1
|
Xu Y, Liu Z, Xu J, Xu L, He Z, Liu F, Wang Y. Role of brain-derived neurotrophic factor in frailty: From mechanisms to interventions. Biomed Pharmacother 2025; 186:118016. [PMID: 40187046 DOI: 10.1016/j.biopha.2025.118016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/23/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Frailty is a common medical syndrome which largely increases the risk of disability, depression, falls, hospitalization and mortality. An increasing number of research suggests that frailty is reversible by medical interventions at its early stage. Therefore, efficient detection is utterly important for frail population. Since numerous biological processes have been indicated in frail population, the critical regulators in these biological processes could provide biomarkers for early detection or treatment for frailty. The brain-derived neurotrophic factor (BDNF) has been associated with several biological process ranging from cognitive function to inflammation, therefore it could be an important regulator for frailty. In this review, we would discuss the mechanism association between different indicators of frailty and BDNF. Furthermore, we summarize the approaches to interfere with BDNF in healthy and pathologic condition, which could lead to identification of potential interventional strategies for frailty.
Collapse
Affiliation(s)
- Yuanchun Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Ziyan Liu
- Department of Nursing, Traditional Chinese Medicine Hospital of Tongliang, Tongliang Chongqing 402560, China
| | - Jiao Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Lunshan Xu
- Department of Neurosurgery, Daping Hospital, Army Medical University, Chongqing 400042, China
| | - Zongsheng He
- Department of Gastroenterology, Daping Hospital,Army Medical University, Chongqing 400042, China
| | - Fang Liu
- Department of Nursing, Traditional Chinese Medicine Hospital of Tongliang, Tongliang Chongqing 402560, China.
| | - Yaling Wang
- Department of Nursing, Daping Hospital, Army Medical University, Chongqing 400042, China.
| |
Collapse
|
2
|
Shi L, Wang M, Yu R, An Y, Wang X, Zhang Y, Shi Y, Han C, Liu J. Sigma-1 receptor agonist PRE-084 increases BDNF by activating the ERK/CREB pathway to rescue learning and memory impairment caused by type II diabetes. Behav Brain Res 2025; 484:115493. [PMID: 39986614 DOI: 10.1016/j.bbr.2025.115493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/15/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Sigma-1 receptor (Sig-1R) agonists has therapeutic effects in neurological disorders and possesses properties that can reverse cognitive dysfunction. This study investigated the therapeutic efficacy of Sig-1R activation on cognitive dysfunction in streptozotocin (STZ) combined with high fat and high sugar diet (HFD)-induced type 2 diabetic rats. By employing morris water maze (MWM) testing and computed tomography (CT) imaging, we observed that activation of Sig-1R effectively mitigated brain atrophy and cognitive impairment in diabetes-induced cognitive impairment (DCI) rats. Given the fundamental role of intact hippocampal synaptic plasticity in maintaining cognitive function, we investigated the correlation between Sig-1R and Brain-Derived Neurotrophic Factor (BDNF), a well-established neurotrophic factor. And we also analyzed the expression of Postsynaptic density protein-95 (PSD95) protein. Golgi staining, Haematoxylin-eosin (HE) staining, Nissl staining, and immunofluorescence results show that activating Sig-1R can upregulate BDNF expression and reducing synaptic damage in hippocampal neurons. To elucidate the mechanism by which Sig-1R activation leads to increased BDNF levels, we investigated the Extracellular Signal-Regulated Kinase/Cyclic AMP Response Element-Binding Protein(ERK/CREB) protein pathway. In vitro and in vivo, we observed that Sig-1R activates the ERK/CREB signaling pathway, thereby stimulating BDNF release and increased PSD95 expression. Further intervention with BD1047 antagonist and Tropomyosin-Related Kinase B (TrkB) antagonist ANA-12 confirmed our conclusion that Sig-1R activation upregulated p-ERK and p-CREB protein expression, promoted BDNF transcription, the expression of PSD95 protein was up-regulated, reduces synaptic damage in damaged hippocampal neurons, and rescued cognitive impairment in DCI rats.
