1
|
Jiang H, Lu Q, Huang X, Zhang H, Zeng J, Wang M, Xu J, Yuan Z, Wei Q, Xiao E, Wang P, Huang G, Xu A. Sinomenine-glycyrrhizic acid self-assembly enhanced the anti-inflammatory effect of sinomenine in the treatment of rheumatoid arthritis. J Control Release 2025; 382:113718. [PMID: 40220871 DOI: 10.1016/j.jconrel.2025.113718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/23/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Rheumatoid arthritis (RA) is a common chronic systemic autoimmune disease that causes cartilage and bone damage in multiple joints, ultimately leading to disability. There is an urgent need to develop multidimensional strategies to treat RA. Sinomenine (SIN) has the distinctive pharmacological activity in treating RA, but its broader clinical application is limited by its exceedingly short half-life and adverse digestive tract effects. To overcome this obstacle, a self-assembled nanohydrogel (S-G hydrogel) was designed and produced with sinomenine (SIN) and glycyrrhizic acid (GA) without carriers or catalysts through noncovalent bonding. The S-G hydrogel could promote the absorption of SIN probably by protecting SIN from releasing and degrading in the acid circumstances. Oral intake of the S-G hydrogel significantly suppressed the overactivation of neutrophil via the Nf-κb and Mapk pathways in mice with RA. Furthermore, the S-G hydrogel regulated neutrophil activity by reversing apoptosis delay and decreasing autophagy-dependent NET formation. In summary, this study presents a self-assembled hydrogel with promising potential for clinical application, and offers a novel strategy to develop new drugs from the existing patent medicine composed of compounds from traditional Chinese medicine, as well as a special insight to elucidate the herb-matching mechanism in decoction prescriptions.
Collapse
Affiliation(s)
- Haixu Jiang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qingyi Lu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Xuemei Huang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Honglin Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jia Zeng
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Mengdan Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Zhihua Yuan
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Qiuzhu Wei
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Enfan Xiao
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China.
| | - Guangrui Huang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China.
| | - Anlong Xu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China; Hong Kong Institute of Advanced Studies, Sun Yat-sen University, Hong Kong, China.
| |
Collapse
|
2
|
Wang Z, Lan T, Jiao Y, Wang X, Yu H, Geng Q, Xu J, Xiao C, Tao Q, Xu Y. Early prediction of bone destruction in rheumatoid arthritis through machine learning analysis of plasma metabolites. Arthritis Res Ther 2025; 27:111. [PMID: 40399914 PMCID: PMC12093842 DOI: 10.1186/s13075-025-03576-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND To develop a predictive model for bone destruction in patients with rheumatoid arthritis (RA), based on the characteristics of plasma metabolites and common clinical indicators. METHODS The cohort comprised 60 patients with RA, with baseline metabolite features identified using the liquid chromatograph-mass spectrometer system. Radiographic outcomes were assessed using the van der Heijde-modified total Sharp score (mTSS) following a one-year follow-up period to quantify bone destruction. The longitudinal association between metabolites and radiographic progression was analyzed using several machine learning algorithms, and the significance of core metabolites was calculated. A new model incorporating metabolites and clinical indicators was created to evaluate its predictive performance for radiographic progression; the model was compared with other prediction models. RESULTS The median increase in mTSS was 3.50. Of the 774 detected metabolites, 77 differed between patients with different outcomes. Core metabolites identified using the Gaussian Naive Bayes algorithm included mangiferic acid, O-acetyl-L-carnitine, 5,8,11-eicosatrienoic acid, and 16-methylheptadecanoic acid. A standardized bone erosion risk score (BERS) was developed based on these core metabolite features for assessing the radiographic progression outcome. Individuals with a high BERS exhibited a lower risk of rapid radiographic progression than those with a lower score (OR = 0.01, 95% CI = 0.01-0.03, P = 0.003). The "China-Japan Friendship Hospital-BERS Model" (CjBM), combining BERS with clinical features (methotrexate and C-reactive protein), produced an area under the receiver operating characteristic curve of 0.800. Moreover, compared with the reported models, the CjBM showed near statistical significance in identifying rapid radiographic progression; adding BERS can improve the discrimination of the original reported model (PDeLong=0.035). CONCLUSIONS The CjBM was developed for early prediction of bone destruction in patients with RA, and the evaluation of BERS emphasizes the significance of metabolite features.
