1
|
Chen Y, Yang S, Shi H, Cui J, Li Z. Molecular Mechanisms Underlying Apple Extract Ameliorates Depression-Incident Cognitive Dysfunction Based on Network Pharmacology. Food Sci Nutr 2025; 13:e70408. [PMID: 40491976 PMCID: PMC12146215 DOI: 10.1002/fsn3.70408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/21/2025] [Accepted: 05/19/2025] [Indexed: 06/11/2025] Open
Abstract
The apple was found to be involved in antidepressant properties. Thus, this study aimed to explore the effects of apple extract (AE) on depression and to elucidate the underlying mechanisms. Our network pharmacology analysis indicated that AE may exert its antidepressant effects through the regulation of inflammatory responses and the cAMP signaling pathway. Behavioral tests showed that AE significantly improved spatial learning, exploratory behavior, anhedonia, and despair in CUMS mice. Biochemical analyses revealed that AE increased synaptic density in the hippocampus, enhanced brain levels of 5-hydroxytryptamine (5-HT) and gamma-aminobutyric acid (GABA), and reduced the expression of pro-inflammatory cytokines TNF-α, IL-1β, and IL-6 in both serum and brain tissue. In vitro, AE demonstrated significant neuroprotective effects against CORT-induced cytotoxicity. Furthermore, AE treatment upregulated the levels of cAMP, phosphorylated PKA (pPKA), and phosphorylated CREB (pCREB) while downregulating PTGS2 expression, suggesting that the cAMP/PKA/CREB/PTGS2 signaling pathway is a key mechanism underlying the antidepressant effects of AE. Therefore, our study indicated that AE can improve cognitive dysfunction and alleviate depressive-like behavior by targeting the cAMP/PKA/CREB/PTGS2 signaling pathway in CUMS mice. This study paved the way for the clinical application of AE as a novel treatment for depression and provided new targeted therapeutic strategies.
Collapse
Affiliation(s)
- Yue Chen
- College of Agronomy and Life SciencesZhaotong UniversityZhaotongChina
| | - Shunqiang Yang
- College of Agronomy and Life SciencesZhaotong UniversityZhaotongChina
| | - Huihuang Shi
- College of Agronomy and Life SciencesZhaotong UniversityZhaotongChina
| | - Jizhe Cui
- College of Agronomy and Life SciencesZhaotong UniversityZhaotongChina
| | - Zhu Li
- College of Agronomy and Life SciencesZhaotong UniversityZhaotongChina
| |
Collapse
|
2
|
Guan Y, Zhao X, Lu Y, Zhang Y, Lu Y, Wang Y. New bitongling regulates gut microbiota to predict angiogenesis in rheumatoid arthritis via the gut-joint axis: a deep neural network approach. Front Microbiol 2025; 16:1528865. [PMID: 39963498 PMCID: PMC11830818 DOI: 10.3389/fmicb.2025.1528865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 01/16/2025] [Indexed: 02/20/2025] Open
Abstract
Background Rheumatoid arthritis (RA) is a persistent autoimmune disorder marked by inflammation and joint damage. Although current treatments, such as disease-modifying antirheumatic drugs (DMARDs), help control symptoms, they frequently cause substantial side effects, highlighting the urgent need for safer and more effective alternatives. Recent research indicates that gut microbiota might be pivotal in RA development through the "gut-joint axis," presenting novel therapeutic possibilities. Purpose This study seeks to explore the therapeutic potential of the traditional Chinese medicine (TCM) compound new bitongling (NBTL) for RA, with an emphasis on its capacity to regulate gut microbiota and suppress angiogenesis via the vascular endothelial growth factor (VEGF) signaling pathway. Methods We utilized a collagen-induced arthritis (CIA) rat model to assess the impact of NBTL. The study employed 16S ribosomal DNA (16S rDNA) sequencing to analyze gut microbiota composition, machine learning techniques to identify characteristic microbial taxa, and transcriptomic analysis (GSVA) to assess the impact on the VEGF signaling pathway. The findings were further validated through analysis with deep neural network models and in vivo/in vitro experiments, including western blot, immunofluorescence, and miRNA analysis. Results NBTL treatment markedly diminished inflammation in RA rats, evidenced by the reduced expression of TNF-α, IL-17, IL-6, and ASC in synovial tissues. Histopathological analysis confirmed alleviation of joint damage. Five characteristic microbial taxa, including f_Mycoplasmataceae, s_Metamycoplasma_sualvi, and g_Prevotellaceae_Ga6A1_group, were identified and associated with NBTL's modulation of the VEGF pathway. Gene set variation analysis (GSVA) revealed significant downregulation of the VEGF signaling pathway following NBTL treatment. Subsequent experiments confirmed that NBTL inhibited VEGF and its receptors, VEGFR1 and VEGFR2, along with HIF-1α (hypoxia-inducible factor 1-alpha), thereby reducing angiogenesis. Additionally, NBTL upregulated miR-20a-5p and miR-223-3p, contributing to its anti-angiogenic effects. Conclusion NBTL exhibits significant therapeutic potential in RA by modulating gut microbiota and inhibiting the VEGF signaling pathway. These findings support NBTL's use as a promising candidate for RA treatment, emphasizing the need for further research on its mechanisms and clinical application.
