1
|
Sun Y, Zhao H, Wang Z. Compound identification of Shuangxinfang and its potential mechanisms in the treatment of myocardial infarction with depression: insights from LC-MS/MS and bioinformatic prediction. Front Pharmacol 2025; 16:1499418. [PMID: 39936089 PMCID: PMC11811099 DOI: 10.3389/fphar.2025.1499418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/06/2025] [Indexed: 02/13/2025] Open
Abstract
Background Patients with myocardial infarction (MI) have a high incidence of depression, which deteriorates the cardiac function and increases the risk of cardiovascular events. Shuangxinfang (Psycho-cardiology Formula, PCF) was proved to possess antidepressant and cardioprotective effects post MI. However, the compounds of PCF remain unidentified, and the pertinent mechanism is still not systematic. The purpose of this study is to determine the ingredients of PCF, further to probe the underlying mechanism for MI with depression. Methods The compounds of PCF were qualitatively identified by LC-MS/MS. The optimal dosage for lavage with the PCF solution in rats was determined to be 1 mL/100 g/day for a duration of 5 days. We also detected the PCF components migrating to blood in the control and model rats. Then the targets of PCF compounds were searched on Swiss target database, and the targets of depression and MI were predicted on TTD, OMIM, GeneCards, DrugBank and PharmGkb database. All the targets were intersected to construct the Protein-Protein Interaction (PPI) network on Metascape platform and the herb-compound-target (HCT) network on Cytoscape, to identify the hub targets. GO and KEGG pathway enrichment analysis were conducted on DAVID platform. Molecular docking was modeled on AutoDock Vina software. Results There were 142 bioactive compounds from PCF acting on 270 targets in a synergistic way. And a total of seven components migrating to blood were identified, including Miltionone I, Neocryptotanshinone, Danshenxinkun A, Ferulic acid, Valerophenone, Vanillic acid and Senkyunolide D. Then SRC and MAPK3 were obtained as the hub proteins by degree value in PPI network, and P2RY12 was picked out as seed proteins ranked by scores from MCODES. Further analysis of biological process and signaling pathways also revealed the significance of ERK/MAPK. Statistical analyses (e.g., GO and KEGG pathway enrichment, PPI network analysis) demonstrated the significance of the identified targets and pathways (p < 0.05). Molecular docking results showed that the binding energies were all less than -5 kcal/mol. The stability of Neocryptotanshinone possessed the lowest binding energy to MAPK3. Conclusion We identified PCF's bioactive compounds and predicted its therapeutic mechanism for MI with depression using LC-MS/MS and bioinformatics. Key targets SRC, MAPK3, and seed protein P2RY12 were crucial for PCF's cardio-neuroprotective effects. Neocryptotanshinone showed the strongest binding to MAPK3, suggesting it as a pivotal active ingredient. These findings offer new insights and targets for future research on PCF.
Collapse
Affiliation(s)
- Yize Sun
- Department of Traditional Chinese Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, Shandong, China
- Department of Cardiology, Third Affiliate Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Haibin Zhao
- Department of Cardiology, Oriental Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheyi Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Zhou Y, Wang L, Sun L, Tan R, Wang Z, Pei R. Progress in Chinese medicine monomers and their nanoformulations on myocardial ischemia/reperfusion injury. J Mater Chem B 2025; 13:1159-1179. [PMID: 39670754 DOI: 10.1039/d4tb02091j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Myocardial ischemia/reperfusion injury (MIRI) is the entire process of myocardial injury resulting from ischemia and hypoxia following acute myocardial infarction, which involves complicated pathogenesis including energy metabolism disorders, calcium overload, oxidative stress and mitochondrial dysfunction. Traditional Chinese medicine (TCM) has attracted intensive attention in the treatment of MIRI owing to its multitarget therapeutic effects and low systemic toxicity. Increasing evidence indicates the promising application of TCM on the protection of cardiomyocytes, improvement of endothelial cell functions and regulation of energy metabolism and inflammatory response. Although the efficacy of TCM has been well-proven, the underlying mechanisms remain unclear. Additionally, the clinical application of much TCM had been hampered due to its low aqueous solubility, poor gastrointestinal absorption, and decreased bioavailability. In this review, we examined the pathological mechanism of MIRI and highlighted recent research studies on the therapeutic effects and molecular mechanisms of monomer compounds derived from TCM. We also summarized the latest studies in nanoformulation-based strategies for improving the targeting and stability of TCM monomers and exerting synergistic effects. The aim of this study was to provide a scientific basis for the treatment of MIRI with TCM monomers combined with nanomaterials, revealing their clinical significance and development prospects.