Collapse
Affiliation(s)
- Zihan Wang
- Department of Traditional Chinese Medicine Rheumatism, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, People's Republic of China
| | - Tianyi Lan
- Department of Traditional Chinese Medicine Rheumatism, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, People's Republic of China
- Graduate School, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Yi Jiao
- Graduate School, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Xing Wang
- Graduate School, Beijing University of Chinese Medicine, Beijing, People's Republic of China
| | - Hongwei Yu
- Department of Radiology, China-Japan Friendship Hospital, Beijing, People's Republic of China
| | - Qishun Geng
- China-Japan Friendship Clinical Medical College, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
| | - Jiahe Xu
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, People's Republic of China
| | - Cheng Xiao
- Institute of Clinical Medicine, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, People's Republic of China.
| | - Qingwen Tao
- Department of Traditional Chinese Medicine Rheumatism, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, People's Republic of China.
| | - Yuan Xu
- Department of Traditional Chinese Medicine Rheumatism, China-Japan Friendship Hospital, No. 2 Yinghua East Street, Chaoyang District, Beijing, People's Republic of China.
| |
Collapse
|
3
|
Guzel Erdogan D, Demır A, Baylan H, Budak Ö, Cokluk E, Tanyerı P. Effects of different doses of Ganoderic Acid A on nociceptive behaviour and inflammatory parameters in polyarthritic mice rheumatoid arthritis model. Sci Rep 2025; 15:15759. [PMID: 40328991 PMCID: PMC12056153 DOI: 10.1038/s41598-025-99917-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
The frequency of autoimmune diseases such as rheumatoid arthritis is increasing annually. Current treatments for these diseases cause new problems due to their side effects. In this study, we investigated the impact of Ganoderic Acid A (GAA), a potent anti-inflammatory herbal molecule, to evaluate the potential efficacy of GAA in alleviating Rheumatoid arthritis (RA)-associated clinical and histopathological manifestations. 40 Balb/c male mice were randomly divided into five groups (n = mice number per each group) as control (C), acetic acid (AA), rheumatoid arthritis (RA), low dose GAA (LGA) and high dose GAA (HGA) groups. Collagen emulsion was applied intra-articularly (ia), and complete Freund's adjuvant (CFA) was applied subcutaneously (sc) to the RA and GA groups to induce an experimental model of rheumatoid arthritis. Other groups were given physiologic saline (PS) or AA at the same dose and in the same way. The procedures were repeated on the 22nd day; however, incomplete Freund's adjuvant was applied to the RA and GA groups instead of CFA. PS was given to groups C, AA and RA for 9 days starting from the 22nd day; GAA was applied to the LGA (20 mg/kg) and HGA (40 mg/kg) groups by gavage. We evaluated body weight, arthritis score, knee temperature, knee circumference, behavioural assessment of pain, gait, tail-flick test, hot plate test, locomotor activity test, lower extremity index, spectrophotometric and histopathological evaluation methods, respectively. Compared to the RA group, the clinical arthritis score was reduced in the HGA group (p < 0.05). GAA significantly reduced knee temperatures and knee circumference, with changes in hot plate scores and tail flip test response. In the GAA groups, serum concentrations of AST, IL-6, TNF-α, NFkB were reduced, and joint damage and arthritis scores were also reduced histologically (p < 0.05). The results of this study suggest that the arthritis regressed with GAA treatment. Edema and inflammation were found to be reduced in the GAA groups compared with the RA group. GAA treatment resulted in significant improvements in behavioural activity, reduced inflammation and the damage to cartilage and bone structure and had an antinociceptive effect.
Collapse
Affiliation(s)
- Derya Guzel Erdogan
- Department of Physiology Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Ayşenur Demır
- Department of Physiology, Institute of Health Sciences, Sakarya University, Sakarya, Turkey
| | - Hüseyin Baylan
- Department of Anatomy, Faculty of Medicine, Sakarya University, Sakarya, Turkey.
| | - Özcan Budak
- Department of Histology-Embryology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Erdem Cokluk
- Department of Biochemistry, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| | - Pelin Tanyerı
- Department of Pharmacology, Faculty of Medicine, Sakarya University, Sakarya, Turkey
| |
Collapse
|
4
|
Han H, Ying X, Chen Q, Fang J, Xu D, Lyu X, Zheng J, Zou L, Luo Q, Hu N. Monitoring of inflammatory preterm responses via myometrial cell based multimodal electrophysiological and optical biosensing platform. Biosens Bioelectron 2025; 274:117197. [PMID: 39874921 DOI: 10.1016/j.bios.2025.117197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/16/2025] [Accepted: 01/23/2025] [Indexed: 01/30/2025]
Abstract
Preterm birth (PTB) remains a leading cause of neonatal morbidity and mortality, with inflammation-induced PTB posing a significant challenge due to its complex pathophysiology. To address this, we developed an in vitro platform utilizing hTERT-immortalized human myometrial (hTERT-HM) cells integrated with a multielectrode array (MEA) biosensing system and optical calcium imaging. Compared to primary uterine myometrial cells, hTERT-HM cells exhibit superior reproducibility, high scalability, and convenient manipulation, facilitating the consistent and large-scale investigations. This advanced system facilitates simultaneous real-time monitoring of electrophysiological activity and intracellular calcium transient, providing detailed insights into uterine cell behavior during inflammatory PTB. Our study revealed that oxytocin (OT) induces regular contractions in hTERT-HM cells, and the synergistic effect of OT and lipopolysaccharide (LPS) disrupts electrophysiological patterns and calcium signaling, closely mimicking the pathophysiology of inflammation-induced PTB. Meanwhile, magnesium sulfate is validated to effectively suppress OT-induced calcium release and mitigate LPS-triggered irregular electrophysiological signals. By integrating advanced biosensing technologies and advantages of hTERT-HM cells, this platform offers a reliable, reproducible model to investigate the mechanisms of inflammation-driven PTB and further develop targeted therapeutic interventions.