Collapse
Affiliation(s)
- Leilei Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Mingmei Wang
- College of Biology & Food sciences, Changshu Institute of Technology, Suzhou 215123, PR China.
| | - Ruixuan Yu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yuyu An
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Xin Wang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yuhan Zhang
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China.
| | - Yongheng Shi
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Chaojun Han
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| | - Jiping Liu
- Department of Pharmacology, Shaanxi University of Chinese Medicine, Xianyang 712046, PR China; Key Laboratory of Pharmacodynamic Mechanism and Material Basis of Traditional Chinese Medicine, Shaanxi Administration of Traditional Chinese Medicine, Xianyang 712046, PR China.
| |
Collapse
|
3
|
Li L, Gao W, Ren N, Chen L. IL-2/anti-IL-2 complexes attenuates neuroinflammation and neurodegeneration in mice of experimental Parkinson's disease. Brain Res Bull 2025; 223:111273. [PMID: 39999936 DOI: 10.1016/j.brainresbull.2025.111273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/11/2025] [Accepted: 02/23/2025] [Indexed: 02/27/2025]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with motor and non-motor symptoms being its main clinical manifestations. Neuroinflammation has been shown to involve in pathogenesis of PD. Regulatory T cells (Tregs) in PD exhibited reduction in number and suppressive activity. Existing methods to increase the Tregs remains challenging for clinical application because of the difficulty in Tregs expanding or serious side-effects. Therefore, new approaches still need to be explored to balance the amount and activity of Tregs. In this study, we assessed the protective effects of IL-2/anti-IL-2 complexes (IL-2C) on mouse models of PD induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). And the results showed that IL-2C significantly increased the number of Tregs both in spleen and brain, accompanied by reduced nigral dopaminergic neuron loss and behavioral defects. Besides, IL-2C also attenuated neuroinflammation as observed by diminished glial activation, fewer infiltration of CD4+ and CD8+ T cells and reduced pro-inflammatory cytokines releasing in the nigral region. Moreover, the protective effects of IL-2C were abolished by pre-treatment of anti-CD25 antibody (PC61), which was used to delete the Tregs. In summary, our results demonstrate that IL-2C-induced Tregs expansion attenuates the dopaminergic neurons loss and the neuroinflammatory response in vivo, suggesting that IL-2C maybe a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Lanxin Li
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China
| | - Weiwei Gao
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Department of Neurology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, China; Tianjin Neurosurgical Institute, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China.
| | - Ning Ren
- Department of Neurology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, China; Tianjin Neurosurgical Institute, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China
| | - Lei Chen
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Department of Neurology, Tianjin Huanhu Hospital, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China; Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin 300350, China; Tianjin Neurosurgical Institute, NO. 6 Jizhao Road, Jinnan District, Tianjin 300350, China.
| |
Collapse
|
4
|
Zhang X, Yan F, He XJ, Chen Y, Gu R, Dong X, Wei Y, Bai L, Bai J. Thioredoxin-1 Downregulation in the SNpc Exacerbates the Cognitive Impairment Induced by MPTP. Antioxid Redox Signal 2025. [PMID: 40135707 DOI: 10.1089/ars.2024.0630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Aims: Parkinson's disease (PD) is characterized by dopaminergic (DAergic) neuron degeneration in the substantia nigra pars compacta (SNpc). Thioredoxin-1 (Trx-1) is a redox protein that protects neurons from various injuries. Our study revealed that Trx-1 overexpression improved the learning and memory impairments induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). However, the role of the specific transmission of signals from the SNpc to the hippocampus regulated by Trx-1 in cognition deficits associated with PD is still unknown. Results: We observed that Trx-1 downregulation in the SNpc aggravated cognitive dysfunction induced by MPTP. Importantly, we observed that the SNpc directly projects to the hippocampus. We found that the loss of DAergic neurons in the SNpc induced by MPTP resulted in a decrease in dopamine D1 receptor (D1R) expression in the hippocampus, which was promoted by Trx-1 downregulation in the SNpc. The levels of phosphorylated extracellular signal-regulated kinase (p-ERK1/2), phosphorylated cAMP-response element binding protein (p-CREB), brain-derived neurotrophic factor (BDNF), and postsynaptic density protein 95 (PSD95) in the hippocampus were decreased by MPTP and further decreased by Trx-1 downregulation in the SNpc. Finally, the number of synapses in the hippocampus was decreased by MPTP in the hippocampus and further reduced by Trx-1 downregulation in the SNpc. Innovation: Trx-1 downregulation accelerated the loss of DAergic neurons in the SNpc, leading to a decrease in the number dopaminergic projections to the hippocampus, subsequently inhibiting the D1R-ERK1/2-CREB-BDNF pathway in the hippocampus, and ultimately impairing hippocampus-dependent cognition. Conclusions: These results indicate that a decrease in Trx-1 level in the SNpc plays a critical regulatory role in cognitive dysfunction in individuals with PD by decreasing the hippocampal D1R signaling pathway. Antioxid. Redox Signal. 00, 000-000.
