, Dalian Medical University, Western 9 Lvshunnan Road, Dalian 116044, China; College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Department of Traditional Chinese Medicine Pharmacology, School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China; Hubei Shizhen Laboratory, Wuhan 430065, China.
| |
Collapse
|
7
|
Zhang Q, Li Y, Fan B, Wang F, Li Z, Pires Dias AC, Liu X, Wang Q. Dendrobium nobile Lindl ameliorates learning and memory deficits in scopolamine-treated mice. JOURNAL OF ETHNOPHARMACOLOGY 2024; 324:117416. [PMID: 37981114 DOI: 10.1016/j.jep.2023.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium nobile Lindl (DNL), a valued time-honored herb, possesses immune-boosting and age-delaying properties, has been widely used to treat hyperglycemia and neurological diseases, and is probably a potential drug for improving learning and memory. Scopolamine (Scop), an antagonist for muscarinic receptors, potentially impairing intelligence and memory. AIM OF THE STUDY This investigation aimed to assess the efficacy of DNL in alleviating scopolamine-induced cognitive deficits in mice and its mechanisms. MATERIALS AND METHODS We utilized the open-field test, novel object recognition test (NOR), and Morris water maze test (MWM) to assess the potential of DNL in ameliorating learning and memory dysfunction caused by scopolamine in mice. Enzyme-linked immunosorbent assay (ELISA) was employed to measure Choline acetyltransferase (ChAT) content and Acetylcholinesterase (AChE) activities in the brain, and oxidative stress-related factors in the serum, including Malondialdehyde (MDA), Superoxide dismutase (SOD), and glutathione (GSH) content. RESULTS Scopolamine injection significantly reduced the discrimination index of mice in the NOR test and impaired their performance in the MWM test, as demonstrated by longer escape latency, fewer target crossings, and less time spent in the target quadrant in the MWM. After 25 days of administration, DNL increased the discrimination index of the scopolamine-treated mice in the NOR test. DNL reduced the escape latency in the MWM test in the model mice. DNL increased the target crossing number and the percentage of time spent in the target quadrant in the MWM test. ELISA experiments indicated that DNL decreased the AChE activities, increased the ChAT activities, and modulated oxidative stress makers (GSH, SOD, and MDA) in scopolamine-induced mice. CONCLUSIONS DNL may improve the learning and memory in mice treated with scopolamine, possibly by modulating oxidative stress and impaired cholinergic function.
Collapse
Affiliation(s)
- Qiumei Zhang
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yujiao Li
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Bei Fan
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Fengzhong Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhi Li
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Alberto Carlos Pires Dias
- Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; CBMA (Centre of Molecular and Enviromental Biology), Department of Biology, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal
| | - Xinmin Liu
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Qiong Wang
- Sino-Portugal TCM International Cooperation Center, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
8
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
9
|
He Z, Zhang H, Li X, Shen L, Li N, Cheng S, Liu Q. Comparative proteomic analysis of cerebral cortex revealed neuroprotective mechanism of esculentoside A on Alzheimer's disease. Eur J Pharmacol 2024; 964:176226. [PMID: 38128868 DOI: 10.1016/j.ejphar.2023.176226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/09/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023]