Collapse
Affiliation(s)
- Haote Han
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China; Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xia Ying
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Qiaoqiao Chen
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China
| | - Jiaru Fang
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; Department of Neurology, The Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu, 322000, China
| | - Dongxin Xu
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China
| | - Xuelian Lyu
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Jilin Zheng
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Ling Zou
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China.
| | - Qiong Luo
- Key Laboratory of Reproductive Genetics (Ministry of Education) and Department of Obstetrics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, 310006, China.
| | - Ning Hu
- Department of Chemistry, ZJU-Hangzhou Global Scientific and Technological Innovation Center, School of Medicine, Zhejiang University, Hangzhou, 310058, China; General Surgery Department, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Children's Health, Hangzhou, 310052, China.
| |
Collapse
|
5
|
Xu J, Zhu Y, Wei Y, Gan P, Xia S, Li Y, Jiang X, Wang Y, Wu H. Analyzing How Zhizi Baipi Decoction Regulates VEGF to Suppress RA Angiogenesis Using Network Pharmacology and Experimental Validation. PHYTOCHEMICAL ANALYSIS : PCA 2025. [PMID: 39810401 DOI: 10.1002/pca.3508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disease that primarily manifests with symptoms such as heat and toxin. However, the key components and molecular mechanisms of Zhizi Baipi decoction (ZBD) in the treatment of RA are still unclear. OBJECTIVES The study aimed to explore the mechanism of action of ZBD for treating RA through ingredient analysis, network pharmacology, and experimental validation. MATERIAL AND METHODS The chemical constituents of ZBD were identified by ultra-high performance liquid chromatography coupled with Q-TOF-mass spectrometry (UPLC-Q-TOF-MSE). Additionally, the active ingredients of ZBD treating RA were screened by network pharmacology and using molecular docking to verify the binding energy of the active ingredients and ZBD's targets. Then we elucidated ZBD's mechanism of action on collagen-induced arthritis (CIA) model rats. Subsequently, experimental validations were used to validate the findings of network pharmacology. RESULTS A total of 84 chemical constituents was identified by UPLC-Q-TOF-MSE. The results of network pharmacology indicated that ZBD could exert its therapeutic effect on RA through the vascular endothelial growth factor (VEGF) pathway. Molecular docking revealed a strong binding capacity between the target KDR and the active ingredients. Additionally, we quantified the five active ingredients of ZBD. In vivo experiments demonstrated that ZBD inhibited synovial angiogenesis and alleviated the occurrence and progression of RA. CONCLUSION Overall, ZBD has a significant therapeutic effect on RA. The results of qualitative analysis, network pharmacology, molecular docking, and in vivo experiments indicated that the main active components of ZBD could modulate the VEGF pathway to treat RA.
Collapse
Affiliation(s)
- Jing Xu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yulong Zhu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yi Wei
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Peirong Gan
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Shilin Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Ya Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Xiaoman Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Yan Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
| | - Hong Wu
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, China
- Anhui Province Key Laboratory of Chinese Medicinal Formula, Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
6
|
Chen W, Zhang C, Xu M, Li T, Li X, Li P, Gong X, Qu Y, Zhou C, Mao X, Lin N, Liu W, Jiang Q, Xu H, Zhang Y. Yu-Xue-Bi capsule ameliorates aggressive synovitis and joint damage in rheumatoid arthritis via modulating the SUCNR1/HIF-1α/TRPV1 axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156354. [PMID: 39765037 DOI: 10.1016/j.phymed.2024.156354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/04/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Specific treatment for rheumatoid arthritis (RA) is still an unmet need. Yu-Xue-Bi (YXB) capsule effectively treats RA with blood stasis syndrome (BS). However, its mechanism remains unclear. PURPOSE Exploring and elucidating the therapeutic effect and pharmacological mechanism of YXB capsule in treating RA. METHODS This study identified differentially expressed genes (DEGs) in patients with RA and BS compared to healthy controls using clinical transcriptomics data. Clinical symptoms of RA and BS, and the related genes were collected from the SoFDA and HPO databases. Candidate bioactive constituents in YXB were identified via UPLC-QTOF/MS and evaluated using ADMET rules. Putative targets were predicted, and a network linking disease-related DEGs and drug targets was constructed. Key targets were screened utilizing random walk-with-restart (RWR) algorithms and verified through experiments using rat models of collagen-induced arthritis with BS (CIA-BS model) in vivo. RESULTS We found 1220 DEGs along with 976 clinical symptom-related genes, as RA with BS-related genes. Chemical profiling identified 193 YXB constituents, with 98 meeting optimal ADMET criteria. We predicted 459 putative targets for these constituents. Network calculations screened 209 key targets, 129 RA with BS-related genes and 92 YXB targets involved in immune inflammation, blood stagnation, and hyperalgesia imbalance. Notably, the SUCNR1/HIF-1α/TRPV1 axis was enriched by YXB targets against RA with BS. Experimentally, YXB inhibited inflamed joint deterioration, including synovial inflammation, cartilage damage and bone erosion, relieving mechanical and cold allodynia hyperglasia. It reversed hemorrheology and vascular function in CIA-BS rats, restoring SDHB and eNOS expression, preventing SDHA, SUCNR1 and HIF-1α activation, reducing SUCN, TNF-α and IL-1β production, and TRPV1 and TRPA1 expression. CONCLUSION Our data support YXB's therapeutic effects on aggressive RA-BS by modulating the SUCNR1/HIF-1α/TRPV1 axis.
