1
|
Zheng Y, Song B, Lin J, Ma J. Targeting notch1 with berbamine alleviates the inflammatory responses of macrophages in sepsis. Int Immunopharmacol 2025; 161:115033. [PMID: 40489907 DOI: 10.1016/j.intimp.2025.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 06/03/2025] [Accepted: 06/03/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND Sepsis is a life-threatening condition characterized by an excessive inflammatory response and immune dysregulation. Effective treatments remain limited, necessitating the exploration of novel therapeutic agents. Although berbamine (BBM) exhibits notable anti-inflammatory properties, its specific mechanisms and therapeutic potential in sepsis have yet to be elucidated. PURPOSE This study aims to investigate the protective effects of BBM in sepsis models and elucidate its underlying mechanisms, with a focus on immune modulation and the Notch1 signaling pathway. METHODS We employed two murine sepsis models-lipopolysaccharide (LPS)-induced endotoxemia and cecal ligation and puncture (CLP)-induced sepsis-to assess BBM's therapeutic potential. Histopathological and cytokine analyses were performed to evaluate inflammation and lung injury. Flow cytometry was used to examine immune cell development. Additionally, in vitro assays with bone marrow-derived macrophages (BMDMs) were conducted to assess cytokine production. Network pharmacology and cellular thermal shift assays (CETSA) were utilized to identify potential molecular targets, focusing on Notch1 signaling. We also evaluated the effects of BBM on myeloid-specific Notch1 knockout (Notch1MKO) mice. RESULTS BBM significantly improved survival rates and reduced lung inflammation in septic mice. In vitro, BBM inhibited LPS-induced secretion of proinflammatory cytokines (TNF-α, IL-6, and IL-1β) in BMDMs without impairing macrophage differentiation or viability. Network pharmacology analyses identified Notch1 as a potential BBM target, which was validated by CETSA. Mechanistically, BBM accelerated Notch1 degradation via the ubiquitin-proteasome pathway, leading to decreased Notch1 protein levels. Notably, notch1-deficient macrophages exhibited blunted inflammatory responses to LPS, and BBM treatment failed to confer additional suppression, indicating that BBM's anti-septic effects are mediated predominantly through Notch1 inhibition. CONCLUSION BBM exerts a protective effect in sepsis by suppressing inflammation and promoting Notch1 degradation. These findings suggest that BBM may serve as a promising therapeutic agent for sepsis.
Collapse
Affiliation(s)
- Yanjun Zheng
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Bei Song
- Department of General Practice, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingrong Lin
- Department of Cardiovascular Medicine, State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Jian Ma
- Department of Cardiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, No. 600. Yi Shan Road, Shanghai 200233, China..
| |
Collapse
|
2
|
Wang J, Cao Q, Guo S, Li Y, Li G, Yan C, Zheng M, Wang D, Xi X. A Comprehensive Bibliometric Analysis of Brucellosis Research: Insights from CNKI and Web of Science Databases (2014-2023). J Multidiscip Healthc 2025; 18:2921-2939. [PMID: 40443965 PMCID: PMC12120255 DOI: 10.2147/jmdh.s517583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 05/07/2025] [Indexed: 06/02/2025] Open
Abstract
Purpose This study aimed to analyze the current status, research hotspots, and frontiers of brucellosis from 2014 to 2023 using data from China National Knowledge Infrastructure (CNKI) and Web of Science (WoS) via CiteSpace, and to provide new insights for researchers in the field. Material and Methods Articles related to brucellosis published from 2014 to 2023 were retrieved from CNKI and WoS databases. CiteSpace V.6.3.R3 was employed to generate network maps and perform bibliometric analysis. Results A total of 467 references from CNKI and 3686 references from WoS were analyzed. In CNKI, the annual publication trend showed a decline, with Xu Liqing, Ma Li, and Yang Xuxin being the most prolific authors, and the Chinese Center for Disease Control and Prevention being the leading institution. The keyword cluster analysis identified 13 main clusters, while the keyword emergence map highlighted 15 keywords with the strongest emergence intensity. In contrast, WoS displayed an increasing trend in annual publications, with Heinrich Neubauer, Egyptian Knowledge Bank (EKB), and China as the top contributors in terms of authors, institutions, and countries, respectively. "Infection" was the most frequently occurring keyword. WoS analysis revealed 16 primary clusters and 25 keywords with high emergence intensity. Conclusion Between 2014 and 2023, CNKI saw a slight dip in brucellosis studies, while WoS research on it gained growing attention. CNKI literature primarily focuses on epidemiology, clinical manifestations, complications, and diagnostic methods, while WoS literature emphasizes pathogenesis and public health management. Effective prevention and control of brucellosis require interdisciplinary, cross-sectoral, and transnational cooperation.