Abstract
Esculentoside A (EsA), isolated from phytolacca esculenta, is a saponin showing neuroprotective effect in the mouse models of Alzheimer's disease (AD). To investigate its action target and underlying mechanism, this study used the proteomics technique of isobaric tags for relative and absolute quantification (iTRAQ) to analyze the differentially expressed proteins (DEPs) in the cerebral cortex of EsA-treated and untreated triple-transgenic 3 × Tg-AD model mice. Proteomic comparison revealed 250, 436, and 903 DEPs in three group pairs, i.e. AD/Wild-type (WT), AD+5 mg/kg EsA/AD, AD+10 mg/kg EsA/AD, respectively. Among them 28 DEPs were commonly shared by three group pairs, and 25 of them showed reversed expression levels in the diseased group under the treatment of both doses of EsA. Bioinformatics analysis revealed that these DEPs were mainly linked to metabolism, synapses, apoptosis, learning and memory. EsA treatment restored the expression of these proteins, including amyloid precursor protein (APP), cathepsin B (Cstb), 4-aminobutyrate aminotransferase (Abat), 3-phosphoinositide-dependent protein kinase-1 (PDK1), carnitine palmitoyltransferase1 (Cpt1) and synaptotagmin 17 (Syt17), thereby ameliorated the spatial learning and memory of AD mice. Collectively, this study reveals for the first time the profound effect of EsA on the cerebral cortex of AD mice, which might be a potential therapeutic agent for the treatment of AD.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
10
|
Liu T, He Y, Liao Y. Esculentoside A ameliorates DNCB-induced atopic dermatitis by suppressing the ROS-NLRP3 axis via activating the Nrf2 pathway. Clin Exp Pharmacol Physiol 2023; 50:844-854. [PMID: 37439364 DOI: 10.1111/1440-1681.13809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/14/2023]
Abstract
Atopic dermatitis (AD) is a chronic inflammatory skin condition with a high prevalence. Inflammation and oxidative stress are strongly associated with AD progression. Esculentoside A (EsA) inhibits inflammation and oxidative stress in various diseases. However, whether EsA mitigates AD by suppressing inflammation and oxidative stress remains unknown. A mouse model of AD was constructed by the induction of 1-chloro-2,4-dinitrochlorobenzene (DNCB). The mechanism of EsA and its effects on AD symptoms, pathology, inflammation and oxidative stress were investigated through histopathological staining, enzyme-linked immunosorbent assay, blood cells analysis, colorimetric measurement and western blot analysis. EsA improved the clinical symptoms and increased clinical skin scores in AD mice. Skin thickening of the epidermis and dermal tissues and the mast cell numbers in AD mice were reduced with the EsA treatment. EsA decreased the relative mRNA level of thymic stromal lymphopoietin, interleukin (IL)-4, IL-5 and IL-13; the serum concentrations of immunoglobulin E (IgE) and IL-6; and the numbers of white blood cells (WBC) and WBC subtypes, including basophil, lymphocytes, eosinophil, neutrophil and monocytes in DNCB-induced mice. DNCB caused higher levels of oxidative stress, which was reversed with the administration of EsA. Mechanically, EsA upregulated the expression of Nrf2 but downregulated the level of NLRP3 inflammasome in AD mice. The inhibitor of Nrf2 significantly recovered the EsA-induced changes in the NLRP3 inflammasome proteins in DNCB-treated mice. Therefore, EsA improved the clinical and pathological symptoms, inflammation and oxidative stress experienced by DNCB-induced mice and was involved in the inactivation of NLRP3 inflammasome by activating Nrf2.