Collapse
Affiliation(s)
- Wenjia Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Mingzhu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Tao Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xin Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Peihao Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xun Gong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Yang Qu
- Liaoning Good Nurse Pharmaceutical Co., Ltd., Liaoning 117201, China
| | - Chunling Zhou
- Liaoning Good Nurse Pharmaceutical Co., Ltd., Liaoning 117201, China
| | - Xia Mao
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wei Liu
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Quan Jiang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Haiyu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
7
|
Liu X, Mao X, Chen W, Zhang Y, Li T, Wang K, Lin N, Zhang Y. Tianhe Zhuifeng Gao reverses inflammatory response and attenuates bone/cartilage destruction in rheumatoid arthritis via PSMC2-RUNX2-COL1A1 axis based on transcriptional regulatory network analysis and experimental validation. Int Immunopharmacol 2024; 138:112573. [PMID: 38971108 DOI: 10.1016/j.intimp.2024.112573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND Tianhe Zhuifeng Gao (TZG) is an authorized Chinese patent drug with satisfying clinical efficacy, especially for RA patients with cold-dampness syndrome. However, its underlying pharmacological mechanisms remain unclear. METHOD Anti-arthritic effects of TZG were evaluated using an adjuvant-induced arthritis (AIA) rat model. Transcriptional regulatory network analysis based on synovial tissues obtained from AIA rats, combining with our previous analysis based on whole blood samples from RA patients with cold-dampness syndrome and co-immunoprecipitation were performed to identify involved dominant pathways, which were experimentally verified using AIA-wind-cold-dampness stimulation modified (AIA-M) animal model. RESULTS TZG treatment dramatically attenuated joint injury and inflammatory response in AIA rats, and PSMC2-RUNX2-COL1A1 axis, which was closely associated with bone/cartilage damage, was inferred to be one of therapeutic targets of TZG against RA. Experimentally, TZG displayed obvious pharmacological effects for alleviating the joint inflammation and destruction through reinstating the body weight, reducing the arthritis score, the limbs diameters, the levels of RF and CRP, and the inflammatory cytokines, recovering the thymus and spleen indexes, diminishing bone and cartilage destruction, as well elevating the pain thresholds of AIA-M rats. In addition, TZG markedly reversed the abnormal energy metabolism in AIA-M rats through enhancing articular temperature, daily water consumption, and regulating expression levels of energy metabolism parameters and hormones. Moreover, TZG also significantly modulated the abnormal expression levels of PSMC2, RUNX2 and COL1A1 proteins in the ankle tissues of AIA-M rats. CONCLUSION TZG may exert the bone protective effects in RA therapy via regulating bone and cartilage damage-associated PSMC2-RUNX2-COL1A1 axis.
Collapse
Affiliation(s)
- Xueting Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Xia Mao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Wenjia Chen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yi Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Tao Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Kexin Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Na Lin
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| | - Yanqiong Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China.
| |
Collapse
|
8
|
Fu W, Shentu C, Chen D, Qiu J, Zong C, Yu H, Zhang Y, Chen Y, Liu X, Xu T. Network pharmacology combined with affinity ultrafiltration to elucidate the potential compounds of Shaoyao Gancao Fuzi Decoction for the treatment of rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 330:118268. [PMID: 38677569 DOI: 10.1016/j.jep.2024.118268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/13/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shaoyao Gancao Fuzi Decoction (SGFD), has been employed for thousands of years in the treatment of rheumatoid arthritis (RA) with remarkable clinical efficacy. However, the material basis underlying the effectiveness of SGFD still remains unclear. AIM OF THE REVIEW This study aims to elucidate the material basis of SGFD through the application of network pharmacology and biological affinity ultrafiltration. RESULTS UPLC-Q-TOF-MS/MS was employed to characterize the components in SGFD, the identified 145 chemical components were mainly categorized into alkaloids, flavonoids, triterpenoids, and monoterpenoids according to the structures. Network pharmacology method was utilized to identify potential targets and signaling pathways of SGFD in the RA treatment, and the anti-inflammatory and anti-RA effects of SGFD were validated through in vivo and in vitro experiments. Moreover, as the significant node in the pharmacology network, TNF-α, a classical therapeutic target in RA, was subsequent employed to screen the interacting compounds in SGFD via affinity ultrafiltration screening method, 6 active molecules (i.e.,glycyrrhizic acid, paeoniflorin, formononetin, isoliquiritigenin, benzoyl mesaconitine, and glycyrrhetinic acid) were exhibited significant interactions. Finally, the significant anti-inflammatory and anti-TNF-α effects of these compounds were validated at the cellular level. CONCLUSIONS In conclusion, this study comprehensively elucidates the pharmacodynamic material basis of SGFD, offering a practical reference model for the systematic investigation of traditional Chinese medicine formulas.