Collapse
Affiliation(s)
- Jin Wang
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Qing Cao
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Shijun Guo
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Yonglin Li
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Guowei Li
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Chunjiang Yan
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Minan Zheng
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Dawei Wang
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| | - Xiaotu Xi
- Emergency Department, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine(Guangdong Provincial Hospital of Chinese Medicine), Guangzhou, Guangdong, People’s Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, People’s Republic of China
| |
Collapse
|
3
|
Wang Y, Zhang H, Miao C. Unraveling immunosenescence in sepsis: from cellular mechanisms to therapeutics. Cell Death Dis 2025; 16:393. [PMID: 40379629 DOI: 10.1038/s41419-025-07714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/26/2025] [Accepted: 05/02/2025] [Indexed: 05/19/2025]
Abstract
Sepsis is a life-threatening multiple organ dysfunction resulting from a dysregulated host response to infection, and patients with sepsis always exhibit a state of immune disorder characterized by both overwhelming inflammation and immunosuppression. The aging of immune system, namely "immunosenescence", has been reported to be correlated with high morbidity and mortality in elderly patients with sepsis. Initially, immunosenescence was considered as a range of age-related alterations in the immune system. However, increasing evidence has proven that persistent inflammation or even a short-term inflammatory challenge during sepsis could trigger accelerated aging of immune cells, which might further exacerbate inflammatory cytokine storm and promote the shift towards immunosuppression. Thus, premature immunosenescence is found in young sepsis individuals, which further aggravates immune disorders and induces the progression of sepsis. Furthermore, in old sepsis patients, the synergistic effects of both sepsis and aging may cause immunosenescence-associated alterations more significantly, resulting in more severe immune dysfunction and a worse prognosis. Therefore, it is necessary to explore the potential therapeutic strategies targeting immunosenescence during sepsis.
Collapse
Affiliation(s)
- Yanghanzhao Wang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Zhang
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Changhong Miao
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Key laboratory of Perioperative Stress and Protection, Shanghai, China.
- Department of Anesthesiology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Hu Y, Xu Y, Gao J, Ling B, Pan S, Liu S, Hua T, Yang M. Integrated metabolomics and network pharmacology reveal the mechanisms of Xuebijing in counteracting sepsis-induced myocardial dysfunction. JOURNAL OF ETHNOPHARMACOLOGY 2025; 347:119729. [PMID: 40210177 DOI: 10.1016/j.jep.2025.119729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/11/2025] [Accepted: 03/30/2025] [Indexed: 04/12/2025]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xuebijing (XBJ) injection is a Traditional Chinese medicine (TCM) injection extracted and prepared using modern TCM formulation techniques. As a widely used treatment for critically ill patients, XBJ injection has shown significant therapeutic effects in clinical applications in China. It plays an indispensable role in sepsis-induced myocardial dysfunction (SIMD). However, its underlying mechanisms require further investigation. OBJECTIVE This study aims to investigate the cardioprotective effects of XBJ in sepsis and to elucidate its underlying mechanisms. METHODS Network pharmacology was used to predict the potential active components and core targets of XBJ against SIMD. Furthermore, animal models were used to verify its pharmacodynamics. Metabolomics was integrated to track the myocardial tissue metabolites from septic rats. Molecular docking, qRT-PCR, Western blot, and immunofluorescence were performed to investigate the mechanisms of action. RESULTS Network pharmacology predicted that the efficacy of XBJ is attributed to 104 active components and 178 targets. Metabolomics of myocardial tissue from CLP rats revealed that the key metabolic pathways included the tricarboxylic acid (TCA) cycle, pyrimidine metabolism, and purine metabolism. Five core active components of XBJ (quercetin, luteolin, rutin, β-sitosterol, and cryptotanshinone) can modulate interleukin-6 (IL-6), epidermal growth factor receptor (EGFR), B-cell lymphoma 2 (BCL2), peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and hypoxia-inducible factor 1-alpha (HIF-1α). Molecular docking analysis confirmed that the core components of XBJ have a strong affinity for these key targets. Additionally, qRT-PCR, Western blotting, and immunofluorescence results indicated that XBJ can reverse the expression of these targets, ameliorated energy metabolism dysregulation, and alleviated SIMD. CONCLUSION XBJ exerts protective effects in a rat model of sepsis-induced myocardial injury, by modulating energy metabolism pathways that regulate key SIMD-related targets (IL-6, EGFR, BCL2, PGC-1α, and HIF-1α), thereby improving myocardial energy metabolism and alleviating inflammatory responses.
