1
|
Peng S, Su P, Liu L, Li Z, Liu Y, Tian L, Bai M, Xu E, Li Y. Formononetin ameliorates depression-like behaviors through rebalancing microglia M1/M2 polarization and inhibiting NLRP3 inflammasome: involvement of activating PPARα-mediated autophagy. Mol Med 2025; 31:153. [PMID: 40275171 PMCID: PMC12023581 DOI: 10.1186/s10020-025-01217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND The dysregulation of neuroinflammation triggered by imbalance of microglia M1/M2 polarization is a key pathogenic factor and closely associated with occurrence of depression. Formononetin (FMN), a natural non-steroidal isoflavonoid, has been confirmed to exhibit remarkable anti-inflammatory efficacy, but the impact of FMN on depression and the underlying antidepressant mechanisms are still not fully understood. This study aimed to investigate whether the antidepressant effect of FMN is involved in modulating microglia polarization, and if so, what are the underlying mechanisms. METHODS Lipopolysaccharide (LPS)-induced depressive mice were used to study antidepressant mechanisms of FMN. Microglia cell line BV2 stimulated by LPS was employed to investigate pharmacological mechanisms of FMN. Effects of FMN on neuronal damage were detected by H&E, Nissl and Golgi staining. The efficacy of FMN were evaluated by immunostaining and western blots in vivo and vitro. In addition, molecular docking, luciferase reporter assay, cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) were used to confirm the direct target of FMN. RESULTS Our results showed that FMN significantly reverses depression-like behaviors, alleviates neuroinflammation and neuronal damage, rebalances M1/M2 polarization, inhibits NLRP3 inflammasome and enhances microglial autophagy level in prefrontal cortex of LPS-induced depressive mice. In vitro assays, results unraveled that autophagy inhibitor chloroquine (CQ) blocks effects of FMN on inhibiting NLRP3 inflammasome and rebalancing M1/M2 polarization. Moreover, PPARα is identified as a direct target of FMN and FMN can activate PPARα-mediated autophagy. Furtherly, combination PPARα agonist (WY14643) with FMN had no significant additive effects on inhibiting NLRP3 inflammasome and rebalancing M1/M2 polarization, whereas PPARα antagonist (GW6471) abrogated these pharmacologic effects of FMN in BV2. Importantly, GW6471 exhibited similar pharmacologic effects to abolish antidepressant effect of FMN in LPS-induced depressive mice. CONCLUSION Our study firstly demonstrated that FMN can rebalance microglia M1/M2 polarization and inhibit NLRP3 inflammasome, with the involvement of activating PPARα-mediated autophagy to ameliorate depression-like behaviors, which provides a novel view to elucidate antidepressant mechanisms of FMN and also offers a potential therapeutic target for depression.
Collapse
Affiliation(s)
- Shuaijun Peng
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Pan Su
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
| | - Liming Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Zibo Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Yuan Liu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, PR China
| | - Lei Tian
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Ming Bai
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China
| | - Erping Xu
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
| | - Yucheng Li
- Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, P.R. China.