Collapse
Affiliation(s)
- Tao Liu
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuanmin He
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yongmei Liao
- Department of Dermatology, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
11
|
Zhu G, Song X, Sun Y, Xu Y, Xiao L, Wang Z, Sun Y, Zhang L, Zhang X, Geng Z, Qi Q, Wang Y, Wang L, Li J, Zuo L, Hu J. Esculentoside A ameliorates BSCB destruction in SCI rat by attenuating the TLR4 pathway in vascular endothelial cells. Exp Neurol 2023; 369:114536. [PMID: 37690527 DOI: 10.1016/j.expneurol.2023.114536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
BACKGROUND AND AIMS Overexpressed MMP-9 in vascular endothelial cells is involved in blood spinal cord barrier (BSCB) dysfunction in spinal cord injury (SCI). Esculentoside A (EsA) has anti-inflammatory and cell protective effects. This study aimed to evaluate its effects on neuromotor function in SCI rats, as well as the potential mechanisms. METHODS The therapeutic effect of EsA in SCI rats was investigated using Basso-Beattie-Bresnahan (BBB) scores, a grid walk test and histological analyses. To assess the protective role of EsA in the BSCB and in oxygen glucose deprivation/reoxygenation (OGD/R)-induced hBMECs, the BSCB function, tight junctions (TJ) protein (ZO-1 and claudin-5) expression, structure of the BSCB and Matrix metalloproteinase-9 (MMP-9) expression were observed via Evans blue (EB) detection, immunofluorescence analyses and western blotting. Molecular docking simulations and additional experiments were performed to explore the potential mechanisms by which EsA maintains the function of the BSCB in vivo and in vitro. RESULTS EsA treatment improved BBB scores, reduced cavity formation and the loss of neuronal cells, demonstrating an improvement in motor function in SCI rats. In vivo experiments showed that EsA decreased the infiltration of blood cells and inflammatory mediators (IL-1β, IL-6 and TNF-α) and protected the structure of TJs in the rat spinal cord and in OGD/R-induced hBMECs. EsA inhibited the activation of Toll-like receptor 4 (TLR4) signalling, which may be related to the protective effect of EsA against MMP-9-induced BSCB damage. CONCLUSIONS EsA downregulated MMP-9 expression in vascular endothelial cells, protected BSCB function in SCI rats and attenuated TLR4 signalling and thus provide new options for the treatment of SCI.
Collapse
Affiliation(s)
- Guoqing Zhu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Xue Song
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Yang Sun
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yibo Xu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Linyu Xiao
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | | | - Yijie Sun
- Bengbu Medical College, Bengbu, Anhui, China
| | | | - Xiaofeng Zhang
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Zhijun Geng
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Department of Central Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Qi Qi
- Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China
| | - Yueyue Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lian Wang
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Jing Li
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Lugen Zuo
- Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Inflammatory Bowel Disease Research Center, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Bengbu Medical College, Bengbu, Anhui, China
| | - Jianguo Hu
- Department of Clinical Laboratory, First Affiliated Hospital of Bengbu Medical College, Bengbu, China; Anhui Key Laboratory of Tissue Transplantation, Bengbu Medical College, Bengbu, China; Anhui Province Key Laboratory of Basic and Translational Research of Inflammation-related Diseases, First Affiliated Hospital of Bengbu Medical College, Bengbu, China.
| |
Collapse
|
12
|
He Z, Li X, Wang Z, Cao Y, Han S, Li N, Cai J, Cheng S, Liu Q. Protective effects of luteolin against amyloid beta-induced oxidative stress and mitochondrial impairments through peroxisome proliferator-activated receptor γ-dependent mechanism in Alzheimer's disease. Redox Biol 2023; 66:102848. [PMID: 37597424 PMCID: PMC10462892 DOI: 10.1016/j.redox.2023.102848] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by the deposition of β-amyloid (Aβ) peptides and dysfunction of mitochondrion, which result in neuronal apoptosis and ultimately cognitive impairment. Inhibiting Aβ generation and repairing mitochondrial damage are prominent strategies in AD therapeutic treatment. Luteolin, a flavonoid compound, exhibits anti-inflammatory neuroprotective properties in AD mice. However, it is still unclear whether luteolin has any effect on Aβ pathology and mitochondrial dysfunction. In this study, the beneficial effect and underlying mechanism of luteolin were investigated in triple transgenic AD (3 × Tg-AD) mice and primary neurons. Our study showed that luteolin supplement significantly ameliorated memory and cognitive impairment of AD mice and exerted neuroprotection by inhibiting Aβ generation, repairing mitochondrial damage and reducing neuronal apoptosis. Further research revealed that luteolin could directly bind with peroxisome proliferator-activated receptor gama (PPARγ) to promote its expression and function. In the culture of hippocampus-derived primary neurons, addition of PPARγ antagonist GW9662 or knockdown of PPARγ with its siRNA could eliminate the effect of luteolin on AD pathologies. In summary, this work revealed for the first time that luteolin effectively improved cognitive deficits of 3 × Tg-AD mice and inhibited Aβ-induced oxidative stress, mitochondrial dysfunction and neuronal apoptosis via PPARγ-dependent mechanism. Hence, luteolin has the potential to serve as a therapeutic agent against AD.