Collapse
Affiliation(s)
- Yan Hu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Yang Xu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Jian Gao
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Bingrui Ling
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Sinong Pan
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Siying Liu
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China
| | - Tianfeng Hua
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China.
| | - Min Yang
- The Second Department of Intensive Care Unit, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China; The Laboratory of Cardiopulmonary Resuscitation and Critical Care Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, People's Republic of China.
| |
Collapse
|
5
|
Pu Z, Li L, Zhang Y, Shui Y, Liu J, Wang X, Jiang X, Zhang L, Yang H. Exploring the therapeutic potential of HAPC in COVID-19-induced acute lung injury. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156563. [PMID: 40023068 DOI: 10.1016/j.phymed.2025.156563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/12/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Acute lung injury (ALI) is one of the critical complications of coronavirus disease 2019 (COVID-19), which significantly impacts the survival of patients. PURPOSE In this study, we screened COVID-19-related target genes and identified and optimized potential drugs targeting these genes for the treatment of COVID-19. STUDY DESIGN In this study, bioinformatic analyses were conducted and subsequently identified and optimized potential drugs targeting these genes for the treatment of COVID-19 were carried out. METHODS Firstly, we analyzed the targets gene in patients with COVID-19 using single-cell data analysis. We performed structural modifications on Chicoric acid (CA) and combined it with hyaluronic acid to enhance the targeted activity towards Cluster of differentiation 44 (CD44). Poly (sodium-p styrenesulfonate) (PSS) was used to form a PSS-coated CA+hyaluronic acid nanocomplex (HA-P). Subsequently, Lactobacillus murinus conidia cell wall (CW) was encapsulated to prepare PSS-coated CA + hyaluronic acid + Lactobacillus murinus conidia cell wall (HAPC) nanocomplexes. RESULTS The expression of APPL1 expression in macrophage of COVID-19 patients was up-regulation. CA was found to bind to the APPL1 protein and inhibit its ubiquitination. HAPC effectively targeted ALI through the highly efficient interaction between CD44 and Hyaluronic acid (HA). HAPC alleviated the symptoms of ALI and restored epithelial function in mice with ALI. HAPC induced the Adaptor protein containing a pH domain, PTB domain and leucine zipper motif 1 (APPL1)/ liver kinase B1 (LKB1)/ AMP-activated protein kinase (AMPK) pathway by inactivating the NOD - like receptor protein 3 (NLRP3) pathway in ALI. CA interacted with the APPL1 protein and prevented its ubiquitination. HAPC facilitated the interaction between APPL1 and LKB1 to induce the AMPK/NLRP3 pathway. It promoted the formation of LKB1 at GLU-67, ARG-72, ARG-314, ASP-316, and GLN-312 and APPL1 at ARG-106, ASP-115, LYS-124, ASN-119, and GLU-120. CONCLUSION Altogether, HAPC nanocomplexes exerted anti-inflammatory effects on ALI by promoting the interaction between APPL1 and LKB1 to induce the AMPK/NLRP3 pathway, and may be one new therapeutic strategie for ALI.
Collapse
Affiliation(s)
- Zhichen Pu
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui 241001, China,; Drug Clinical Evaluation, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China
| | - Lingling Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China
| | - Yan Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China
| | - Yinping Shui
- Wannan Medical College Wuhu 241001, Anhui, PR China
| | - Jun Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China
| | - Xiaohu Wang
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing, Jiangsu 211198, China
| | - Xiaogan Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China,.
| | - Liqin Zhang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui 241001, China,; Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China,.
| | - Hui Yang
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui 241001, China,; Central Laboratory, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China,; Tissue bank of the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui 241001, China; Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China.
| |
Collapse
|
6
|
Yu X, Gao J, Zhang C. Sepsis-induced cardiac dysfunction: mitochondria and energy metabolism. Intensive Care Med Exp 2025; 13:20. [PMID: 39966268 PMCID: PMC11836259 DOI: 10.1186/s40635-025-00728-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Sepsis is a life-threatening multi-organ dysfunction syndrome caused by dysregulated host response to infection, posing a significant global healthcare challenge. Sepsis-induced myocardial dysfunction (SIMD) is a common complication of sepsis, significantly increasing mortality due to its high energy demands and low compensatory reserves. The substantial mitochondrial damage rather than cell apoptosis in SIMD suggests disrupted cardiac energy metabolism as a crucial pathophysiological mechanism. Therefore, we systematically reviewed the mechanisms underlying energy metabolism dysfunction in SIMD, including alterations in myocardial cell energy metabolism substrates, excitation-contraction coupling processes, mitochondrial dysfunction, and mitochondrial autophagy and biogenesis, summarizing potential therapeutic targets within them.