Collapse
Affiliation(s)
- Yin Guan
- Department of Rheumatism Immunity Branch, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoqian Zhao
- Department of Ethics Committee, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yun Lu
- Department of Rheumatism Immunity Branch, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Zhang
- Department of Rheumatism Immunity Branch, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yan Lu
- Department of Rheumatism Immunity Branch, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yue Wang
- Department of Rheumatism Immunity Branch, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Hu J, Bu W, Ding Y, Li X, Zhang B, Shen B, Wu C, Xu Y, Zhang X. Jian Pi Hua Tan Fang Reverses Trastuzumab Resistance of HER2-Positive Gastric Cancer Through PI3K/AKT/mTOR Pathway: Integrating Network Pharmacology, Molecular Docking and Experimental Validation. Immun Inflamm Dis 2025; 13:e70154. [PMID: 39917999 PMCID: PMC11803458 DOI: 10.1002/iid3.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/07/2024] [Accepted: 01/03/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Currently, trastuzumab resistance significantly impacts the treatment outcome for individuals with HER2-positive gastric cancer. In clinical practice, Jian Pi Hua Tan Fang (JPHTF) has been shown to be effective in preventing recurrences and metastases caused by gastric cancer. Yet, the treatment process remains unknown. We aim to evaluate the potential pharmacological mechanism of JPHTF in interfering with resistance to trastuzumab in HER2-positive gastric cancer (GC). METHODS In this study, network pharmacology and molecular docking techniques were used to forecast the potential active ingredients, pathways, and targets of JPHTF in overcoming trastuzumab resistance in HER2-positive GC. Then, in vitro models of NCI-N87/TR was developed, and JPHTF-containing serum was utilized for intervention to confirm these crucial targets. RESULTS Network pharmacology showed that 92 potential active compounds and 420 therapeutic targets of JPHTF. SRC, EGFR, TP53, and AKT1 were identified as the main targets associated with the PI3K/Akt, MAPK, and Ras pathways, playing crucial roles in angiogenesis, cell apoptosis, cell proliferation, and resistance to chemotherapy in the GC microenvironment. Molecular docking analysis showed that quercetin, formononetin, and luteolin, which are the main active ingredients, exhibit high binding affinity to the central targets PI3K, AKT, and mTOR. In vitro experiment, the JPHTF-containing serum has a significant alleviating effect on reversing trastuzumab resistance and cell apoptotic and proliferation of NCI-N87/TR. Further molecular biological experiments showed that JPHTF could regulate the expression of PI3K/AKT/mTOR pathway. CONCLUSION JPHTF has the ability to overcome trastuzumab resistance in NCI-N87 cells through the regulation of the PI3K/AKT/mTOR pathway.