Collapse
Affiliation(s)
- Yanrong Zhou
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Li Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Lina Sun
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Zheng Wang
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| | - Renjun Pei
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.
| |
Collapse
|
3
|
Zhang Y, Zhang H, Zhang Y, Wang D, Meng X, Chen J. Utilizing physiologies, transcriptomics, and metabolomics to unravel key genes and metabolites of Salvia miltiorrhiza Bge. seedlings in response to drought stress. FRONTIERS IN PLANT SCIENCE 2025; 15:1484688. [PMID: 39877738 PMCID: PMC11772496 DOI: 10.3389/fpls.2024.1484688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/16/2024] [Indexed: 01/31/2025]
Abstract
Drought stress inhibits Salvia miltiorrhiza Bunge (S. miltiorrhiza) seedling growth and yield. Here, we studied the effects of drought stress on the different parts of S. miltiorrhiza seedlings through physiological, transcriptomic, and metabolomics analyses, and identified key genes and metabolites related to drought tolerance. Physiological analysis showed that drought stress increased the accumulation of hydrogen peroxide (H2O2), enhanced the activity of peroxidase (POD), decreased the activity of catalase (CAT) and the contents of chlorophyll b and total chlorophyll, reduced the degree of photosynthesis, enhanced oxidative damage in S. miltiorrhiza seedlings, and inhibited the growth of S. miltiorrhiza plants. Transcriptome analyses revealed 383 genes encoding transcription factors and 80 genes encoding plant hormones as hypothetical regulators of drought resistance in S. miltiorrhiza plants. Moreover, differentially expressed genes (DEGs) and differentially expressed metabolites (DEMs) are involved in a variety of biological processes, such as proline and glycine betaine metabolism, and biosynthesis of tanshinones and phenolic acids. Additionally, it has barely been reported that the AHL gene family may be involved in regulating the neocryptotanshinone biosynthesis. In conclusion, our results suggest that drought stress inhibits S. miltiorrhiza seedling growth by enhancing membrane lipid peroxidation, attenuating the antioxidant system, photosynthesis, and regulating proline and glycine betaine metabolism, transcription factors and plant hormones, and tanshinones and phenolic acid metabolism pathways. This study provides new insights into the complex mechanisms by which S. miltiorrhiza responds to drought stress.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Chen
- Institute of Chinese Materia Medica, Shaanxi Provincial Academy of Traditional Chinese
Medicine, Xi’an, Shaanxi, China
| |
Collapse
|
4
|
Zhang Z, Guo J. Deciphering Oxidative Stress in Cardiovascular Disease Progression: A Blueprint for Mechanistic Understanding and Therapeutic Innovation. Antioxidants (Basel) 2024; 14:38. [PMID: 39857372 PMCID: PMC11759168 DOI: 10.3390/antiox14010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/20/2024] [Accepted: 12/27/2024] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress plays a pivotal role in the pathogenesis and progression of cardiovascular diseases (CVDs). This review focuses on the signaling pathways of oxidative stress during the development of CVDs, delving into the molecular regulatory networks underlying oxidative stress in various disease stages, particularly apoptosis, inflammation, fibrosis, and metabolic imbalance. By examining the dual roles of oxidative stress and the influences of sex differences on oxidative stress levels and cardiovascular disease susceptibility, this study offers a comprehensive understanding of the pathogenesis of cardiovascular diseases. The study integrates key findings from current research in three comprehensive ways. First, it outlines the major CVDs associated with oxidative stress and their respective signaling pathways, emphasizing oxidative stress's central role in cardiovascular pathology. Second, it summarizes the cardiovascular protective effects, mechanisms of action, and animal models of various antioxidants, offering insights into future drug development. Third, it discusses the applications, advantages, limitations, and potential molecular targets of gene therapy in CVDs, providing a foundation for novel therapeutic strategies. These tables underscore the systematic and integrative nature of this study while offering a theoretical basis for precision treatment for CVDs. A major contribution of this study is the systematic review of the differential effects of oxidative stress across different stages of CVDs, in addition to the proposal of innovative, multi-level intervention strategies, which open new avenues for precision treatment of the cardiovascular system.