Collapse
Affiliation(s)
- Weiliang Fu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Chengyu Shentu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Dan Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Junjie Qiu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China
| | - Chuhong Zong
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Hengyuan Yu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yiwei Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yong Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China
| | - Xuesong Liu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China.
| | - Tengfei Xu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, Zhejiang Province, 310058, China; Cangnan County Qiushi Innovation Research Institute of Traditional Chinese Medicine, No. 366, Xingke Road, Lingxi Town, Cangnan County, Wenzhou, Zhejiang Province, 325899, China.
| |
Collapse
|
9
|
Liu Y, Xu T, Ma Z, Zhang C, Xu M, Li Q, Chen W, Zhang Y, Liu C, Lin N. Cartilage protective and anti-edema effects of JTF in osteoarthritis via inhibiting NCOA4-HMGB1-driven ferroptosis and aquaporin dysregulation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155593. [PMID: 38621329 DOI: 10.1016/j.phymed.2024.155593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/24/2024] [Accepted: 04/05/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Preventing joint edema is crucial in halting osteoarthritis (OA) progression. Growing clinical evidence indicate that Jianpi-Tongluo Formula (JTF) may have a promising anti-edema effect. However, the therapeutic properties of JTF and the underlying mechanisms remains unclear. MATERIALS AND METHODS An OA rat model was established and employed to evaluate pharmacological effects of JTF in vivo based on dynamic histopathologic assessments and micro-CT observations. Then, OA-related genes and potential targets of JTF were identified through clinical transcriptomic data analysis and "disease gene-drug target" network analysis, which were verified by a series of in vivo experiments. RESULTS JTF administration effectively reduced pain and joint edema, inhibited matrix degradation, chondrocyte apoptosis, and aquaporin expression in OA rats. Notably, JTF dose-dependently reversed damage-associated molecular patterns and inflammatory factor upregulation. Mechanically, our "disease gene-drug target" network analysis indicated that the NCOA4-HMGB1-GSK3B-AQPs axis, implicated in ferroptosis and aquaporin dysregulation, may be potentially served as a target of JTF against OA. Accordingly, JTF mitigated NCOA4, HMGB1, and GSK3B expression, oxidative stress, and iron metabolism aberrations in OA rats. Furthermore, JTF treatment significantly attenuated the aberrant upregulation of AQP1, AQP3, and AQP4 proteins observed in cartilage tissues of OA rats. CONCLUSION Our data reveal for the first time that JTF may exert cartilage protective and anti-edema effects in osteoarthritis therapy by inhibiting NCOA4-HMGB1-driven ferroptosis and aquaporin dysregulation.
Collapse
Affiliation(s)
- Yudong Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Tengteng Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Zhaochen Ma
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Chu Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Mingzhu Xu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Qun Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China
| | - Weiheng Chen
- Third Affiliated Hospital of Beijing University of Chinese Medicine, No. 51 Anwai Xiaoguanjie, Chaoyang District, Beijing 100029, China
| | - Yanqiong Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - Chunfang Liu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| | - Na Lin
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing 100700, China.
| |
Collapse
|
10
|
Akkewar AS, Mishra KA, Sethi KK. Mangiferin: A natural bioactive immunomodulating glucosylxanthone with potential against cancer and rheumatoid arthritis. J Biochem Mol Toxicol 2024; 38:e23765. [PMID: 38967724 DOI: 10.1002/jbt.23765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/15/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Mangiferin is a naturally occurring glucosylxanthone that has shown promising immunomodulatory effects. It is generally isolated from the leaves, peels, bark, and kernels of Mangifera indica Linn. Mangiferin is like a miraculous natural bioactive molecule that has an immunomodulatory function that makes it a potential therapeutic candidate for the treatment of rheumatoid arthritis (RA) and cancer. The anticancer activity of mangiferin acts by blocking NF-κB, as well as regulating the β-catenin, EMT, MMP9, MMP2, LDH, ROS, and NO, and also by the activation of macrophages. It has no cytotoxic effect on grown chondrocytes and lowers matrix metalloproteinase levels. Additionally, it has a potent proapoptotic impact on synoviocytes. The precise molecular mechanism of action of mangiferin on RA and malignancies is still unknown. This comprehensive review elaborates on the immunomodulatory effect of mangiferin and its anticancer and anti-RA activity. This also explained the total synthesis of mangiferin and its in vitro and in vivo screening models.
