1
|
Duan D, Yang X, Guo X, Li M, Jin X, Wang L, Xiao J, Wang X, Song P. Interaction of glaucocalyxin a with glutathione and thioredoxin reductase for triple-negative breast cancer treatment. Bioorg Chem 2025; 161:108572. [PMID: 40359839 DOI: 10.1016/j.bioorg.2025.108572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 05/06/2025] [Accepted: 05/07/2025] [Indexed: 05/15/2025]
Abstract
Glaucocalyxin A (GLA) is a bioactive diterpenoid isolated from Rabdosia japonica var. that has been applied for centuries in traditional Chinese medicine. Although GLA exhibits potent anticancer activity against various human cancer cells, its cellular targets remain largely unidentified. We reported here that GLA covalently modifies glutathione and selectively inhibits TrxR activity by primarily targeting the Sec498 residue of the protein. Pharmacologic inhibition of TrxR with GLA results in accumulation of reactive oxygen species, decreased total glutathione and thiols, collapse of the intracellular redox balance, and eventually induction of oxidative stress mediated apoptosis in triple-negative breast cancer cells. Importantly, knockdown of TrxR1 increases the sensitivity cells to GLA. Targeting TrxR by GLA thus discloses a newly identified molecular mechanism underlying the biological activity of GLA, and provides an in-depth insight in understanding the action of GLA in treatment of cancer.
Collapse
Affiliation(s)
- Dongzhu Duan
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Xing Yang
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Xiangyu Guo
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Mi Li
- School of Pharmacy, Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, and Affiliated Hospital of Gansu University of Chinese Medicine and Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaojie Jin
- School of Pharmacy, Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, and Affiliated Hospital of Gansu University of Chinese Medicine and Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jian Xiao
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Xiaoling Wang
- Shaanxi Key Laboratory of Phytochemistry and College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China.
| | - Peng Song
- School of Pharmacy, Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, and Affiliated Hospital of Gansu University of Chinese Medicine and Key Laboratory of Prevention and Treatment for Chronic Diseases by TCM, Gansu University of Chinese Medicine, Lanzhou 730000, China.
| |
Collapse
|
2
|
Wu M, Yan Y, Xie X, Bai J, Ma C, Du X. Effect of endothelial responses on sepsis-associated organ dysfunction. Chin Med J (Engl) 2024; 137:2782-2792. [PMID: 39501810 DOI: 10.1097/cm9.0000000000003342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Indexed: 12/17/2024] Open
Abstract
ABSTRACT Sepsis-related organ dysfunction is associated with increased morbidity and mortality. Previous studies have found that the endothelium plays crucial roles in maintaining the vascular permeability during sepsis, as well as in regulating inflammation and thrombosis. During sepsis, endothelial cells may release cytokines, chemokines, and pro-coagulant factors, as well as express adhesion molecules. In general, endothelial responses during sepsis typically inhibit bacterial transmission and coordinate leukocyte recruitment to promote bacterial clearance. However, excessive or prolonged endothelial activation can lead to impaired microcirculation, tissue hypoperfusion, and organ dysfunction. Given the structural and functional heterogeneity of endothelial cells in different organs, there are potential differences in endothelial responses by organ type, and the risk of organ damage may vary accordingly. This article reviews the endothelial response observed in sepsis and its effects on organ function, summarizes current progress in the development of therapeutic interventions targeting the endothelial response, and discusses future research directions to serve as a reference for researchers in the field.
Collapse
Affiliation(s)
- Miao Wu
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Yan Yan
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xinyu Xie
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Jiawei Bai
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Chengtai Ma
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Xianjin Du
- Department of Emergency, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
3
|
Wang G, Ding AX, Qin GQ, Chen T, Hu XG, Zheng L, Du GX, Wang W, Xuan L. Dimeric ent-kauranoids isolated from Isodon japonica var. Glaucocalyx and their anti-inflammatory activities. Fitoterapia 2024; 174:105840. [PMID: 38296167 DOI: 10.1016/j.fitote.2024.105840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/21/2023] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The phytochemical investigation of the aerial parts of Isodon japonica var. glaucocalyx afforded four undescribed (glaucocalyxin O-R, 1-4) and six known ent-kauranoids (5-10). Their structures were established using NMR and MS measurements. Compounds 1 and 2 are dimeric ent-kaurane-type diterpenoids. Moreover, the plausible biogenetic pathways for compounds 1 and 2 were proposed as Michael addition between two monomers. Eight compounds were assayed for their anti-inflammatory activity by evaluating NO production in LPS-induced RAW 267.4 cells, and compounds 7, 8 and 9 exhibited relatively remarkable anti-inflammatory activities at 10 μM.
Collapse
Affiliation(s)
- Ge Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Ao-Xue Ding
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Guo-Qing Qin
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Tong Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Xiang-Gang Hu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Liu Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China
| | - Gao-Xiang Du
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210029, PR China
| | - Wenqiong Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China.
| | - Lijiang Xuan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, PR China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, PR China.