Collapse
Affiliation(s)
- Zhaoshan Zhang
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Jiawei Guo
- Department of Vascular and Endovascular Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou 434000, China
- Department of Pharmacology, School of Medicine, Yangtze University, Jingzhou 434023, China
- Department of Pharmacology, Cardiac and Cerebral Vascular Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
5
|
Zheng Y, Zhou Z, Liu M, Chen Z. Targeting selective autophagy in CNS disorders by small-molecule compounds. Pharmacol Ther 2024; 263:108729. [PMID: 39401531 DOI: 10.1016/j.pharmthera.2024.108729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 09/25/2024] [Accepted: 10/04/2024] [Indexed: 10/27/2024]
Abstract
Autophagy functions as the primary cellular mechanism for clearing unwanted intracellular contents. Emerging evidence suggests that the selective elimination of intracellular organelles through autophagy, compared to the increased bulk autophagic flux, is crucial for the pathological progression of central nervous system (CNS) disorders. Notably, autophagic removal of mitochondria, known as mitophagy, is well-understood in an unhealthy brain. Accumulated data indicate that selective autophagy of other substrates, including protein aggregates, liposomes, and endoplasmic reticulum, plays distinctive roles in various pathological stages. Despite variations in substrates, the molecular mechanisms governing selective autophagy can be broadly categorized into two types: ubiquitin-dependent and -independent pathways, both of which can be subjected to regulation by small-molecule compounds. Notably, natural products provide the remarkable possibility for future structural optimization to regulate the highly selective autophagic clearance of diverse substrates. In this context, we emphasize the selectivity of autophagy in regulating CNS disorders and provide an overview of chemical compounds capable of modulating selective autophagy in these disorders, along with the underlying mechanisms. Further exploration of the functions of these compounds will in turn advance our understanding of autophagic contributions to brain disorders and illuminate precise therapeutic strategies for these diseases.
Collapse
Affiliation(s)
- Yanrong Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhuchen Zhou
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Mengting Liu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Zhejiang, China.
| |
Collapse
|
6
|
Shen L, Zhu Y, Chen Z, Shen F, Yu W, Zhang L. Isoliquiritigenin attenuates myocardial ischemia reperfusion through autophagy activation mediated by AMPK/mTOR/ULK1 signaling. BMC Cardiovasc Disord 2024; 24:415. [PMID: 39123142 PMCID: PMC11311884 DOI: 10.1186/s12872-024-04054-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Ischemia reperfusion (IR) causes impaired myocardial function, and autophagy activation ameliorates myocardial IR injury. Isoliquiritigenin (ISO) has been found to protect myocardial tissues via AMPK, with exerting anti-tumor property through autophagy activation. This study aims to investigate ISO capacity to attenuate myocardial IR through autophagy activation mediated by AMPK/mTOR/ULK1 signaling. METHODS ISO effects were explored by SD rats and H9c2 cells. IR rats and IR-induced H9c2 cell models were established by ligating left anterior descending (LAD) coronary artery and hypoxia/re-oxygenation, respectively, followed by low, medium and high dosages of ISO intervention (Rats: 10, 20, and 40 mg/kg; H9c2 cells: 1, 10, and 100 μmol/L). Myocardial tissue injury in rats was assessed by myocardial function-related index, HE staining, Masson trichrome staining, TTC staining, and ELISA. Autophagy of H9c2 cells was detected by transmission electron microscopy (TEM) and immunofluorescence. Autophagy-related and AMPK/mTOR/ULK1 pathway-related protein expressions were detected with western blot. RESULTS ISO treatment caused myocardial function improvement, and inhibition of myocardial inflammatory infiltration, fibrosis, infarct area, oxidative stress, CK-MB, cTnI, and cTnT expression in IR rats. In IR-modeled H9c2 cells, ISO treatment lowered apoptosis rate and activated autophagy and LC3 fluorescence expression. In vivo and in vitro, ISO intervention exhibited enhanced Beclin1, LC3II/LC3I, and p-AMPK/AMPK levels, whereas inhibited P62, p-mTOR/mTOR and p-ULK1(S757)/ULK1 protein expression, activating autophagy and protecting myocardial tissues from IR injury. CONCLUSION ISO treatment may induce autophagy by regulating AMPK/mTOR/ULK1 signaling, thereby improving myocardial IR injury, as a potential candidate for treatment of myocardial IR injury.