Collapse
Affiliation(s)
- Jia Hu
- Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese MedicineNanjingChina
| | - Wenjing Bu
- The Second Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Yongfang Ding
- Jiangsu Province Academy of Traditional Chinese MedicineNanjingChina
| | - Xin Li
- Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese MedicineNanjingChina
| | - Bo Zhang
- Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese MedicineNanjingChina
| | - Bo Shen
- Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese MedicineNanjingChina
| | - Cong Wu
- Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese MedicineNanjingChina
| | - Youqi Xu
- The Second Affiliated Hospital of Nanjing University of Chinese MedicineNanjingChina
| | - Xiaoyang Zhang
- Nanjing Integrated Traditional Chinese and Western Medicine Hospital Affiliated with Nanjing University of Chinese MedicineNanjingChina
| |
Collapse
|
4
|
Wang Z, Gao H, Ma X, Zhu D, Zhao L, Xiao W. Adrenic acid: A promising biomarker and therapeutic target (Review). Int J Mol Med 2025; 55:20. [PMID: 39575474 PMCID: PMC11611323 DOI: 10.3892/ijmm.2024.5461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/06/2024] [Indexed: 01/05/2025] Open
Abstract
Adrenic acid is a 22‑carbon unsaturated fatty acid that is widely present in the adrenal gland, liver, brain, kidney and vascular system that plays a regulatory role in various pathophysiological processes, such as inflammatory reactions, lipid metabolism, oxidative stress, vascular function, and cell death. Adrenic acid is a potential biomarker for various ailments, including metabolic, neurodegenerative and cardiovascular diseases and cancer. In addition, adrenic acid is influenced by the pharmacological properties of several natural products, such as astragaloside IV, evodiamine, quercetin, kaempferol, Berberine‑baicalin and prebiotics, so it is a promising new target for clinical treatment and drug development. However, the molecular mechanisms by which adrenic acid exerts are unclear. The present study systematically reviewed the biosynthesis and metabolism of adrenic acid, focusing on intrinsic mechanisms that influence the progression of metabolic, cardiovascular and neurological disease. These mechanisms regulate several key processes, including immuno‑inflammatory response, oxidative stress, vascular function and cell death. In addition, the present study explored the potential clinical translational value of adrenic acid as a biomarker and therapeutic target. To the best of our knowledge, the present study is first systematic summary of the mechanisms of action of adrenic acid across a range of diseases. The present study provides understanding of the wide range of metabolic activities of adrenic acid and a basis for further exploring the pathogenesis and therapeutic targets of various diseases.
Collapse
Affiliation(s)
- Ze Wang
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Haoyang Gao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Xiaotong Ma
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Danlin Zhu
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| | - Linlin Zhao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
- School of Physical Education, Shanghai Normal University, Shanghai 200234, P.R. China
| | - Weihua Xiao
- Shanghai Key Laboratory of Human Performance, Shanghai University of Sport, Shanghai 200438, P.R. China
| |
Collapse
|
5
|
Wu X, Zhang Y, Wang J, Qin L, Li Y, He Q, Zhang T, Wang Y, Song L, Ji L, Long B, Wang Q. Role of SIRT1-mediated synaptic plasticity and neurogenesis: Sex-differences in antidepressant-like efficacy of catalpol. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156120. [PMID: 39395323 DOI: 10.1016/j.phymed.2024.156120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/14/2024] [Accepted: 07/01/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Catalpol, an important compound found in Rehmannia glutinosa (a plant with high nutritional and antidepressant medicinal value), exhibits various biological activities and has the ability to penetrate the blood-brain barrier. Our recent studies revealed a gender difference in the antidepressant activity of Rehmannia glutinosa with females showing better responses than males. Catalpol is likely the key compound responsible for this gender-specific difference, which caters to current clinical observations that the severity and impact of depression are approximately two to three times higher in females than in males. However, the sex-specific mechanism of catalpol's antidepressant effects remains unclear. PURPOSE AND METHODS Our recent molecular network predictions suggest that the gender-specific antidepressant properties of catalpol primarily involve the regulation of SIRT1-mediated synaptic plasticity and neurogenesis. Building on this, the present study used a well-established chronic unpredictable mild stress model of depression in mice to confirm the sex-specific antidepressant characteristics of catalpol over time and intensity. Furthermore, using SIRT1 inhibitors and activators, behavioral tests, hematoxylin & eosin, Nissl, and Golgi staining, western blotting, immunofluorescence, and real-time PCR, we evaluated the key indicators of depressive behavior, synaptic plasticity, and neurogenesis before and after SIRT1 intervention to comprehensively assess whether the sex-specific antidepressant mechanism of catalpol indeed involves SIRT1-mediated synaptic plasticity and neurogenesis. RESULTS The gender-dependent antidepressant effects of catalpol are characterized by a faster onset and stronger effects in females compared to males, with females showing stronger regulation of SIRT1-mediated synaptic plasticity and neurogenesis. Activation of SIRT1 preserved the gender differences in catalpol's effects on depressive behavior, hippocampal synaptic plasticity (including neuronal consolidation, neuronal density, dendritic spines, and PSD95 and SYP gene and protein expression), and neurogenesis (including enhancement of GAP43 and MAP2 expression, activation of c-myc, cyclinD1, Ngn2, and NeuroD1 mRNA levels, and upregulation of the Wnt3a/β-catenin/GSK-3β pathway), while inhibition of SIRT1 abolished these gender differences in the effects of catalpol. CONCLUSIONS Catalpol exhibits higher antidepressant activity in female mice compared to male mice, and the mechanism underlying this gender difference in antidepressant effects may depend on catalpol's higher sensitivity in improving hippocampal SIRT1-mediated synaptic plasticity and neurogenesis in females. The novelty of this study lies in its first-time revelation of the gender-specific phenotypes, targets, and molecular mechanisms of the antidepressant effects of catalpol.