Collapse
Affiliation(s)
- Ashish Sunil Akkewar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Km Abha Mishra
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| | - Kalyan K Sethi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati, Assam, India
| |
Collapse
|
11
|
Yuandani, Jantan I, Salim E, Septama AW, Rullah K, Nainu F, Fasihi Mohd Aluwi MF, Emran TB, Roney M, Khairunnisa NA, Nasution HR, Fadhil As'ad M, Shamsudin NF, Abdullah MA, Marwa Rani HL, Al Chaira DM, Aulia N. Mechanistic insights into anti-inflammatory and immunosuppressive effects of plant secondary metabolites and their therapeutic potential for rheumatoid arthritis. Phytother Res 2024; 38:2931-2961. [PMID: 38600726 DOI: 10.1002/ptr.8147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 04/12/2024]
Abstract
The anti-inflammatory and immunosuppressive activities of plant secondary metabolites are due to their diverse mechanisms of action against multifarious molecular targets such as modulation of the complex immune system associated with rheumatoid arthritis (RA). This review discussed and critically analyzed the potent anti-inflammatory and immunosuppressive effects of several phytochemicals and their underlying mechanisms in association with RA in experimental studies, including preliminary clinical studies of some of them. A wide range of phytochemicals including phenols, flavonoids, chalcones, xanthones, terpenoids, alkaloids, and glycosides have shown significant immunosuppressive and anti-inflammatory activities in experimental RA models and a few have undergone clinical trials for their efficacy and safety in reducing RA symptoms and improve patient outcomes. These phytochemicals have potential as safer alternatives to the existing drugs in the management of RA, which possess a wide range of serious side effects. Sufficient preclinical studies on safety and efficacy of these phytochemicals must be performed prior to proper clinical studies. Further studies are needed to address the barriers that have so far limited their human use before the therapeutic potential of these plant-based chemicals as anti-arthritic agents in the treatment of RA is fully realized.
Collapse
Affiliation(s)
- Yuandani
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
- Centre of Excellence for Chitosan and Advanced Materials, Universitas Sumatera Utara, Medan, Indonesia
| | - Ibrahim Jantan
- Institute of Systems Biology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Emil Salim
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Abdi Wira Septama
- Research Center for Pharmaceutical Ingredients and Traditional Medicine, National Research and Innovation Agency (BRIN), Kawasan PUSPIPTEK Serpong, Tangerang Selatan, Indonesia
| | - Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | | | - Talhah Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, USA
- Legorreta Cancer Center, Brown University, Providence, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Miah Roney
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan, Malaysia
| | - Nur Aini Khairunnisa
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Halimah Raina Nasution
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Muh Fadhil As'ad
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
- Pelamonia Health Sciences Institute, Makassar, Indonesia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Maryam Aisyah Abdullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, Kuantan, Malaysia
| | - Haya Luthfiyyah Marwa Rani
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Diany Mahabbah Al Chaira
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| | - Nabila Aulia
- Department of Pharmacology and Clinical/Community Pharmacy, Faculty of Pharmacy, Universitas Sumatera Utara, Medan, Indonesia
| |
Collapse
|
12
|
Zhao J, Xu L, Wei K, Jiang P, Chang C, Xu L, Shi Y, Zheng Y, Shan Y, Zheng Y, Shen Y, Liu J, Guo S, Wang R, He D. Identification of clinical characteristics biomarkers for rheumatoid arthritis through targeted DNA methylation sequencing. Int Immunopharmacol 2024; 131:111860. [PMID: 38508093 DOI: 10.1016/j.intimp.2024.111860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/24/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
OBJECTIVES Rheumatoid arthritis (RA) is a complex disease with a challenging diagnosis, especially in seronegative patients. The aim of this study is to investigate whether the methylation sites associated with the overall immune response in RA can assist in clinical diagnosis, using targeted methylation sequencing technology on peripheral venous blood samples. METHODS The study enrolled 241 RA patients, 30 osteoarthritis patients (OA), and 30 healthy volunteers control (HC). Fifty significant cytosine guanine (CG) sites between undifferentiated arthritis and RA were selected and analyzed using targeted DNA methylation sequencing. Logistic regression models were used to establish diagnostic models for different clinical features of RA, and six machine learning methods (logit model, random forest, support vector machine, adaboost, naive bayes, and learning vector quantization) were used to construct clinical diagnostic models for different subtypes of RA. Least absolute shrinkage and selection operator regression and detrended correspondence analysis were utilized to screen for important CGs. Spearman correlation was used to calculate the correlation coefficient. RESULTS The study identified 16 important CG sites, including tumor necrosis factort receptor associated factor 5 (TRAF5) (chr1:211500151), mothers against decapentaplegic homolog 3 (SMAD3) (chr15:67357339), tumor endothelial marker 1 (CD248) (chr11:66083766), lysosomal