Collapse
Affiliation(s)
- Zhijun He
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China; Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Yingqi Cao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China
| | - Jie Cai
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China.
| | - Shuiyuan Cheng
- National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, 518055, China.
| |
Collapse
|
13
|
Gao J, Li L. Enhancement of neural regeneration as a therapeutic strategy for Alzheimer's disease (Review). Exp Ther Med 2023; 26:444. [PMID: 37614437 PMCID: PMC10443056 DOI: 10.3892/etm.2023.12143] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Alzheimer's disease (AD), the most common cause of dementia worldwide, has gradually become a global health concern for society and individuals with the process of global ageing. Although extensive research has been carried out on AD, the etiology and pathological mechanism of the disease are still unclear, and there is no specific drug to cure or delay AD progression. The exploration of enhancing nerve regeneration in AD has gradually attracted increasing attention. In the current review, the existing therapeutic strategies were summarized to induce nerve regeneration which can increase the number of neurons, and improve the survival of neurons, the plasticity of synapses and synaptic activity. The strategies include increasing neurotrophic expression (such as brain-derived neurotrophic factor and nerve growth factor), inhibiting acetylcholinesterase (such as donepezil, tacrine, rivastigmine and galanthamine), elevating histone deacetylase levels (such as RGFP-966, Tasquinimod, CM-414 and 44B), stimulating the brain by physiotherapy (such as near-infrared light, repetitive transcranial magnetic stimulation, and transcranial direct current stimulation) and transplanting exogenous neural stem cells. However, further evaluations need to be performed to determine the optimal treatment. The present study reviews recent interventions for enhancing adult neurogenesis and attempts to elucidate their mechanisms of action, which may provide a theoretical basis for inducing nerve regeneration to fight against AD.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| | - Liping Li
- Department of Physiology and Pharmacology, Health Science Centre, Ningbo University, Ningbo, Zhejiang 315211, P.R. China
| |
Collapse
|
14
|
Zhang R, Zeng M, Zhang X, Zheng Y, Lv N, Wang L, Gan J, Li Y, Jiang X, Yang L. Therapeutic Candidates for Alzheimer's Disease: Saponins. Int J Mol Sci 2023; 24:10505. [PMID: 37445682 DOI: 10.3390/ijms241310505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Drug development for Alzheimer's disease, the leading cause of dementia, has been a long-standing challenge. Saponins, which are steroid or triterpenoid glycosides with various pharmacological activities, have displayed therapeutic potential in treating Alzheimer's disease. In a comprehensive review of the literature from May 2007 to May 2023, we identified 63 references involving 40 different types of saponins that have been studied for their effects on Alzheimer's disease. These studies suggest that saponins have the potential to ameliorate Alzheimer's disease by reducing amyloid beta peptide deposition, inhibiting tau phosphorylation, modulating oxidative stress, reducing inflammation, and antiapoptosis. Most intriguingly, ginsenoside Rg1 and pseudoginsenoside-F11 possess these important pharmacological properties and show the best promise for the treatment of Alzheimer's disease. This review provides a summary and classification of common saponins that have been studied for their therapeutic potential in Alzheimer's disease, showcasing their underlying mechanisms. This highlights the promising potential of saponins for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Miao Zeng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yujia Zheng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Nuan Lv
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Luming Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yawen Li
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lin Yang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
15
|
Inhibiting NLRP3 Inflammasome Activation by CY-09 Helps to Restore Cerebral Glucose Metabolism in 3×Tg-AD Mice. Antioxidants (Basel) 2023; 12:antiox12030722. [PMID: 36978970 PMCID: PMC10045645 DOI: 10.3390/antiox12030722] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