Collapse
Affiliation(s)
- Liying Shen
- Department of Cardiology, Huzhou Central Hospital, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Yingwei Zhu
- Department of Cardiology, Huzhou Central Hospital, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Zhenfeng Chen
- Department of Cardiology, Huzhou Central Hospital, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Feng Shen
- Department of Cardiology, Huzhou Central Hospital, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Weiwei Yu
- Department of Cardiology, Huzhou Central Hospital, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China
| | - Li Zhang
- Department of Cardiology, Huzhou Central Hospital, No. 1558, Sanhuan North Road, Wuxing District, Huzhou, 313000, Zhejiang, China.
| |
Collapse
|
7
|
Cheng PP, Wang XT, Liu Q, Hu YR, Dai ER, Zhang MH, Yang TS, Qu HY, Zhou H. Nrf2 mediated signaling axis in heart failure: Potential pharmacological receptor. Pharmacol Res 2024; 206:107268. [PMID: 38908614 DOI: 10.1016/j.phrs.2024.107268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Heart failure (HF) has emerged as the most pressing health concerns globally, and extant clinical therapies are accompanied by side effects and patients have a high burden of financial. The protein products of nuclear factor erythroid 2-related factor 2 (Nrf2) target genes have a variety of cardioprotective effects, including antioxidant, metabolic functions and anti-inflammatory. By evaluating established preclinical and clinical research in HF to date, we explored the potential of Nrf2 to exert unique cardioprotective functions as a novel therapeutic receptor for HF. In this review, we generalize the progression, structure, and function of Nrf2 research in the cardiovascular system. The mechanism of action of Nrf2 involved in HF as well as agonists of Nrf2 in natural compounds are summarized. Additionally, we discuss the challenges and implications for future clinical translation and application of pharmacology targeting Nrf2. It's critical to developing new drugs for HF.
Collapse
Affiliation(s)
- Pei-Pei Cheng
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xin-Ting Wang
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qian Liu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yi-Ran Hu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - En-Rui Dai
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ming-Hao Zhang
- Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tian-Shu Yang
- Department of Cardiology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, China
| | - Hui-Yan Qu
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Hua Zhou
- Institute of Cardiovascular Disease of Integrated Traditional Chinese and Western Medicine, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Branch of National Clinical Research Center for Chinese Medicine Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Cardiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
8
|
Chun-peng ZHANG, Tian CAO, Xue YANG. Pharmacological mechanisms of Taohe Chengqi decoction in diabetic cardiovascular complications: A systematic review, network pharmacology and molecular docking. Heliyon 2024; 10:e33308. [PMID: 39044965 PMCID: PMC11263673 DOI: 10.1016/j.heliyon.2024.e33308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/25/2024] Open
Abstract
Background Diabetic cardiovascular complications are the leading cause of diabetes-related deaths. These complications place an enormous and growing burden on global health systems and economies. The objective of this study was to conduct a systematic review on the therapeutic mechanisms of Taohe Chengqi Decoction (THCQD) in the treatment of diabetic cardiovascular complications. To predict the potential mechanisms of action of THCQD on diabetic cardiovascular complications using network pharmacology, and to validate these predictions through molecular docking analysis. Methods To collect relevant animal experiments, we searched a total of 6 databases. Eligibility for the study was determined based on inclusion and exclusion criteria. Data extraction was then performed on the literature. Methodological quality of animal studies was assessed using SYRCLE criteria. Based on network pharmacology, intersecting genes for THCQD and diabetic cardiovascular complications were obtained using Venny, PPI analysis and topology analysis of intersecting