| |
Collapse
|
2
|
Chu Y, Pang B, Yang M, Wang S, Meng Q, Gong H, Kong Y, Leng Y. Exploring the possible therapeutic mechanism of Danzhixiaoyao pills in depression and MAFLD based on "Homotherapy for heteropathy": A network pharmacology and molecular docking. Heliyon 2024; 10:e35309. [PMID: 39170292 PMCID: PMC11336640 DOI: 10.1016/j.heliyon.2024.e35309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Danzhixiaoyao pills (DXP) is a traditional Chinese medicine formula that has been effectively used in clinical practice to treat depression and metabolic associated fatty liver disease (MAFLD), but its therapeutic mechanism is not yet clear. The purpose of this study is to explore the possible mechanisms of DXP in treating depression and MAFLD using network pharmacology and molecular docking techniques based on existing literature reports. Methods By combining TCMSP, Swiss ADME, Swiss TargetPrediction, and UniProt databases, the active ingredients and potential targets of DXP were screened and obtained. By searching for relevant disease targets through Gene Cards, OMIM, and TTD databases, intersection targets between drugs and diseases were obtained. The network of "Disease - Potential targets - Active ingredients - Traditional Chinese medicine - Prescriptions" was constructed using Cytoscape 3.9.1 software, and the PPI network was constructed using STRING 12.0 database. The core targets were obtained through topology analysis. GO function enrichment and KEGG pathway enrichment analysis were conducted based on DAVID. The above results were validated by molecular docking using PyMol 2.5 and AutoDock Tool 1.5.7 software, and their possible therapeutic mechanisms were discussed. Results Network pharmacology analysis obtained 130 main active ingredients of drugs, 173 intersection targets between drugs and diseases, and 37 core targets. Enrichment analysis obtained 1390 GO functional enrichment results, of which 922 were related to biological process, 107 were related to cellular component, 174 were related to molecular function, and obtained 180 KEGG pathways. Molecular docking has confirmed the good binding ability between relevant components and targets, and the literature discussion has preliminarily verified the above results. Conclusion DXP can act on targets such as TNF, AKT1, ALB, IL1B, TP53 through active ingredients such as kaempferol, quercetin, naringenin, isorhamnetin, glyuranolide, etc, and by regulating signaling pathways such as pathways in cancer, MAPK signaling pathway, lipid and atherosclerosis, to exert its effect of "homotherapy for heteropathy" on depression and MAFLD. In addition, glyuranolide showed the strongest affinity with TNF (-7.88 kcal/mol), suggesting that it may play a key role in the treatment process. The research results provide a theoretical basis for elucidating the scientific connotation and mechanism of action of traditional Chinese medicine compound DXP, and provide new directions for its clinical application.
Collapse
Affiliation(s)
- YunHang Chu
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - BingYao Pang
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Ming Yang
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Song Wang
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Qi Meng
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - HongChi Gong
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - YuDong Kong
- College of Traditional Chinese Medicine, Changchun University of Traditional Chinese Medicine, Changchun, China
| | - Yan Leng
- Department of Hepatology, The Affiliated Hospital of Changchun University of Traditional Chinese Medicine, Changchun, China
| |
Collapse
|
3
|
Zhang WJ, Guo ZX, Wang YD, Fang SY, Wan CM, Yu XL, Guo XF, Chen YY, Zhou X, Huang JQ, Li XJ, Chen JX, Fan LL. From Perspective of Hippocampal Plasticity: Function of Antidepressant Chinese Medicine Xiaoyaosan. Chin J Integr Med 2024; 30:747-758. [PMID: 38900227 DOI: 10.1007/s11655-024-3908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2023] [Indexed: 06/21/2024]
Abstract
The hippocampus is one of the most commonly studied brain regions in the context of depression. The volume of the hippocampus is significantly reduced in patients with depression, which severely disrupts hippocampal neuroplasticity. However, antidepressant therapies that target hippocampal neuroplasticity have not been identified as yet. Chinese medicine (CM) can slow the progression of depression, potentially by modulating hippocampal neuroplasticity. Xiaoyaosan (XYS) is a CM formula that has been clinically used for the treatment of depression. It is known to protect Gan (Liver) and Pi (Spleen) function, and may exert its antidepressant effects by regulating hippocampal neuroplasticity. In this review, we have summarized the association between depression and aberrant hippocampal neuroplasticity. Furthermore, we have discussed the researches published in the last 30 years on the effects of XYS on hippocampal neuroplasticity in order to elucidate the possible mechanisms underlying its therapeutic action against depression. The results of this review can aid future research on XYS for the treatment of depression.