Collapse
Affiliation(s)
- Xiaohui Wu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, China
| | - Yueyue Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Junming Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Henan University of Chinese Medicine, Zhengzhou, 450046, China.
| | - Lingyu Qin
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yamin Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qingwen He
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Tianzhu Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanmei Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lingling Song
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lijie Ji
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Bingyu Long
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qian Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Xiong W, Lin X, Lin X, Wu L, Lin W. A Ketogenic Diet Affects Gut Microbiota by Regulating Gut Microbiota and Promoting Hippocampal TRHR Expression to Combat Seizures. J Mol Neurosci 2024; 74:104. [PMID: 39489848 DOI: 10.1007/s12031-024-02245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 07/05/2024] [Indexed: 11/05/2024]
Abstract
With the persistent challenge that epilepsy presents to therapeutic avenues, the study seeks to decipher the effects of the ketogenic diet (KD) on gut microbiota and subsequent epileptic outcomes. Mouse fecal samples from distinct KD and control diet (CD) cohorts underwent 16S rRNA sequencing. Differential genes of epileptic mice under these diets were sourced from the GEO database. The study melded in vivo and in vitro techniques to explore the nuanced interactions between KD, gut microbiota, and hippocampal TRHR dynamics. The KD regimen was found to result in a notable reduction in gut microbiota diversity when compared to the CD groups. Distinctive microbial strains, which are hypothesised to interact with epilepsy through G protein-coupled receptors, were spotlighted. In vivo, explorations affirmed that gut microbiota as central to KD's anti-epileptic efficacy. Of 211 distinguished genes, the neuroactive ligand-receptor interaction pathway was underscored, particularly emphasizing TRHR and TRH. Clinical observations revealed a surge in hippocampal TRHR and TRH expressions influenced by KD, mirroring shifts in neuronal discharges. The KD, leveraging gut microbiota alterations, amplifies hippocampal TRHR expression. This finding provides a novel intervention strategy to reduce seizures.
Collapse
Affiliation(s)
- Wenting Xiong
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xiaohui Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Xin Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Luyan Wu
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
- Fujian Key Laboratory of Molecular Neurology, Fujian Province, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China
| | - Wanhui Lin
- Department of Neurology, Fujian Province, Fujian Medical University Union Hospital, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
- Fujian Key Laboratory of Molecular Neurology, Fujian Province, No. 29, Xinquan Road, Fuzhou, 350001, People's Republic of China.
| |
Collapse
|
7
|
Ma Y, Chen Y, Li L, Wu Z, Cao H, Zhu C, Liu Q, Wang Y, Chen S, Liu Y, Dong W. 2-Bromopalmitate-Induced Intestinal Flora Changes and Testicular Dysfunction in Mice. Int J Mol Sci 2024; 25:11415. [PMID: 39518967 PMCID: PMC11547043 DOI: 10.3390/ijms252111415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
2-Bromopalmitate (2-BP) is a palmitoylation inhibitor that can prevent the binding of palmitic acid to proteins, thereby exhibiting significant effects in promoting inflammation and regulating the immune system. However, limited research has been conducted regarding the direct effects of 2-BP on the animal organism. Therefore, we probed mice injected with 2-BP for altered expression of inflammatory genes, with a focus on demonstrating changes in the intestinal flora as well as damage to the reproductive system. Our findings indicate that 2-BP can induce substantial inflammatory responses in visceral organs and cause testicular dysfunction. The key changes in the gut microbiota were characterized by an abundance of Firmicutes, Clostridiales, Rikenellaceae_RC9_gut_group, Desulfovibrio, Muribaculaceae, and Alistipes, and their metabolism has been intricately linked to visceral inflammation. Overall, the findings of this study provide a sound scientific basis for understanding the impact of high doses of 2-BP in mammals, while also offering crucial support for the development of preclinical models to suppress palmitoylation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, China; (Y.M.); (Y.C.); (L.L.); (Z.W.); (H.C.); (C.Z.); (Q.L.); (Y.W.); (S.C.); (Y.L.)