Collapse
Affiliation(s)
- Xianwen Zhang
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Fang Yan
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Xiong Jie He
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yali Chen
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Rou Gu
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Xianghuan Dong
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Yonghang Wei
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Liping Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| | - Jie Bai
- Medical Faculty, Laboratory of Molecular Neurobiology, Kunming University of Science and Technology, Kunming, China
| |
Collapse
|
5
|
Sanati M, Manavi MA, Noruzi M, Behmadi H, Akbari T, Jalali S, Sharifzadeh M, Khoobi M. Carbohydrates and neurotrophic factors: A promising partnership for spinal cord injury rehabilitation. BIOMATERIALS ADVANCES 2025; 166:214054. [PMID: 39332344 DOI: 10.1016/j.bioadv.2024.214054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 09/29/2024]
Abstract
Spinal cord injury (SCI) leaves a temporary or enduring motor, sensory, and autonomic function loss, significantly impacting the patient's quality of life. Given their biocompatibility, bioactivity, and tunable attributes, three-dimensional scaffolds frequently employ carbohydrates to facilitate spinal cord regeneration. These scaffolds have also been engineered to be novel local delivery platforms that present distinct advantages in the targeted transportation of drug candidates to the damaged spinal cord, ensuring the right dosage and duration of administration. Neurotrophic factors have emerged as promising therapeutic candidates, preserved neuron survival and encouraged severed axons repair, although their local and continuous delivery is believed to produce considerable spinal cord rehabilitation. This study aims to discuss breakthroughs in scaffold engineering, exploiting carbohydrates as an essential part of their structure, and highlight their impact on spinal cord regeneration and sustained neurotrophic factors delivery to treat SCI.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Noruzi
- School of Pharmacy, Semnan University of Medical Sciences, Semnan, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Akbari
- Department of Microbiology, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Sara Jalali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Drug Design and Development Research Center, The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, 1417614411 Tehran, Iran.
| |
Collapse
|
6
|
Shi R, Tian X, Ji A, Zhang T, Xu H, Qi Z, Zhou L, Zhao C, Li D. A Mixture of Soybean Oil and Lard Alleviates Postpartum Cognitive Impairment via Regulating the Brain Fatty Acid Composition and SCFA/ERK(1/2)/CREB/BDNF Pathway. Nutrients 2024; 16:2641. [PMID: 39203778 PMCID: PMC11357458 DOI: 10.3390/nu16162641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Lard is highly appreciated for its flavor. However, it has not been elucidated how to consume lard while at the same time eliminating its adverse effects on postpartum cognitive function. Female mice were divided into three groups (n = 10): soybean oil (SO), lard oil (LO), and a mixture of soybean oil and lard at a ratio of 1:1 (LS). No significant difference was observed between the SO and LS groups in behavioral testing of the maternal mice, but the LO group was significantly worse compared with these two groups. Moreover, the SO and LS supplementation increased docosahexaenoic acid (DHA) and total n-3 polyunsaturated fatty acid (PUFA) levels in the brain and short-chain fatty acid (SCFA)-producing bacteria in feces, thereby mitigating neuroinflammation and lowering the p-ERK(1/2)/ERK(1/2), p-CREB/CREB, and BDNF levels in the brain compared to the LO group. Collectively, the LS group inhibited postpartum cognitive impairment by regulating the brain fatty acid composition, neuroinflammation, gut microbiota, and the SCFA/ERK(1/2)/CREB/BDNF signaling pathway compared to lard.
Collapse
Affiliation(s)
- Runjia Shi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Xiaoying Tian
- Qingdao Medical College, Qingdao University, Qingdao 266071, China;
| | - Andong Ji
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Tianyu Zhang
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Huina Xu
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Zhongshi Qi
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Liying Zhou
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Chunhui Zhao
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| | - Duo Li
- Institute of Nutrition and Health, Qingdao University, Qingdao 266071, China; (R.S.); (A.J.); (T.Z.); (H.X.); (Z.Q.); (L.Z.); (C.Z.)