genes were performed; GO and KEGG were used for enrichment analysis and prediction of new targets of action. Molecular docking techniques were employed to model the interactions between drug components and target genes, thereby validating the results of network pharmacology predictions. Results A total of 16 studies were finally identified that fit the direction of this review. Included 6 studies of the myocardium, 1 study of the aortic arch, 5 studies of the femoral artery, 4 studies of the thoracic aorta. THCQD exhibited anti-inflammatory, anti-fibrotic and anti-atherosclerotic effects on cardiovascular complications in diabetic rats. Network pharmacology results showed that C0363 (Resveratrol), C0041 (Emodin), and C1114 (Baicalein) were the key components in the treatment of diabetic cardiovascular complications by THCQD. PPI results showed that INS, AKT1, TNF, ALB, IL6, IL1B as the genes that interact with the top 6. KEGG enrichment analysis identified the AGE-RAGE signaling pathway in diabetic complications as the most prominent pathway enriched by THCQD for diabetic cardiovascular complications genes. The results of molecular docking showed that the key active components demonstrated favorable interactions with their corresponding target genes. Conclusion In conclusion, the results of both basic and web-based pharmacological studies support the beneficial effects of the natural herbal formulation THCQD on diabetic cardiovascular complications. This decoction has anti-inflammatory and antifibrotic properties and is effective in ameliorating diabetic cardiovascular disease. The network pharmacology results further support these ideas and identify the AGE-RAGE signaling pathway in diabetic complications as possibly the most relevant pathway for THCQD in the treatment of diabetic cardiovascular complications. The extent of the therapeutic potential of all-natural herbal components in the treatment of diabetic cardiovascular disease merits further investigation.
Collapse
Affiliation(s)
- ZHANG Chun-peng
- Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - CAO Tian
- Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - YANG Xue
- Department of Traditional Chinese Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, 200090, China
| |
Collapse
|
9
|
Zang G, Chen Y, Guo G, Wan A, Li B, Wang Z. Protective Effect of CD137 Deficiency Against Postinfarction Cardiac Fibrosis and Adverse Cardiac Remodeling by ERK1/2 Signaling Pathways. J Cardiovasc Pharmacol 2024; 83:446-456. [PMID: 38416872 DOI: 10.1097/fjc.0000000000001549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/29/2024] [Indexed: 03/01/2024]
Abstract
ABSTRACT Myocardial fibrosis, a common complication of myocardial infarction (MI), is characterized by excessive collagen deposition and can result in impaired cardiac function. The specific role of CD137 in the development of post-MI myocardial fibrosis remains unclear. Thus, this study aimed to elucidate the effects of CD137 signaling using CD137 knockout mice and in vitro experiments. CD137 expression levels progressively increased in the heart after MI, particularly in myofibroblast, which play a key role in fibrosis. Remarkably, CD137 knockout mice exhibited improved cardiac function and reduced fibrosis compared with wild-type mice at day 28 post-MI. The use of Masson's trichrome and picrosirius red staining demonstrated a reduction in the infarct area and collagen volume fraction in CD137 knockout mice. Furthermore, the expression of alpha-smooth muscle actin and collagen I, key markers of fibrosis, was decreased in heart tissues lacking CD137. In vitro experiments supported these findings because CD137 depletion attenuated cardiac fibroblast differentiation, and migration, and collagen I synthesis. In addition, the administration of CD137L recombinant protein further promoted alpha-smooth muscle actin expression and collagen I synthesis, suggesting a profibrotic effect. Notably, the application of an inhibitor targeting the extracellular signal-regulated kinase 1/2 (ERK1/2) signaling pathway attenuated the profibrotic effects of CD137L. To conclude, this study provides evidence that CD137 plays a significant role in promoting myocardial fibrosis after MI. Inhibition of CD137 signaling pathways may hold therapeutic potential for mitigating pathological cardiac remodeling and improving post-MI cardiac function.