| |
Collapse
|
8
|
Mao Q, Zhang H, Zhang Z, Lu Y, Pan J, Guo D, Huang L, Tian H, Ma K. Co-decoction of Lilii bulbus and Radix Rehmannia Recens and its key bioactive ingredient verbascoside inhibit neuroinflammation and intestinal permeability associated with chronic stress-induced depression via the gut microbiota-brain axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155510. [PMID: 38696921 DOI: 10.1016/j.phymed.2024.155510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/20/2024] [Accepted: 03/01/2024] [Indexed: 05/04/2024]
Abstract
BACKGROUND Gut microbiota plays a critical role in the pathogenesis of depression and are a therapeutic target via maintaining the homeostasis of the host through the gut microbiota-brain axis (GMBA). A co-decoction of Lilii bulbus and Radix Rehmannia Recens (LBRD), in which verbascoside is the key active ingredient, improves brain and gastrointestinal function in patients with depression. However, in depression treatment using verbascoside or LBRD, mechanisms underlying the bidirectional communication between the intestine and brain via the GMBA are still unclear. PURPOSE This study aimed to examine the role of verbascoside in alleviating depression via gut-brain bidirectional communication and to study the possible pathways involved in the GMBA. METHODS Key molecules and compounds involved in antidepressant action were identified using HPLC and transcriptomic analyses. The antidepressant effects of LBRD and verbascoside were observed in chronic stress induced depression model by behavioural test, neuronal morphology, and synaptic dendrite ultrastructure, and their neuroprotective function was measured in corticosterone (CORT)-stimulated nerve cell injury model. The causal link between the gut microbiota and the LBRD and verbascoside antidepressant efficacy was evaluate via gut microbiota composition analysis and faecal microbiota transplantation (FMT). RESULTS LBRD and Verbascoside administration ameliorated depression-like behaviours and synaptic damage by reversing gut microbiota disturbance and inhibiting inflammatory responses as the result of impaired intestinal permeability or blood-brain barrier leakiness. Furthermore, verbascoside exerted neuroprotective effects against CORT-induced cytotoxicity in an in vitro depression model. FMT therapy indicated that verbascoside treatment attenuated gut inflammation and central nervous system inflammatory responses, as well as eliminated neurotransmitter and brain-gut peptide deficiencies in the prefrontal cortex by modulating the composition of gut microbiota. Lactobacillus, Parabacteroides, Bifidobacterium, and Ruminococcus might play key roles in the antidepressant effects of LBRD via the GMBA. CONCLUSION The current study elucidates the multi-component, multi-target, and multi-pathway therapeutic effects of LBRD on depression by remodeling GMBA homeostasis and further verifies the causality between gut microbiota and the antidepressant effects of verbascoside and LBRD.
Collapse
Affiliation(s)
- Qiancheng Mao
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Hongxiu Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China; Institute of Virology, Jinan Municipal Center for Disease Control and Prevention, Jinan 250021, PR China
| | - Zhe Zhang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Yanting Lu
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Jin Pan
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Dongjing Guo
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Liuxuan Huang
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Haoquan Tian
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China
| | - Ke Ma
- Shandong Co-Innovation Center of Classic TCM Formula, Shandong University of Traditional Chinese Medicine, Jinan, 250355, PR China.