trafficking regulator (LYST) (chr1:235998714), PR domain zinc finger protein 16 (PRDM16) (chr1:3307069), A-kinase anchoring protein 10 (AKAP10) (chr17:19850460), G protein subunit gamma 7 (GNG7) (chr19:2546620), yes1 associated transcriptional regulator (YAP1) (chr11:101980632), PRDM16 (chr1:3163969), histone deacetylase complex subunit sin3a (SIN3A) (chr15:75747445), prenylated rab acceptor protein 2 (ARL6IP5) (chr3:69134502), mitogen-activated protein kinase kinase kinase 4 (MAP3K4) (chr6:161412392), wnt family member 7A (WNT7A) (chr3:13895991), inhibin subunit beta B (INHBB) (chr2:121107018), deoxyribonucleic acid replication helicase/nuclease 2 (DNA2) (chr10:70231628) and chromosome 14 open reading frame 180 (C14orf180) (chr14:105055171). Seven CG sites showed abnormal changes between the three groups (P < 0.05), and 16 CG sites were significantly correlated with common clinical indicators (P < 0.05). Diagnostic models constructed using different CG sites had an area under the receiver operating characteristic curve (AUC) range of 0.64-0.78 for high-level clinical indicators of high clinical value, with specificity ranging from 0.42 to 0.77 and sensitivity ranging from 0.57 to 0.88. The AUC range for low-level clinical indicators of high clinical value was 0.63-0.72, with specificity ranging from 0.48 to 0.74 and sensitivity ranging from 0.72 to 0.88. Diagnostic models constructed using different CG sites showed good overall diagnostic accuracy for the four subtypes of RA, with an accuracy range of 0.61-0.96, a balanced accuracy range of 0.46-0.94, and an AUC range of 0.46-0.94. CONCLUSIONS This study identified potential clinical diagnostic biomarkers for RA and provided novel insights into the diagnosis and subtyping of RA. The use of targeted deoxyribonucleic acid (DNA) methylation sequencing and machine learning methods for establishing diagnostic models for different clinical features and subtypes of RA is innovative and can improve the accuracy and efficiency of RA diagnosis.
Collapse
Affiliation(s)
- Jianan Zhao
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Cen Chang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yixin Zheng
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yu Shan
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Yuejuan Zheng
- The Research Center for Traditional Chinese Medicine, Shanghai Institute of Infectious Diseases and Biosecurity, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yi Shen
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Jia Liu
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Shicheng Guo
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongsheng Wang
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
| | - Dongyi He
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|
13
|
Mao X, Yan X, Li C, Liu Y, Zhang Y, Lin N. Extensive preclinical evaluation of combined mangiferin and glycyrrhizic acid for restricting synovial neovascularization in rheumatoid arthritis. Chin Med 2023; 18:156. [PMID: 38037139 PMCID: PMC10687849 DOI: 10.1186/s13020-023-00863-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Synovial neovascularization promotes rheumatoid arthritis (RA) progression. Baihu guizhi decoction (BHGZD) has a potential in restricting this pathological change of RA. PURPOSE To identify bioactive compounds (BACs) of BHGZD and to elucidate the underlying mechanisms in restricting synovial neovascularization of RA. METHOD Through transcriptomic profiling, the chemical profiling of BHGZD and its effective transcriptomic profiling against RA were identified. Then, candidate targets and the corresponding BACs against synovial neovascularization were screened by "disease gene-drug target" interaction network analysis and in silico molecular docking. The binding affinities of candidate BAC-target pairs were verified using surface plasmon resonance, and the pharmacokinetic characteristics of BACs in vivo after BHGZD administration at different time points were detected by Ultra Performance Liquid Chromatography-Mass spectrum/Mass spectrum. After that, in vivo experiments based on adjuvant-induced arthritis (AIA-M) rats, and in vitro experiments based on human umbilical vein endothelial cells (HUVEC) and arthritic synovial fibroblasts (MH7A) were carried out to evaluate the pharmacological effects of BHGZD and the two-BACs-combination, and to verify the associated mechanisms. RESULT VEGFA/VEGFR2/SRC/PI3K/AKT signal axis was screened as one of the key network targets of BHGZD against synovial neovascularization in RA. Mangiferin (MG) and glycyrrhizic acid (GA) were identified as the representative BACs of BHGZD for their strong binding affinities with components of the VEGFA/VEGFR2/SRC/PI3K/AKT signal axis, and their high exposed quantity in vivo. Both BHGZD and the two-BAC combination of MG and GA were demonstrated to be effective in restricting disease severity, reducing synovial inflammation and decreasing the formation of vascular opacities in AIA-M rats, and also reducing the migrative and invasive activities of HUVEC and MH7A cells and attenuating the lumen formation ability of HUVEC cells significantly. Mechanically, both BHGZD and the two-BAC combination markedly reduced the expression of VEGFA in synovial tissues, the serum levels of VEGF and NO, and the enzymatic activity of eNOS, increased the content of endostatin, and also reversed the abnormal alterations in the VEGFA/VEGFR2/SRC/PI3K/AKT signal axis in vivo and in vitro. CONCLUSION MG and GA may be the representative BACs of BHGZD for restricting excessive synovial vascularization in RA via regulating VEGFA/VEGFR2/SRC/PI3K/AKT signal axis.