Collapse
MESH Headings
- Animals
- Fibrosis
- Myocardial Infarction/pathology
- Myocardial Infarction/metabolism
- Myocardial Infarction/genetics
- Myocardial Infarction/enzymology
- Myocardial Infarction/physiopathology
- Ventricular Remodeling/drug effects
- Mice, Knockout
- Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
- Tumor Necrosis Factor Receptor Superfamily, Member 9/genetics
- Mice, Inbred C57BL
- Disease Models, Animal
- Male
- Collagen Type I/metabolism
- Collagen Type I/genetics
- Myofibroblasts/metabolism
- Myofibroblasts/pathology
- Myofibroblasts/enzymology
- MAP Kinase Signaling System
- Myocardium/pathology
- Myocardium/metabolism
- Myocardium/enzymology
- 4-1BB Ligand/metabolism
- 4-1BB Ligand/genetics
- Mitogen-Activated Protein Kinase 3/metabolism
- Mitogen-Activated Protein Kinase 1/metabolism
- Actins/metabolism
- Cells, Cultured
- Signal Transduction
- Cell Movement
- Mice
- Ventricular Function, Left
- Cell Differentiation
- Myocytes, Cardiac/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/enzymology
- Myocytes, Cardiac/drug effects
Collapse
Affiliation(s)
- Guangyao Zang
- Department of Cardiology, Affiliated Hospital and Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China; and
| | - Yiliu Chen
- Department of Cardiology, Affiliated Hospital and Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China; and
| | - Ge Guo
- Department of Cardiology, Affiliated Hospital and Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China; and
| | - Aijun Wan
- Department of Basic Medical Sciences, School of Nursing, Zhenjiang College, Zhenjiang, China
| | - Bo Li
- Department of Cardiology, Affiliated Hospital and Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China; and
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital and Institute of Cardiovascular Diseases, Jiangsu University, Zhenjiang, China; and
| |
Collapse
|
10
|
Zhai P, Chen Q, Wang X, Ouyang X, Yang M, Dong Y, Li J, Li Y, Luo S, Liu Y, Cheng X, Zhu R, Hu D. The combination of Tanshinone IIA and Astragaloside IV attenuates myocardial ischemia-reperfusion injury by inhibiting the STING pathway. Chin Med 2024; 19:34. [PMID: 38419127 PMCID: PMC10900662 DOI: 10.1186/s13020-024-00908-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/13/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Astragaloside IV (As-IV) and Tanshinone IIA (Ta-IIA) are the main ingredients of traditional Chinese medicinal Astragalus membranaceus (Fisch.) Bunge and Salvia miltiorrhiza Bunge, respectively, both of which have been employed in the treatment of cardiovascular diseases. Nevertheless, the efficacy of the combination (Co) of Ta-IIA and As-IV for cardiovascular diseases remain unclear and warrant further investigation. This study aimed to investigate the efficacy and the underlying molecular mechanism of Co in treating myocardial ischemia-reperfusion injury (MIRI). METHODS In order to assess the efficacy of Co, an in vivo MIRI mouse model was created by temporarily blocking the coronary arteries for 30 min and then releasing the blockage. Parameters such as blood myocardial enzymes, infarct size, and ventricular function were measured. Additionally, in vitro experiments were conducted using HL1 cells in both hypoxia-reoxygenation model and oxidative stress models. The apoptosis rate, expression levels of apoptosis-related proteins, oxidative stress indexes, and release of inflammatory factors were detected. Furthermore, molecular docking was applied to examine the binding properties of Ta-IIA and As-IV to STING, and western blotting was performed to analyze protein expression of the STING pathway. Additionally, the protective effect of Ta-IIA, As-IV and Co via inhibiting STING was further confirmed in models of knockdown STING by siRNA and adding STING agonist. RESULTS Both in vitro and in vivo data demonstrated that, compared to Ta-IIA or As-IV alone, the Co exhibited superior efficacy in reducing the area of myocardial infarction, lowering myocardial enzyme levels, and promoting the recovery of myocardial contractility. Furthermore, the Co showed more potent anti-apoptosis, antioxidant, and anti-inflammation effects. Additionally, the Co enhanced the inhibitory effects of Ta-IIA and As-IV on STING phosphorylation and the activation of STING signaling pathway. However, the administration of a STING agonist attenuated the protective effects of the Co, Ta-IIA, and As-IV by compromising their anti-apoptotic, antioxidant, and anti-inflammatory effects in MIRI. CONCLUSION Compared to the individual administration of Ta-IIA or As-IV, the combined treatment demonstrated more potent ability in inhibiting apoptosis, oxidative stress, inflammation, and the STING signaling pathway in the context of MIRI, indicating a more powerful protective effect against MIRI.