| |
Collapse
|
9
|
Pei Z, Guo X, Zheng F, Yang Z, Li T, Yu Z, Li X, Guo X, Chen Q, Fu C, Tang T, Feng D, Wang Y. Xuefu Zhuyu decoction promotes synaptic plasticity by targeting miR-191a-5p/BDNF-TrkB axis in severe traumatic brain injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155566. [PMID: 38565001 DOI: 10.1016/j.phymed.2024.155566] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/08/2024] [Accepted: 03/22/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Xuefu Zhuyu decoction (XFZYD) is a traditional Chinese herbal formula known for its ability to eliminate blood stasis and improve blood circulation, providing neuroprotection against severe traumatic brain injury (sTBI). However, the underlying mechanism is still unclear. PURPOSE We aim to investigate the neuroprotective effects of XFZYD in sTBI from a novel mechanistic perspective of miRNA-mRNA. Additionally, we sought to elucidate a potential specific mechanism by integrating transcriptomics, bioinformatics, and conducting both in vitro and in vivo experiments. METHODS The sTBI rat model was established, and the rats were treated with XFZYD for 14 days. The neuroprotective effects of XFZYD were evaluated using a modified neurological severity score, hematoxylin and eosin staining, as well as Nissl staining. The anti-inflammatory effects of XFZYD were explored using quantitative real-time PCR (qRT-PCR), Western blot analysis, and immunofluorescence. Next, miRNA sequencing of the hippocampus was performed to determine which miRNAs were differentially expressed. Subsequently, qRT-PCR was used to validate the differentially expressed miRNAs. Target core mRNAs were determined using various methods, including miRNA prediction targets, mRNA sequencing, miRNA-mRNA network, and protein-protein interaction (PPI) analysis. The miRNA/mRNA regulatory axis were verified through qRT-PCR or Western blot analysis. Finally, morphological changes in the neural synapses were observed using transmission electron microscopy and immunofluorescence. RESULTS XFZYD exhibited significant neuroprotective and anti-inflammatory effects on subacute sTBI rats' hippocampus. The analyses of miRNA/mRNA sequences combined with the PPI network revealed that the therapeutic effects of XFZYD on sTBI were associated with the regulation of the rno-miR-191a-5p/BDNF axis. Subsequently, qRT-PCR and Western blot analysis confirmed XFZYD reversed the decrease of BDNF and TrkB in the hippocampus caused by sTBI. Additionally, XFZYD treatment potentially increased the number of synaptic connections, and the expression of the synapse-related protein PSD95, axon-related protein GAP43 and neuron-specific protein TUBB3. CONCLUSIONS XFZYD exerts neuroprotective effects by promoting hippocampal synaptic remodeling and improving cognition during the subacute phase of sTBI through downregulating of rno-miR-191a-5p/BDNF axis, further activating BDNF-TrkB signaling.
Collapse
Affiliation(s)
- Zhuan Pei
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Fei Zheng
- The College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, PR China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Zhe Yu
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xuexuan Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Xin Guo
- The First Affiliated Hospital, Department of Child Healthcare, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Quan Chen
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China
| | - Chunyan Fu
- College of Pharmacy, Shaoyang University, Shaoyang 422100, PR China
| | - Tao Tang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China
| | - Dandan Feng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, PR China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, PR China; NATCM Key Laboratory of TCM Gan, Xiangya Hospital, Central South University, Changsha 410008, PR China; Xiangya Hospital, Central South University, Jiangxi, Nanchang 330004, PR China.