Collapse
Affiliation(s)
- Xueting Yu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Jie Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China
| | - Chunxiang Zhang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China.
- Department of Cardiology, Institute of Cardiovascular Research, the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, Sichuan, China.
- FACC, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
7
|
Jin Y, Fleishman JS, Ma Y, Jing X, Guo Q, Shang W, Wang H. NLRP3 Inflammasome Targeting Offers a Novel Therapeutic Paradigm for Sepsis-Induced Myocardial Injury. Drug Des Devel Ther 2025; 19:1025-1041. [PMID: 39967903 PMCID: PMC11834678 DOI: 10.2147/dddt.s506537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Cardiac or myocardial dysfunction induced by sepsis, known as sepsis-induced cardiomyopathy or sepsis-induced myocardial injury (SIMI), is a common complication of sepsis and is associated with poor outcomes. However, the pathogenesis and molecular mechanisms underlying SIMI remain poorly understood, requiring further investigations. Emerging evidence has shown that NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasomes contribute to SIMI. Compounds that inhibit NLRP3-associated pyroptosis may exert therapeutic effects against SIMI. In this review, we first outlined the principal elements of the NLRP3 signaling cascade and summarized the recent studies highlighting how NLRP3 activation contributes to the pathogenesis of SIMI. We outlined selective small-molecule modulators that function as NLRP3 inhibitors and delineated their mechanisms of action to attenuate SIMI. Finally, we discuss the major limitations of the current therapeutic paradigm and propose possible strategies to overcome them. This review highlights the pharmacological inhibition of SIMI as a promising therapeutic strategy.
Collapse
Affiliation(s)
- Yuzi Jin
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, 11439, USA
| | - Yudong Ma
- Department of Critical Care Medicine, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Xiaoqing Jing
- Department of Pediatrics, Affiliated Hospital of Chengde Medical University, Chengde, Hebei, 067000, People’s Republic of China
| | - Qin Guo
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Weiguang Shang
- Department of Pediatrics, Central Hospital Affiliated to Shenyang Medical College, Shenyang, 110020, People’s Republic of China
| | - Hongquan Wang
- Department of Geriatrics, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, 100049, People’s Republic of China
| |
Collapse
|
8
|
Zhang AY, Su JB, Sun HT, Liu Q, Li R, Zhang Y, Wang Y, Wang MY, Ji LM, Gao SQ, Ding Q, Qiu LY, Jin Y, Sun HJ, Han ZJ, Zhu XX. Stachyose ameliorates myocardial ischemia-reperfusion injury by inhibiting cardiomyocyte ferroptosis and macrophage pyroptosis. Int Immunopharmacol 2024; 143:113334. [PMID: 39383784 DOI: 10.1016/j.intimp.2024.113334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 10/11/2024]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a complex pathological process that results from the restoration of blood flow to ischemic myocardium, leading to a series of detrimental effects including oxidative stress and inflammation. Stachyose, a naturally occurring oligosaccharide found in traditional Chinese medicinal herbs, has been suggested to possess therapeutic properties against various pathological conditions. However, its impact on MIRI and the underlying mechanisms have not been fully elucidated. In this study, we aimed to investigate the therapeutic effects of stachyose on MIRI and to uncover the molecular mechanisms involved. Using both in vivo and in vitro models of MIRI, we evaluated the effects of stachyose on cardiac function and cell death pathways. Our results indicate that stachyose significantly improves cardiac function and reduces infarct size in MIRI mice. Mechanistically, stachyose modulates the ferroptotic pathway in cardiomyocytes by upregulating the expression of glutathione peroxidase 4 (GPX4) and reducing lipid peroxides and iron levels. Additionally, stachyose inhibits the pyroptotic pathway in macrophages by downregulating the expression of NLRP3, gasdermin D (GSMD-N), and cleaved-caspase-1, leading to decreased levels of proinflammatory cytokines interleukin (IL)-1β and IL-18. This study demonstrates that stachyose exerts a protective effect against MIRI by targeting both ferroptosis and pyroptosis pathways, suggesting its potential as a novel therapeutic agent for the treatment of MIRI. Further research is warranted to explore the detailed mechanisms and therapeutic potential of stachyose in clinical settings.