Collapse
Affiliation(s)
- Pan Zhai
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xunxun Wang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mengling Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yiming Li
- Department of Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shanshan Luo
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yue Liu
- Cardiovascular Disease Center, Xiyuan Hospital of China Academy of Chinese Medical Sciences, Beijing, 100091, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Rui Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Biological Targeted Therapy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
11
|
Favero G, Golic I, Arnaboldi F, Cappella A, Korac A, Monsalve M, Stacchiotti A, Rezzani R. Cardiometabolic Changes in Sirtuin1-Heterozygous Mice on High-Fat Diet and Melatonin Supplementation. Int J Mol Sci 2024; 25:860. [PMID: 38255934 PMCID: PMC10815439 DOI: 10.3390/ijms25020860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/24/2024] Open
Abstract
A hypercaloric fatty diet predisposes an individual to metabolic syndrome and cardiovascular complications. Sirtuin1 (SIRT1) belongs to the class III histone deacetylase family and sustains anabolism, mitochondrial biogenesis, and fat distribution. Epididymal white adipose tissue (eWAT) is involved in inflammation, whilst interscapular brown adipose tissue (iBAT) drives metabolism in obese rodents. Melatonin, a pineal indoleamine, acting as a SIRT1 modulator, may alleviate cardiometabolic damage. In the present study, we morphologically characterized the heart, eWAT, and iBAT in male heterozygous SIRT1+/- mice (HET mice) on a high-fat diet (60%E lard) versus a standard rodent diet (8.5% E fat) and drinking melatonin (10 mg/kg) for 16 weeks. Wild-type (WT) male C57Bl6/J mice were similarly fed for comparison. Cardiomyocyte fibrosis and endoplasmic reticulum (ER) stress response worsened in HET mice on a high-fat diet vs. other groups. Lipid peroxidation, ER, and mitochondrial stress were assessed by 4 hydroxy-2-nonenal (4HNE), glucose-regulated protein78 (GRP78), CCAA/enhancer-binding protein homologous protein (CHOP), heat shock protein 60 (HSP60), and mitofusin2 immunostainings. Ultrastructural analysis indicated the prevalence of atypical inter-myofibrillar mitochondria with short, misaligned cristae in HET mice on a lard diet despite melatonin supplementation. Abnormal eWAT adipocytes, crown-like inflammatory structures, tumor necrosis factor alpha (TNFα), and iBAT whitening characterized HET mice on a hypercaloric fatty diet and were maintained after melatonin supply. All these data suggest that melatonin's mechanism of action is strictly linked to full SIRT1 expression, which is required for the exhibition of effective antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (R.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| | - Igor Golic
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (I.G.); (A.K.)
| | - Francesca Arnaboldi
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (F.A.); (A.C.)
| | - Annalisa Cappella
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (F.A.); (A.C.)
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Aleksandra Korac
- Center for Electron Microscopy, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (I.G.); (A.K.)
| | - Maria Monsalve
- Instituto de Investigaciones Biomedicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain;
| | - Alessandra Stacchiotti
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli 31, 20133 Milan, Italy; (F.A.); (A.C.)