Collapse
Affiliation(s)
- Wu-Jing Zhang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Ze-Xuan Guo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yi-di Wang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Shao-Yi Fang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Chun-Miao Wan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Long Yu
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Fang Guo
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yue-Yue Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xuan Zhou
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jun-Qing Huang
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Juan Li
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jia-Xu Chen
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Li-Li Fan
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
4
|
Zheng Y, Bao J, Tang L, Chen C, Guo W, Li K, Zhang R, Wu J. Association between weekend catch-up sleep and depression of the United States population from 2017 to 2018: A cross-sectional study. Sleep Med 2024; 119:9-16. [PMID: 38631161 DOI: 10.1016/j.sleep.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/02/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Insufficient sleep on weekdays has become a societal norm, and studies have shown that sleep deprivation increases the risk of depression. Although individuals often resort to weekend catch-up sleep (CUS) as a compensatory measure, the present evidence supporting its efficacy in mitigating the risk of depression is limited. This article attempts to explore the relationship between CUS and depression. In this study, a total of 5510 participants were included, characterized into two groups: nondepressed (n = 5051) and depressed (n = 459), with data extracted from the National Health and Nutrition Examination Survey (NHANES). Compared with people without CUS, those practicing CUS exhibited a significantly lower risk of depression (OR = 0.81, P = 0.048). In subgroup analysis, this reduction effect was only observed in males (OR = 0.70, 95 % CI 0.05 to 0.99, P = 0.04), middle-aged (>40, ≤60) (OR: 0.57, 95 % CI: 0.40 to 0.81, P = 0.002), married or living with parents (OR: 0.61, 95 % CI: 0.44 to 0.86, P = 0.004), groups with three or more family members (OR: 0.69, 95 % CI: 0.52 to 0.93, P = 0.01), and individuals without alcohol intake (OR: 0.24,95 % CI: 0.09 to 0.67, P = 0.006). Therefore, in the realm of depression treatment, doctors may consider advising patients to get adequate sleep on weekends as part of their overall treatment plan. At the same time, individuals can also choose weekend sleep as a proactive strategy for regulating their psychological status.
Collapse
Affiliation(s)
- Yanxu Zheng
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China; Xiangya School of Medicine, Central South University, Hunan, 410013, China
| | - Jing Bao
- Xiangya School of Medicine, Central South University, Hunan, 410013, China
| | - Long Tang
- Xiangya School of Medicine, Central South University, Hunan, 410013, China
| | - Chuhua Chen
- Xiangya School of Medicine, Central South University, Hunan, 410013, China
| | - Weiqin Guo
- Xiangya School of Medicine, Central South University, Hunan, 410013, China
| | - Kecheng Li
- Xiangya School of Medicine, Central South University, Hunan, 410013, China
| | - Ruxu Zhang
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| | - Jinze Wu
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
5
|
Zeng NX, Li H, Su MY, Chen X, Yang XY, Shen M. Therapeutic potential of Erxian decoction and its special chemical markers in depression: a review of clinical and preclinical studies. Front Pharmacol 2024; 15:1377079. [PMID: 38915473 PMCID: PMC11194323 DOI: 10.3389/fphar.2024.1377079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/15/2024] [Indexed: 06/26/2024] Open
Abstract
The increasing prevalence of depression is a major societal burden. The etiology of depression involves multiple mechanisms. Thus, the outcomes of the currently used treatment for depression are suboptimal. The anti-depression effects of traditional Chinese medicine (TCM) formulations have piqued the interest of the scientific community owing to their multi-ingredient, multi-target, and multi-link characteristics. According to the TCM theory, the functioning of the kidney is intricately linked to that of the brain. Clinical observations have indicated the therapeutic potential of the kidney-tonifying formula Erxian Decoction (EXD) in depression. This review aimed to comprehensively search various databases to summarize the anti-depression effects of EXD, explore the underlying material basis and mechanisms, and offer new suggestions and methods for the clinical treatment of depression. The clinical and preclinical studies published before 31 August 2023, were searched in PubMed, Google Scholar, China National Knowledge Infrastructure, and Wanfang Database. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Clinical studies have demonstrated that EXD exhibits therapeutic properties in patients with menopausal depression, postpartum depression, and maintenance hemodialysis-associated depression. Meanwhile, preclinical studies have reported that EXD and its special chemical markers exert anti-depression effects by modulating monoamine neurotransmitter levels, inhibiting neuroinflammation, augmenting synaptic plasticity, exerting neuroprotective effects, regulating the hypothalamic-pituitary-adrenal axis, promoting neurogenesis, and altering cerebrospinal fluid composition. Thus, the anti-depression effects of EXD are mediated through multiple ingredients, targets, and links. However, further clinical and animal studies are needed to investigate the anti-depression effects of EXD and the underlying mechanisms and offer additional evidence and recommendations for its clinical application. Moreover, strategies must be developed to improve the quality control of EXD. This review provides an overview of EXD and guidance for future research direction.