Collapse
Affiliation(s)
- Ao-Yuan Zhang
- Department of Clinical Research Center, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Jia-Bao Su
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - He-Ting Sun
- School of Pharmacy, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Yantai University, Yantai 264005, China
| | - Qiao Liu
- Department of Cardiovascular Medicine, Jiangnan University Medical Center, Wuxi 214002, China
| | - Rui Li
- Department of Clinical Research Center, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yuan Zhang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - Yan Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - Meng-Yuan Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - Le-Ming Ji
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - Sheng-Qi Gao
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - Qi Ding
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - Li-Ying Qiu
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China
| | - Yan Jin
- Department of Cardiovascular Medicine, Jiangnan University Medical Center, Wuxi 214002, China.
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China.
| | - Zhi-Jun Han
- Department of Clinical Research Center, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Xue-Xue Zhu
- Department of Clinical Research Center, Jiangnan University Medical Center (Wuxi No.2 People's Hospital), Wuxi School of Medicine, Jiangnan University, Wuxi, China; Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University Medical Center, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
9
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
10
|
Duan M, Jie J, Li C, Bai X, Hua S, Tang M, Li D. Echinatin alleviates sepsis severity through modulation of the NF-κB and MEK/ERK signaling pathways. Biomed Pharmacother 2024; 179:117359. [PMID: 39236479 DOI: 10.1016/j.biopha.2024.117359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Sepsis, a frequently fatal condition, emerges from an exaggerated inflammatory response to infection, resulting in multi-organ dysfunction and alarmingly high mortality rates. Despite the urgent need for effective treatments, current therapeutic options remain limited to antibiotics, with no other efficacious alternatives available. Echinatin (Ecn), a potent bioactive compound extracted from the roots and rhizomes of licorice, has gained significant attention for its broad pharmacological properties, particularly its ability to combat oxidative stress. Recent research highlights the crucial role that oxidative stress plays in the onset and progression of sepsis further emphasizing the potential therapeutic value of Ecn in this context. In this study, we explored the protective effects of Ecn in a murine model of sepsis induced by cecal ligation and puncture (CLP). Ecn demonstrated a significant reduction in the levels of inflammatory cytokines and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Network pharmacology analysis identified 41 targets and top 15 pathways involved in the Ecn-mediated signaling network, revealing that Ecn might exert its effects through key targets including the NF-κB and MAPK signaling pathways. Molecular docking studies suggested a strong affinity between Ecn and MEK, with kinetic simulations and binding energy calculations confirming a stable interaction. Mechanistically, Ecn treatment inhibited NF-κB and the MEK/ERK signaling pathway, as evidenced by decreased phosphorylation of IκBα and nuclear p65, along with reduced phosphorylation of MEK and ERK in both LPS-stimulated RAW 264.7 macrophages and septic mice. Furthermore, the administration of MEK signaling agonists reversed the anti-inflammatory effects of Ecn, indicating the involvement of this signaling pathway in Ecn's protective mechanism. Notably, our investigation revealed that Ecn did not affect bacterial proliferation either in vivo or in vitro, underscoring its specific immunomodulatory effects rather than direct antimicrobial activity. In summation, our findings underscored the potential of Ecn as an innovative therapeutic remedy for sepsis-induced injury, particularly through the regulation of the NF-κB and MEK/ERK signaling pathway. This exploration unveiled a promising therapeutic approach for treating sepsis, supplementing existing interventions and addressing their constraints.
Collapse
Affiliation(s)
- Meina Duan
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Jing Jie
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Chunxiuli Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaoxue Bai
- Department of General Practice, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shucheng Hua
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, China.