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, San Donato Milanese, 20097 Milan, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; (G.F.); (R.R.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale—SISDO), 25123 Brescia, Italy
| |
Collapse
|
12
|
Ma L, Shao M, Cheng W, Jiang J, Chen X, Tan N, Ling G, Yang Y, Wang Q, Yang R, Li C, Wang Y. Neocryptotanshinone ameliorates insufficient energy production in heart failure by targeting retinoid X receptor alpha. Biomed Pharmacother 2023; 163:114868. [PMID: 37201263 DOI: 10.1016/j.biopha.2023.114868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/20/2023] Open
Abstract
Retinoid X receptor alpha (RXRα) is a nuclear transcription factor that extensively regulates energy metabolism in cardiovascular diseases. Identification of targeted RXRα drugs for heart failure (HF) therapy is urgently needed. Neocryptotanshinone (NCTS) is a component derived from Salvia miltiorrhiza Bunge, the effect and mechanism of which for treating HF have not been reported. The goal of this study was to explore the pharmacological effects of NCTS on energy metabolism to protect against HF post-acute myocardial infarction (AMI) via RXRα. We established a left anterior descending artery ligation-induced HF post-AMI model in mice and an oxygen-glucose deprivation-reperfusion-induced H9c2 cell model to investigate the cardioprotective effect of NCTS. Component-target binding techniques, surface plasmon resonance (SPR), microscale thermophoresis (MST) and small interfering RNA (siRNA) transfection were applied to explore the potential mechanism by which NCTS targets RXRα. The results showed that NCTS protects the heart against ischaemic damage, evidenced by improvement of cardiac dysfunction and attenuation of cellular hypoxic injury. Importantly, the SPR and MST results showed that NCTS has a high binding affinity for RXRα. Meanwhile, the critical downstream target genes of RXRα/PPARα, which are involved in fatty acid metabolism, including Cd36 and Cpt1a, were upregulated under NCTS treatment. Moreover, NCTS enhanced TFAM levels, promoted mitochondrial biogenesis and increased myocardial adenosine triphosphate levels by activating RXRα. In conclusion, we confirmed that NCTS improves myocardial energy metabolism, including fatty acid oxidation and mitochondrial biogenesis, by regulating the RXRα/PPARα pathway in mice with HF post-AMI.
Collapse
Affiliation(s)
- Lin Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mingyan Shao
- School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Wenkun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinchi Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xu Chen
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nannan Tan
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guanjing Ling
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ye Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Ran Yang
- Guang'anmen Hospital China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Chun Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China.
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; School of Life Science, Beijing University of Chinese Medicine, Beijing 100029, China; Beijing Key Laboratory of TCM Syndrome and Formula, Beijing 100029, China; Key Laboratory of Beijing University of Chinese Medicine, Ministry of Education, Beijing 100029, China.
| |
Collapse
|
13
|
Wang Y, Guo L, Zhang Z, Fu S, Huang P, Wang A, Liu M, Ma X. A bibliometric analysis of myocardial ischemia/reperfusion injury from 2000 to 2023. Front Cardiovasc Med 2023; 10:1180792. [PMID: 37383699 PMCID: PMC10293770 DOI: 10.3389/fcvm.2023.1180792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/22/2023] [Indexed: 06/30/2023] Open
Abstract
Background Myocardial ischemia/reperfusion injury (MIRI) refers to the more severe damage that occurs in the previously ischemic myocardium after a short-term interruption of myocardial blood supply followed by restoration of blood flow within a certain period of time. MIRI has become a major challenge affecting the therapeutic efficacy of cardiovascular surgery. Methods A scientific literature search on MIRI-related papers published from 2000 to 2023 in the Web of Science Core Collection database was conducted. VOSviewer was used for bibliometric analysis to understand the scientific development and research hotspots in this field. Results A total of 5,595 papers from 81 countries/regions, 3,840 research institutions, and 26,202 authors were included. China published the most papers, but the United States had the most significant influence. Harvard University was the leading research institution, and influential authors included Lefer David J., Hausenloy Derek J., Yellon Derek M., and others. All keywords can be divided into four different directions: risk factors, poor prognosis, mechanisms and cardioprotection. Conclusion Research on MIRI is flourishing. It is necessary to conduct an in-depth investigation of the interaction between different mechanisms and multi-target therapy will be the focus and hotspot of MIRI research in the future.
Collapse
Affiliation(s)
- Yifei Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Lijun Guo
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Zhibo Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Shuangqing Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Pingping Huang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anzhu Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Mi Liu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| | - Xiaochang Ma
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, China
| |
Collapse
|