Collapse
Affiliation(s)
- Ning-Xi Zeng
- Department of Rehabilitation Medicine, People’s Hospital of Longhua, Shenzhen, China
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Han Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Department of Pharmacy, Shenzhen Bao’an Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Meng-Yuan Su
- The First School of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Urology Surgery, Guangzhou Baiyun District Maternal and Child Health Hospital, Guangzhou, China
| | - Xin Chen
- Department of Rehabilitation Medicine, People’s Hospital of Longhua, Shenzhen, China
| | - Xiao-Yan Yang
- Department of Rehabilitation Medicine, People’s Hospital of Longhua, Shenzhen, China
| | - Mei Shen
- Department of Rehabilitation Medicine, People’s Hospital of Longhua, Shenzhen, China
| |
Collapse
|
6
|
Luo X, Li DD, Li ZC, Li ZX, Zou DH, Huang F, Wang G, Wang R, Cao YF, Sun WY, Kurihara H, Liang L, Li YF, Jin W, Wu YP, He RR. Mitigating phospholipid peroxidation of macrophages in stress-induced tumor microenvironment by natural ALOX15/PEBP1 complex inhibitors. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155475. [PMID: 38492368 DOI: 10.1016/j.phymed.2024.155475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/07/2024] [Accepted: 02/21/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND The intricate interactions between chronic psychological stress and susceptibility to breast cancer have been recognized, yet the underlying mechanisms remain unexplored. Danzhi Xiaoyao Powder (DZXY), a traditional Chinese medicine (TCM) formula, has found clinical utility in the treatment of breast cancer. Macrophages, as the predominant immune cell population within the tumor microenvironment (TME), play a pivotal role in orchestrating tumor immunosurveillance. Emerging evidence suggests that lipid oxidation accumulation in TME macrophages, plays a critical role in breast cancer development and progression. However, a comprehensive understanding of the pharmacological mechanisms and active components of DZXY related to its clinical application in the treatment of stress-aggravated breast cancer remains elusive. PURPOSE This study sought to explore the plausible regulatory mechanisms and identify the key active components of DZXY contributing to its therapeutic efficacy in the context of breast cancer. METHODS Initially, we conducted an investigation into the relationship between the phagocytic capacity of macrophages damaged by psychological stress and phospholipid peroxidation using flow cytometry and LC-MS/MS-based phospholipomics. Subsequently, we evaluated the therapeutic efficacy of DZXY based on the results of the tumor size, tumor weight, the phospholipid peroxidation pathway and phagocytosis of macrophage. Additionally, the target-mediated characterization strategy based on binding of arachidonate 15-lipoxygenase (ALOX15) to phosphatidylethanolamine-binding protein-1 (PEBP1), including molecular docking analysis, microscale thermophoresis (MST) assay, co-immunoprecipitation analysis and activity verification, has been further implemented to reveal the key bio-active components in DZXY. Finally, we evaluated the therapeutic efficacy of isochlorogenic acid C (ICAC) based on the results of tumor size, tumor weight, the phospholipid peroxidation pathway, and macrophage phagocytosis in vivo. RESULTS The present study demonstrated that phospholipid peroxides, as determined by LC-MS/MS-based phospholipidomics, triggered in macrophages, which in turn compromised their capacity to eliminate tumor cells through phagocytosis. Furthermore, we elucidate the mechanism behind stress-induced PEBP1 to form a complex with ALOX15, thereby mediating membrane phospholipid peroxidation in macrophages. DZXY, demonstrates potent anti-breast cancer therapeutic effects by disrupting the ALOX15/PEBP1 interaction and inhibiting phospholipid peroxidation, ultimately enhancing macrophages' phagocytic capability towards tumor cells. Notably, ICAC emerged as a promising active component in DZXY, which can inhibit the ALOX15/PEBP1 interaction, thereby mitigating phospholipid peroxidation in macrophages. CONCLUSION Collectively, our findings elucidate stress increases the susceptibility of breast cancer by driving lipid peroxidation of macrophages and suggest the ALOX15/PEBP1 complex as a promising intervention target for DZXY.