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun 130021, China.
| | - Dan Li
- Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Yang Z, Gao Y, Zhao L, Lv X, Du Y. Molecular mechanisms of Sepsis attacking the immune system and solid organs. Front Med (Lausanne) 2024; 11:1429370. [PMID: 39267971 PMCID: PMC11390691 DOI: 10.3389/fmed.2024.1429370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024] Open
Abstract
Remarkable progress has been achieved in sepsis treatment in recent times, the mortality rate of sepsis has experienced a gradual decline as a result of the prompt administration of antibiotics, fluid resuscitation, and the implementation of various therapies aimed at supporting multiple organ functions. However, there is still significant mortality and room for improvement. The mortality rate for septic patients, 22.5%, is still unacceptably high, accounting for 19.7% of all global deaths. Therefore, it is crucial to thoroughly comprehend the pathogenesis of sepsis in order to enhance clinical diagnosis and treatment methods. Here, we summarized classic mechanisms of sepsis progression, activation of signal pathways, mitochondrial quality control, imbalance of pro-and anti- inflammation response, diseminated intravascular coagulation (DIC), cell death, presented the latest research findings for each mechanism and identify potential therapeutic targets within each mechanism.
Collapse
Affiliation(s)
- Zhaoyun Yang
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Yan Gao
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biomedical Sciences, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Lijing Zhao
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| | - Xuejiao Lv
- Department of Respiratory and Critical Care Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yanwei Du
- Department of Rehabilitation, School of Nursing, Jilin University, Changchun, China
| |
Collapse
|
12
|
Zhang Z, Yang Z, Wang S, Wang X, Mao J. Decoding ferroptosis: Revealing the hidden assassin behind cardiovascular diseases. Biomed Pharmacother 2024; 176:116761. [PMID: 38788596 DOI: 10.1016/j.biopha.2024.116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/09/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
The discovery of regulatory cell death processes has driven innovation in cardiovascular disease (CVD) therapeutic strategies. Over the past decade, ferroptosis, an iron-dependent form of regulated cell death driven by excessive lipid peroxidation, has been shown to drive the development of multiple CVDs. This review provides insights into the evolution of the concept of ferroptosis, the similarities and differences with traditional modes of programmed cell death (e.g., apoptosis, autophagy, and necrosis), as well as the core regulatory mechanisms of ferroptosis (including cystine/glutamate transporter blockade, imbalance of iron metabolism, and lipid peroxidation). In addition, it provides not only a detailed review of the role of ferroptosis and its therapeutic potential in widely studied CVDs such as coronary atherosclerotic heart disease, myocardial infarction, myocardial ischemia/reperfusion injury, heart failure, cardiomyopathy, and aortic aneurysm but also an overview of the phenomenon and therapeutic perspectives of ferroptosis in lesser-addressed CVDs such as cardiac valvulopathy, pulmonary hypertension, and sickle cell disease. This article aims to integrate this knowledge to provide a comprehensive view of ferroptosis in a wide range of CVDs and to drive innovation and progress in therapeutic strategies in this field.
Collapse
Affiliation(s)
- Zeyu Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhihua Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China; Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shuai Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Xianliang Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Jingyuan Mao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
13
|
Ruan H, Zhang Q, Zhang YP, Li SS, Ran X. Unraveling the role of HIF-1α in sepsis: from pathophysiology to potential therapeutics-a narrative review. Crit Care 2024; 28:100. [PMID: 38539163 PMCID: PMC10976824 DOI: 10.1186/s13054-024-04885-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis is characterized by organ dysfunction resulting from a dysregulated inflammatory response triggered by infection, involving multifactorial and intricate molecular mechanisms. Hypoxia-inducible factor-1α (HIF-1α), a notable transcription factor, assumes a pivotal role in the onset and progression of sepsis. This review aims to furnish a comprehensive overview of HIF-1α's mechanism of action in sepsis, scrutinizing its involvement in inflammatory regulation, hypoxia adaptation, immune response, and organ dysfunction. The review encompasses an analysis of the structural features, regulatory activation, and downstream signaling pathways of HIF-1α, alongside its mechanism of action in the pathophysiological processes of sepsis. Furthermore, it will delve into the roles of HIF-1α in modulating the inflammatory response, including its association with inflammatory mediators, immune cell activation, and vasodilation. Additionally, attention will be directed toward the regulatory function of HIF-1α in hypoxic environments and its linkage with intracellular signaling, oxidative stress, and mitochondrial damage. Finally, the potential therapeutic value of HIF-1α as a targeted therapy and its significance in the clinical management of sepsis will be discussed, aiming to serve as a significant reference for an in-depth understanding of sepsis pathogenesis and potential therapeutic targets, as well as to establish a theoretical foundation for clinical applications.
Collapse
Affiliation(s)
- Hang Ruan
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Zhang
- Department of Anesthesiology, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - You-Ping Zhang
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shu-Sheng Li
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiao Ran
- Department of Critical-Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Ave, Wuhan, 430030, People's Republic of China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|