- School of Public Health, Qingdao University, Qingdao 266071, China
| |
Collapse
|
7
|
Zhang X, Fan L, Yang L, Jin X, Liu H, Lei H, Song X, Zhang Z, Zhang F, Song J. DAPK1 mediates cognitive dysfunction and neuronal apoptosis in PSD rats through the ERK/CREB/BDNF signaling pathway. Behav Brain Res 2024; 471:115064. [PMID: 38777261 DOI: 10.1016/j.bbr.2024.115064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/21/2024] [Accepted: 05/18/2024] [Indexed: 05/25/2024]
Abstract
Post-stroke depression (PSD) is one of the most common mental sequelae after a stroke and can damage the brain. Although PSD has garnered increasing attention in recent years, the precise mechanism remains unclear. Studies have indicated that the expression of DAPK1 is elevated in various neurodegenerative conditions, including depression, ischemic stroke, and Alzheimer's disease. However, the specific molecular mechanism of DAPK1-mediated cognitive dysfunction and neuronal apoptosis in PSD rats is unclear. In this study, we established a rat model of PSD, and then assessed depression-like behaviors and cognitive dysfunction in rats using behavioral tests. In addition, we detected neuronal apoptosis and analyzed the expression of DAPK1 protein and proteins related to the ERK/CREB/BDNF signaling pathway. The findings revealed that MCAO combined with CUMS can induce more severe depression-like behaviors and cognitive dysfunction in rats, while overexpression of DAPK1 may hinder the downstream ERK/CREB/BDNF signaling pathways, resulting in neuronal loss and exacerbation of brain tissue damage. In this study, we will focus on DAPK1 and explore its role in PSD.
Collapse
Affiliation(s)
- Xinyue Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Lifei Fan
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Lina Yang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China
| | - Xuejiao Jin
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Huanhuan Liu
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Hao Lei
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Xiaojia Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China
| | - Zhaohui Zhang
- The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453000, China
| | - Fuping Zhang
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Henan Collaborative Innovation Center of Prevention and treatment of mental disorder, Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| | - Jinggui Song
- The Second Affiliated Hospital of Xinxiang Medical University, Henan Provincial Psychiatric Hospital, Xinxiang 453000, China; Henan Provincial Key Laboratory of Biological Psychiatry (Xinxiang Medical College), Xinxiang 453000, China; Brain Institute, Henan Academy of Innovations in Medical Science, Zhengzhou 451162, China.
| |
Collapse
|
8
|
Deng L, Wei SL, Wang L, Huang JQ. Feruloylated Oligosaccharides Prevented Influenza-Induced Lung Inflammation via the RIG-I/MAVS/TRAF3 Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:9782-9794. [PMID: 38597360 DOI: 10.1021/acs.jafc.3c09390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Uncontrolled inflammation contributes significantly to the mortality in acute respiratory infections. Our previous research has demonstrated that maize bran feruloylated oligosaccharides (FOs) possess notable anti-inflammatory properties linked to the NF-kB pathway regulation. In this study, we clarified that the oral administration of FOs moderately inhibited H1N1 virus infection and reduced lung inflammation in influenza-infected mice by decreasing a wide spectrum of cytokines (IFN-α, IFN-β, IL-6, IL-10, and IL-23) in the lungs. The mechanism involves FOs suppressing the transduction of the RIG-I/MAVS/TRAF3 signaling pathway, subsequently lowering the expression of NF-κB. In silico analysis suggests that FOs have a greater binding affinity for the RIG-I/MAVS signaling complex. This indicates that FOs have potential as promising targets for immune modulation. Moreover, in MAVS knockout mice, we confirmed that the anti-inflammatory function of FOs against influenza depends on MAVS. Comprehensive analysis using 16S rRNA gene sequencing and metabolite profiling techniques showed that FOs have the potential to restore immunity by modulating the gut microbiota. In conclusion, our study demonstrates that FOs are effective anti-inflammatory phytochemicals in inhibiting lung inflammation caused by influenza. This suggests that FOs could serve as a potential nutritional strategy for preventing the H1N1 virus infection and associated lung inflammation.