Collapse
Affiliation(s)
- Xiang Luo
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Dong-Dong Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zi-Chun Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Zi-Xuan Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - De-Hua Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China
| | - Feng Huang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Collaborative Innovation Center of Biotherapy, Sichuan University, Chengdu, China
| | - Rong Wang
- School of Chinese Materia Medica and Yunnan Key Laboratory of Southern Medicinal Utilization, Yunnan University of Chinese Medicine, Kunming 650500, China
| | - Yun-Feng Cao
- Shanghai Institute for Biomedical and Pharmaceutical Technologies, NHC Key Laboratory of Reproduction Regulation, Shang Hai 200032, China
| | - Wan-Yang Sun
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Lei Liang
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Yi-Fang Li
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China
| | - Wen Jin
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Yan-Ping Wu
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China.
| | - Rong-Rong He
- Guangdong Second Provincial General Hospital/Guangdong Engineering Research Center of Chinese Medicine & Disease Susceptibility/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education (MOE)/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research/Integrated Chinese and Western Medicine Postdoctoral Research Station/State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou 510632, China; State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau 999078, China.
| |
Collapse
|
7
|
Yang Y, Chen YK, Xie MZ. Exploring the transformative impact of traditional Chinese medicine on depression: Insights from animal models. World J Psychiatry 2024; 14:607-623. [PMID: 38808079 PMCID: PMC11129158 DOI: 10.5498/wjp.v14.i5.607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/06/2024] [Accepted: 04/28/2024] [Indexed: 05/16/2024] Open
Abstract
Depression, a prevalent and complex mental health condition, presents a significant global health burden. Depression is one of the most frequent mental disorders; deaths from it account for 14.3% of people worldwide. In recent years, the integration of complementary and alternative medicine, including traditional Chinese medicine (TCM), has gained attention as a potential avenue for addressing depression. This comprehensive review critically assesses the efficacy of TCM interventions in alleviating depressive symptoms. An in-depth look at different research studies, clinical trials, and meta-analyses is used in this review to look into how TCM practices like herbal formulations, acupuncture, and mind-body practices work. The review looks at the quality of the evidence, the rigor of the methods, and any possible flaws in the current studies. This gives us an idea of where TCM stands right now in terms of treating depression. This comprehensive review aims to assess the efficacy of TCM interventions in alleviating depressive symptoms. In order to learn more about their possible healing effects, the study also looks into how different types of TCM work, such as herbal formulas, acupuncture, and mind-body practices.
Collapse
Affiliation(s)
- Yan Yang
- School of Nursing, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Yan-Kun Chen
- Precision Medicine R&D Center, Zhuhai Institute of Advanced Technology, Chinese Academy of Sciences, Zhuhai 519000, Guangdong Province, China
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| | - Meng-Zhou Xie
- School of Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Hunan Engineering Technology Research Center for Medicinal and Functional Food, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
- Key Laboratory of TCM Heart and Lung Syndrome Differentiation and Medicated Diet and Dietotherapy, Hunan University of Chinese Medicine, Changsha 410200, Hunan Province, China
| |
Collapse
|