| |
Collapse
|
10
|
Tang L, Liu J, Yang H, Zhao HQ, Hu C, Ma SJ, Qing YH, Yang L, Zhou RR, Zhang SH. Microbiome Metabolomic Analysis of the Anxiolytic Effect of Baihe Dihuang Decoction in a Rat Model of Chronic Restraint Stress. Drug Des Devel Ther 2024; 18:2227-2248. [PMID: 38882046 PMCID: PMC11180446 DOI: 10.2147/dddt.s458983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/03/2024] [Indexed: 06/18/2024] Open
Abstract
Purpose The Baihe Dihuang decoction (BDD) is a representative traditional Chinese medicinal formula that has been used to treat anxiety disorders for thousands of years. This study aimed to reveal mechanisms of anxiolytic effects of BDD with multidimensional omics. Methods First, 28-day chronic restraint stress (CRS) was used to create a rat model of anxiety, and the open field test and elevated plus maze were used to assess anxiety-like behavior. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining, and immunofluorescence staining were used to evaluate inflammatory response. Besides, 16S rRNA gene sequencing assessed fecal microbiota composition and differential microbiota. Non-targeted metabolomics analysis of feces was performed to determine fecal biomarkers, and targeted metabolomics was used to observe the levels of hippocampus neurotransmitters. Finally, Pearson correlation analysis was used to examine relationships among gut microbiota, fecal metabolites, and neurotransmitters. Results BDD significantly improved anxiety-like behaviors in CRS-induced rats and effectively ameliorated hippocampal neuronal damage and abnormal activation of hippocampal microglia. It also had a profound effect on the diversity of microbiota, as evidenced by significant changes in the abundance of 10 potential microbial biomarkers at the genus level. Additionally, BDD led to significant alterations in 18 fecal metabolites and 12 hippocampal neurotransmitters, with the majority of the metabolites implicated in amino acid metabolism pathways such as D-glutamine and D-glutamate, alanine, arginine and proline, and tryptophan metabolism. Furthermore, Pearson analysis showed a strong link among gut microbiota, metabolites, and neurotransmitters during anxiety and BDD treatment. Conclusion BDD can effectively improve anxiety-like behaviors by regulating the gut-brain axis, including gut microbiota and metabolite modification, suppression of hippocampal neuronal inflammation, and regulation of neurotransmitters.
Collapse
Affiliation(s)
- Lin Tang
- Hospital-Made Preparations Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Jian Liu
- Medical Innovation Experiment Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Hui Yang
- Medical Innovation Experiment Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Hong-Qing Zhao
- Science & Technology Innovation Center, Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Chao Hu
- Department of Pharmacy, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Si-Jing Ma
- The Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Yu-Hui Qing
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Lei Yang
- Hospital-Made Preparations Center, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Rong-Rong Zhou
- The Affiliated Hospital, Hunan Academy of Traditional Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| | - Shui-Han Zhang
- Institute of Chinese Medicine Resources, Hunan Academy of Chinese Medicine, Changsha, Hunan Province, People's Republic of China
| |
Collapse
|
11
|
Zhang H, Zhu Y, Zhu G, Yang S. Clinical Efficacy and Mechanistic Insights of Anshen Dingzhi Prescription on Breast Cancer-Related PTSD Through Network Pharmacology and Molecular Docking. Integr Cancer Ther 2024; 23:15347354241285435. [PMID: 39344020 PMCID: PMC11450869 DOI: 10.1177/15347354241285435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 09/18/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
Anshen Dingzhi prescription (ADP) is a classic prescription of traditional Chinese medicine, which has been used in the treatment of neuropsychiatric diseases. However, its treatment of breast cancer-related post-traumatic stress disorder (BC-PTSD) lacks clinical research evidence and its mechanism is not clear. The present study investigated the efficacy and action mechanism of ADP against BC-PTSD. The results of the clinical trial showed that after 4 weeks of treatment, both groups showed reduced post-traumatic stress disorder checklist-civilian version (PCL-C), Pittsburgh sleep quality index (PSQI), self-rating depression scale (SDS) and self-rating anxiety scale (SAS) scores, and increased functional assessment of cancer therapy-breast (FACT-B) scores. The serum cortisol (CORT), tumor necrosis factor-alpha (TNF-α) and interleukin-1 beta (IL-1β) levels were decreased and brain-derived neurotrophic factor (BDNF) level were increased, and the improvement of serum TNF-α, IL-1β, and BDNF in treatment group was better than that of the control group. The overall treatment efficacy in the treatment group (43.90%) was superior to that in the control group (23.81%), and the overall incidence of adverse effects was lower than that in the control group. The results of network analysis and molecular docking showed that ADP blood components could act on IL1B, TNF, and BDNF. ADP contributes to the treatment of BC-PTSD symptoms, with a mechanism possibly related to its regulatory effect on TNF-α, IL-1β, and BDNF levels.Trial registration: Chinese Clinical Trial Registry, http://www.chictr.org.cn,ChiCTR2300077801.
Collapse
Affiliation(s)
- Hao Zhang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
- Anhui University of Chinese Medicine, Hefei, China
| | - Yongfu Zhu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Anhui University of Chinese Medicine, Hefei, China
| | - Shaojie Yang
- The Second Affiliation Hospital of Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|