The reduction of the cerebral glucose metabolism is closely related to the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome in Alzheimer’s disease (AD); however, its underlying mechanism remains unclear. In this paper, 18F-flurodeoxyglucose positron emission tomography was used to trace cerebral glucose metabolism in vivo, along with Western blotting and immunofluorescence assays to examine the expression and distribution of associated proteins. Glucose and insulin tolerance tests were carried out to detect insulin resistance, and the Morris water maze was used to test the spatial learning and memory ability of the mice. The results show increased NLRP3 inflammasome activation, elevated insulin resistance, and decreased glucose metabolism in 3×Tg-AD mice. Inhibiting NLRP3 inflammasome activation using CY-09, a specific inhibitor for NLRP3, may restore cerebral glucose metabolism by increasing the expression and distribution of glucose transporters and enzymes and attenuating insulin resistance in AD mice. Moreover, CY-09 helps to improve AD pathology and relieve cognitive impairment in these mice. Although CY-09 has no significant effect on ferroptosis, it can effectively reduce fatty acid synthesis and lipid peroxidation. These findings provide new evidence for NLRP3 inflammasome as a therapeutic target for AD, suggesting that CY-09 may be a potential drug for the treatment of this disease.
Collapse
|
16
|
He Z, Zhang H, Li X, Tu S, Wang Z, Han S, Du X, Shen L, Li N, Liu Q. The protective effects of Esculentoside A through AMPK in the triple transgenic mouse model of Alzheimer's disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154555. [PMID: 36610160 DOI: 10.1016/j.phymed.2022.154555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD. However, whether EsA affects tau pathology and its specific mechanism of action in AD mice remains unclear. PURPOSE To investigate the roles and mechanisms of EsA in cognitive decline and tau pathology in a triple transgenic AD (3 × Tg-AD) mouse model. METHODS EsA (5 and 10 mg/kg) was administered via intraperitoneal injection to 8-month-old AD mice for eight consecutive weeks. Y-maze and novel object recognition tasks were used to evaluate the cognitive abilities of mice. Potential signaling pathways and targets in EsA-treated AD mice were assessed using quantitative proteomic analysis. The NFT levels and hippocampal synapse numbers were investigated using Gallyas-Braak silver staining and transmission electron microscopy, respectively. Western blotting and immunofluorescence assays were used to measure the expression of tau-associated proteins. RESULTS EsA administration attenuated memory and recognition deficits and synaptic damage in AD mice. Isobaric tags for relative and absolute quantitation proteomic analysis of the mouse hippocampus revealed that EsA modulated the expression of some critical proteins, including brain-specific angiogenesis inhibitor 3, galectin-1, and Ras-related protein 24, whose biological roles are relevant to synaptic function and autophagy. Further research revealed that EsA upregulated AKT/GSK3β activity, in turn, inhibited tau hyperphosphorylation and promoted autophagy to clear abnormally phosphorylated tau. In hippocampus-derived primary neurons, inhibiting AMP-activated protein kinase (AMPK) activity through dorsomorphin could eliminate the effect of EsA, as revealed by increased tau hyperphosphorylation, downregulated activity AKT/GSK3β, and blocked autophagy. CONCLUSIONS To our knowledge, this study is the first to demonstrate that EsA attenuates cognitive decline by targeting the pathways of both tau hyperphosphorylation and autophagic clearance in an AMPK-dependent manner and it shows a high reference value in AD pharmacotherapy research.
Collapse
Affiliation(s)
- Zhijun He
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; National R&D Center for Se-rich Agricultural Products Processing, Hubei Engineering Research Center for Deep Processing of Green Se-rich Agricultural Products, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Huajie Zhang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiaoqian Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Sixin Tu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Zi Wang
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Shuangxue Han
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiubo Du
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions 518055, China
| | - Liming Shen
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Nan Li
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong 518055, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|