| |
Collapse
|
4
|
Singh S, Sharma S, Sharma H. Potential Impact of Bioactive Compounds as NLRP3 Inflammasome Inhibitors: An Update. Curr Pharm Biotechnol 2024; 25:1719-1746. [PMID: 38173061 DOI: 10.2174/0113892010276859231125165251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 01/05/2024]
Abstract
The inflammasome NLRP3 comprises a caspase recruitment domain, a pyrin domain containing receptor 3, an apoptosis-linked protein like a speck containing a procaspase-1, and an attached nucleotide domain leucine abundant repeat. There are a wide variety of stimuli that can activate the inflammasome NLRP3. When activated, the protein NLRP3 appoints the adapter protein ASC. Adapter ASC protein then recruits the procaspase-1 protein, which causes the procaspase- 1 protein to be cleaved and activated, which induces cytokines. At the same time, abnormal activation of inflammasome NLRP3 is associated with many diseases, such as diabetes, atherosclerosis, metabolic syndrome, cardiovascular and neurodegenerative diseases. As a result, a significant amount of effort has been put into comprehending the mechanisms behind its activation and looking for their specific inhibitors. In this review, we primarily focused on phytochemicals that inhibit the inflammasome NLRP3, as well as discuss the defects caused by NLRP3 signaling. We conducted an in-depth research review by searching for relevant articles in the Scopus, Google Scholar, and PubMed databases. By gathering information on phytochemical inhibitors that block NLRP3 inflammasome activation, a complicated balance between inflammasome activation or inhibition with NLRP3 as a key role was revealed in NLRP3-driven clinical situations.
Collapse
Affiliation(s)
- Sonia Singh
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Shiwangi Sharma
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, Uttar Pradesh-281406, India
| | - Himanshu Sharma
- Department of Computer Engineering & Applications, GLA University, Uttar Pradesh-281406, India
| |
Collapse
|
5
|
Gao Y, Tian X, Zhang X, Milebe Nkoua GD, Chen F, Liu Y, Chai Y. The roles of tissue-resident macrophages in sepsis-associated organ dysfunction. Heliyon 2023; 9:e21391. [PMID: 38027963 PMCID: PMC10643296 DOI: 10.1016/j.heliyon.2023.e21391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/13/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Sepsis, a syndrome caused by a dysregulated host response to infection and characterized by life-threatening organ dysfunction, particularly septic shock and sepsis-associated organ dysfunction (SAOD), is a medical emergency associated with high morbidity, high mortality, and long-term sequelae. Tissue-resident macrophages (TRMs) are a subpopulation of macrophages derived primarily from yolk sac progenitors and fetal liver during embryogenesis, located primarily in non-lymphoid tissues in adulthood, capable of local self-renewal independent of hematopoiesis, and developmentally and functionally restricted to the non-lymphoid organs in which they reside. TRMs are the first line of defense against life-threatening conditions such as sepsis, tumor growth, traumatic-associated organ injury, and surgical-associated injury. In the context of sepsis, TRMs can be considered as angels or demons involved in organ injury. Our proposal is that sepsis, septic shock, and SAOD can be attenuated by modulating TRMs in different organs. This review summarizes the pathophysiological mechanisms of TRMs in different organs or tissues involved in the development and progression of sepsis.
Collapse
Affiliation(s)
- Yulei Gao
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
- Department of Emergency Medicine, China-Congo Friendship Hospital, Brazzaville, 999059, P. R. Congo
| | - Xin Tian
- Department of Medical Research, Beijing Qiansong Technology Development Company, Beijing, 100193, P. R. China
- Department of Medical Research, Sen Sho Ka Gi Company, Inba-gun, Chiba, 285-0905, Japan
| | - Xiang Zhang
- Department of Emergency Medicine, Rizhao People's Hospital of Shandong Province, Rizhao, 276825, P. R. China
| | | | - Fang Chen
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yancun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| | - Yanfen Chai
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin, 300052, P. R. China
| |
Collapse
|
6
|
Qu R, Zhang W, Ma Z, Ma Q, Chen M, Lan T, Zhou L, Hu X. Glaucocalyxin A attenuates carbon tetrachloride-induced liver fibrosis and improves the associated gut microbiota imbalance. Chem Biol Drug Des 2023; 102:51-64. [PMID: 37060267 DOI: 10.1111/cbdd.14241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/14/2023] [Accepted: 03/31/2023] [Indexed: 04/16/2023]
Abstract
Liver fibrosis refers to the pathophysiological process of dysplasia on the connective tissue of the liver, caused by a variety of pathogenic factors. Glaucocalyxin A (GLA) has anticoagulation, antibacterial, anti-inflammation, antioxidant and antitumour properties. However, whether GLA ameliorates liver fibrosis or not is still unclear. In this study, a liver fibrosis model was established using male C57BL/6 mice. The mice were treated with 5 and 10 mg/kg GLA via intraperitoneal injection, respectively. The ones that were treated with 5 mg/kg OCA were used as the positive control group. The levels of liver function, liver fibrosis biomarkers and liver pathological changes were then evaluated. We also explored the effects of GLA on inflammatory response and liver cell apoptosis. In addition, we investigated the gut microbiota mechanisms of GLA on liver fibrosis. The results from this study that GLA could significantly decrease the level of liver function (AST, ALT, TBA) and liver fibrosis (HA, LN, PC-III, IV-C). On the other hand, a significant decrease in inflammation levels (IL-1β, TNF-α) were also noted. GLA also improves CCl4-induced pathological liver injuries and collagen deposition, in addition to decreasing apoptosis levels. In addition, an increase in the ratio of Bacteroidetes and Firmicutes in liver disease was also observed. GLA also improves the gut microbiota. In conclusion, GLA attenuates CCl4-induced liver fibrosis and improves the associated gut microbiota imbalance.
Collapse
Affiliation(s)
- Ru Qu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| | - Wang Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Zhuang Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Qianwen Ma
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Mingju Chen
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Tian Lan
- Traditional Chinese Medicine Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Lin Zhou
- School of Life Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xuguang Hu
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|