Collapse
Affiliation(s)
- Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Shu-Lei Wei
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lu Wang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jun-Qing Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Wen X, Wang Z, Liu Q, Lessing DJ, Chu W. Acetobacter pasteurianus BP2201 alleviates alcohol-induced hepatic and neuro-toxicity and modulate gut microbiota in mice. Microb Biotechnol 2023; 16:1834-1857. [PMID: 37354051 PMCID: PMC10443346 DOI: 10.1111/1751-7915.14303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/26/2023] Open
Abstract
The excessive consumption of alcohol results in a dysbiosis of the gut microbiota, which subsequently impairs the gut microbiota-brain/liver axes and induces cognitive dysfunction and hepatic injury. This study aimed to investigate the potential effect of Acetobacter pasteurianus BP2201 in reducing the negative effects of alcohol consumption on cognitive function and liver health by modulating the gut microbiota-brain/liver axes. Treatment with A. pasteurianus BP2201 improved alcohol-induced hippocampal damage, suppressed neuroinflammation, promoted neuroprotein expression in the hippocampus and enhanced cognitive function. At the same time, A. pasteurianus BP2201 can also reduce serum lipid levels, relieve oxidative stress, inhibit TLR4/MyD88/NF-κB pathway, reduce the secretion of TNF-α and IL-1β, so as to improve alcoholic liver injury. Concomitantly, the treatment with A. pasteurianus BP2201 leads to a shift in the intestinal microbiota structure towards that of healthy individuals, inhibiting the proliferation of harmful bacteria and promoting the recovery of beneficial bacteria. In addition, it also improves brain cognitive dysfunction and liver health by affecting the gut microbiota-brain/liver axes by promoting the synthesis of relevant amino acids and the metabolism of nucleotide base components. These findings demonstrate the potential of regulating the gut microbiome and gut microbiota-brain/liver axes to mitigate alcohol-induced disease.
Collapse
Affiliation(s)
- Xin Wen
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Zheng Wang
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Qi Liu
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Duncan James Lessing
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and TechnologyChina Pharmaceutical UniversityNanjingChina
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjingChina
| |
Collapse
|
10
|
Yang L, Nao J, Dong X. The Therapeutic Potential of Hydroxycinnamic Acid Derivatives in Parkinson's Disease: Focus on In Vivo Research Advancements. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37432913 DOI: 10.1021/acs.jafc.3c02787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Hydroxycinnamic acid derivatives (HCDs) are polyphenols that are abundant in cereals, coffee, tea, wine, fruits, vegetables, and other plant-based foods. To aid in the clinical prevention and treatment of Parkinson's disease (PD), we evaluated in vivo investigations of the pharmacological properties of HCDs relevant to PD, and their pharmacokinetic and safety aspects. An extensive search of published journals was conducted using several literature databases, including PubMed, Google Scholar, and the Web of Science. The search terms included "hydroxycinnamic acid derivatives," "ferulic acid," "caffeic acid," "sinapic acid," "p-coumaric acid," "Parkinson's disease," and combinations of these keywords. As of April 2023, 455 preclinical studies were retrieved, of which 364 were in vivo studies; we included 17 of these articles on the pharmaceutics of HCDs in PD. Available evidence supports the protective effects of HCDs in PD due to their anti-inflammatory, antioxidant, as well as antiapoptotic physiological activities. Studies have identified possible molecular targets and pathways for the protective actions of HCDs in PD. However, the paucity of studies on these compounds in PD, and the risk of toxicity induced with high-dose applications, limits their use. Thus, multifaceted studies of HCDs in vitro and in vivo are needed.
Collapse
Affiliation(s)
- Lan Yang
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, PR China
| |
Collapse
|
11
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
12
|
Castelnovo LF, Thomas P. Progesterone exerts a neuroprotective action in a Parkinson's disease human cell model through membrane progesterone receptor α (mPRα/PAQR7). Front Endocrinol (Lausanne) 2023; 14:1125962. [PMID: 36967764 PMCID: PMC10036350 DOI: 10.3389/fendo.2023.1125962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease worldwide, and current treatment options are unsatisfactory on the long term. Several studies suggest a potential neuroprotective action by female hormones, especially estrogens. The potential role of progestogens, however, is less defined, and no studies have investigated the potential involvement of membrane progesterone receptors (mPRs). In the present study, the putative neuroprotective role for mPRs was investigated in SH-SY5Y cells, using two established pharmacological treatments for cellular PD models, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenylpyridinium (MPP+). Our results show that both the physiologic agonist progesterone and the specific mPR agonist Org OD 02-0 were effective in reducing SH-SY5Y cell death induced by 6-OHDA and MPP+, whereas the nuclear PR agonist promegestone (R5020) and the GABAA receptor agonist muscimol were ineffective. Experiments performed with gene silencing technology and selective pharmacological agonists showed that mPRα is the isoform responsible for the neuroprotective effects we observed. Further experiments showed that the PI3K-AKT and MAP kinase signaling pathways are involved in the mPRα-mediated progestogen neuroprotective action in SH-SY5Y cells. These findings suggest that mPRα could play a neuroprotective role in PD pathology and may be a promising target for the development of therapeutic strategies for PD prevention or management.
Collapse
Affiliation(s)
| | - Peter Thomas
- *Correspondence: Luca F. Castelnovo, ; Peter Thomas,
| |
Collapse
|