Collapse
Affiliation(s)
- Xia Mao
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Xiangying Yan
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Congchong Li
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yudong Liu
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China
| | - Yanqiong Zhang
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| | - Na Lin
- Research Center of Traditional Chinese Medicine Theory and Literatures, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, No. 16, Nanxiaojie, Dongzhimennei, Beijing, 100700, China.
| |
Collapse
|
14
|
Chen Q, Yang J, Chen H, Pan T, Liu P, Xu SJ. Inhibition Ras/MEK/ERK pathway: An important mechanism of Baihu Jia Guizhi Decoction ameliorated rheumatoid arthritis. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116072. [PMID: 36543278 DOI: 10.1016/j.jep.2022.116072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Alleviating rheumatism by inhibiting synovitis is a routine treatment for rheumatoid arthritis (RA). Baihu Jia Guizhi Decoction (BHJGZ) is a classic prescription and has a long history of application for treating RA with a good anti-inflammatory action. However, the underlying molecular mechanisms have not been fully elucidated. AIM OF THE STUDY This work aimed to decipher the potential mechanism of BHJGZ against RA focusing on Ras/MEK/ERK pathway. MATERIALS AND METHODS Based on the prediction of network pharmacology, the inhibition action of BHJGZ on Ras/MEK/ERK pathway was firstly validated in vivo and in vitro. Moreover, the affinity with the ingredients of BHJGZ in serum and the targets of Ras/MEK/ERK pathway were evaluated. Finally, the efficacy of BHJGZ for relieving RA was assessed in AA rats. RESULTS The Ras/MEK/ERK pathway was predicted by network pharmacology as one of important mechanisms of BHJGZ to treat RA. The high expression of Ras protein in synovitis of AA rats was significantly reduced by the treatment with BHJGZ, and the activation of Ras/MEK/ERK pathway in vivo and in vitro was also markedly inhibited (p < 0.05 or p < 0.01). Moreover, the level of p-ERK/ERK, IL-6 and TNF-α in vitro were further suppressed after Ras or MEK was inhibited by mirdametinib or lonafarnib respectively (p < 0.01). Furthermore, the results of molecular docking showed a good affinity and stable binding with the ingredients of BHJGZ in serum and multiple key proteins of the Ras/MEK/ERK pathway. Finally, paw swelling, paw circumference and pathological changes of joint synovitis were significantly reduced by BHJGZ in AA rats (p < 0.05). CONCLUSION The inhibition of Ras/MEK/ERK pathway is one of crucial mechanisms of BHJGZ for ameliorating synovitis of RA.
Collapse
Affiliation(s)
- Qi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Sichuan, 611137, PR China
| | - Jinming Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Sichuan, 611137, PR China
| | - Huan Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Sichuan, 611137, PR China
| | - Ting Pan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Sichuan, 611137, PR China
| | - Panwang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Sichuan, 611137, PR China
| | - Shi-Jun Xu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, PR China; Institute of Material Medica Integration and Transformation for Brain Disorders, Chengdu University of Traditional Chinese Medicine, Chengdu, China,Sichuan, 611137, PR China.
| |
Collapse
|
15
|
Subash-Babu P, Abdulaziz AlSedairy S, Abdulaziz Binobead M, Alshatwi AA. Luteolin-7-O-rutinoside Protects RIN-5F Cells from High-Glucose-Induced Toxicity, Improves Glucose Homeostasis in L6 Myotubes, and Prevents Onset of Type 2 Diabetes. Metabolites 2023; 13:metabo13020269. [PMID: 36837888 PMCID: PMC9965038 DOI: 10.3390/metabo13020269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/16/2023] Open
Abstract
Luteolin-7-O-rutinoside (lut-7-O-rutin), a flavonoid commonly present in Mentha longifolia L. and Olea europaea L. leaves has been used as a flavoring agent with some biological activity. The present study is the first attempt to analyze the protective effect of lut-7-O-rutin on high-glucose-induced toxicity to RIN-5F cells in vitro. We found that lut-7-O-rutin improved insulin secretion in both normal and high-glucose conditions in a dose-dependent manner, without toxicity observed. In addition, 20 µmol of lut-7-O-rutin improves insulin sensitization and glucose uptake significantly (p ≤ 0.01) in L6 myotubes cultured in a high-glucose medium. Lut-7-O-rutin has shown a significant (p ≤ 0.05) effect on glucose uptake in L6 myotubes compared to the reference drug, rosiglitazone (20 µmol). Gene expression analysis confirmed significantly lowered CYP1A, TNF-α, and NF-κb expressions in RIN-5F cells, and increased mitochondrial thermogenesis-related LPL, Ucp-1 and PPARγC1A mRNA expressions in L6 myotubes after 24 h of lut-7-O-rutin treatment. The levels of signaling proteins associated with intracellular glucose uptakes, such as cAMP, ChREBP-1, and AMPK, were significantly increased in L6 myotubes. In addition, the levels of the conversion rate of glucose to lactate and fatty acids were raised in insulin-stimulated conditions; the rate of glycerol conversion was found to be higher at the basal level in L6 myotubes. In conclusion, lut-7-O-rutin protects RIN-5F cells from high-glucose-induced toxicity, stimulates insulin secretion, and promotes glucose absorption and homeostasis via molecular mechanisms.
Collapse
|