1
|
Cardoso CL, May CE, Leask R. Evidence-based guidelines for the post-fire assessment of domestic ruminants: a scoping review. BMC Vet Res 2025; 21:223. [PMID: 40165281 PMCID: PMC11956198 DOI: 10.1186/s12917-025-04666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
Wildfires globally impact farmers, with risk expected to rise in the next thirty years. Beyond fatalities, wildfires impair the reproductive capabilities of surviving livestock due to smoke exposure. Effective interventions require considering animal welfare, prognosis, and costs. Enhanced clinical assessment is crucial. There is a paucity of data concerning decision-making processes regarding burn injuries in livestock. This study establishes evidence-based guidelines for wildfire-affected ruminants in field settings. The goal is categorizing scientific evidence to create prognostic guidelines. English and Spanish publications from Web of Science, Medline, and Google Scholar were searched using keywords related to burn injuries, disaster management, and animal welfare. A research matrix was populated based on inclusion criteria and evidence strength, leading to the development of visual triage guidelines for sheep and cattle. Most evidence comprises case reports (expert opinion) and observational trials. Ovine controlled trials in the 80 s and 90 s significantly advanced burn injury understanding in humans and animals. Key clinical factors determining burn severity include burn extent and depth, anatomic location, and smoke inhalation. Core non-clinical factors implicated in decision-making include feed, water, and shelter, amongst others. Animal categorization by burn severity creates a model for prioritising resources towards animals with the best recovery chances, protecting animal welfare.
Collapse
Affiliation(s)
- Claudia L Cardoso
- Ruminant Health and Production Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa.
| | - Catherine E May
- Clinical Skills Laboratory, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Rhoda Leask
- Ruminant Health and Production Section, Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
2
|
Roman B, Gallagher C, Beierschmitt A, Hooper S. Investigating Stress and Coping Behaviors in African Green Monkeys ( Chlorocebus aethiops sabaeus) Through Machine Learning and Multivariate Generalized Linear Mixed Models. Vet Sci 2025; 12:209. [PMID: 40266911 PMCID: PMC11946624 DOI: 10.3390/vetsci12030209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 04/25/2025] Open
Abstract
Integrating behavioral and physiological assessment is critical to improve our ability to assess animal welfare in biomedical settings. Hair, blood, and saliva samples were collected from 40 recently acquired male African green monkeys (AGMs) to analyze concentrations of hair cortisol, plasma β-endorphin, and lysozyme alongside focal behavioral observations. The statistical methodology utilized machine learning and multivariate generalized linear mixed models to find associations between behaviors and fluctuations of cortisol, lysozyme, and β-endorphin concentrations. The study population was divided into two groups to assess the effectiveness of an enrichment intervention, though the hair cortisol results revealed no difference between the groups. The principal component analysis (PCA) with a Bayesian mixed model analysis reveals several significant patterns in specific behaviors and physiological responses, highlighting the need for further research to deepen our understanding of how behaviors correlate with animal welfare. This study's methodology demonstrates a more refined approach to interpreting these behaviors that can help improve animal welfare and inform the development of better management practices.
Collapse
Affiliation(s)
- Brittany Roman
- Center for Conservation Medicine and Ecosystem Health, Ross University School of Veterinary Medicine, Basseterre KN 0101, Saint Kitts and Nevis
| | - Christa Gallagher
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre KN 0101, Saint Kitts and Nevis
| | - Amy Beierschmitt
- Department of Clinical Sciences, Ross University School of Veterinary Medicine, Basseterre KN 0101, Saint Kitts and Nevis
- Behavioural Science Foundation, Basseterre KN 0101, Saint Kitts and Nevis
| | - Sarah Hooper
- Department of Biomedical Sciences, Ross University School of Veterinary Medicine, Basseterre KN 0101, Saint Kitts and Nevis
| |
Collapse
|
3
|
Giske J, Dumitru ML, Enberg K, Folkedal O, Handeland SO, Higginson AD, Opdal AF, Rønnestad I, Salvanes AGV, Vollset KW, Zennaro FM, Mangel M, Budaev S. Premises for digital twins reporting on Atlantic salmon wellbeing. Behav Processes 2025; 226:105163. [PMID: 39909180 DOI: 10.1016/j.beproc.2025.105163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 02/01/2025] [Accepted: 02/01/2025] [Indexed: 02/07/2025]
Abstract
Many species of fish, birds and mammals commonly live in human captivity; Atlantic salmon Salmo salar is one of them. The international legal status of the welfare of captive animals is slowly developing and still requires rigorous specification. For example, even though fish have complex cognition and elements of sentience, The United Nations' animal welfare principles still take a functional health-centred perspective overlooking the cognitive-affective component. Wellbeing problems remain a major source of slow growth and high mortality in intensive aquaculture of Atlantic salmon. The value system for decision making in vertebrates is based on expectations of emotional wellbeing for the options available and is linked with the individual's assessment of its future. We propose a new approach for monitoring and improving the welfare of salmon (or any other captive or wild vertebrate) based on modelling the salmon's wellbeing system by digital twins, which are simulation models that implement major bodily mechanisms of the organism. Indeed, predictions on boredom, stress and wellbeing can all be captured by a computational evolutionary model of the factors underlying behaviour. We explain how such an agent-based model of salmon digital twins can be constructed by modelling a salmon's subjective wellbeing experience along with prediction of its near future and allostasis (the bodily preparation for the expected near future). We attempt to identify the building blocks required in digital twin models to deliver early warnings about escalating issues that could eventually lead to negative effects on salmon health in aquaculture. These models would provide critical insights for optimizing production processes and could significantly reduce the reliance on animal experiments. Overall, reports of a population of digital twins could support the implementation of 3Rs - replacement, reduction, refinement - by offering actionable information to fish farmers as well as consumers, voters, politicians and regulators on relevant issues as well as guide experimental work on animal wellbeing across species.
Collapse
Affiliation(s)
- Jarl Giske
- Department of Biological Sciences, University of Bergen, Bergen, Norway.
| | - Magda L Dumitru
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
| | - Katja Enberg
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ole Folkedal
- Animal Welfare Research Group, Institute of Marine Research, Bergen, Norway
| | | | - Andrew D Higginson
- Centre for Research in Animal Behaviour, Faculty of Health and Life Sciences, University of Exeter, Exeter EX4 4QG, UK
| | - Anders F Opdal
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Ivar Rønnestad
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | | | - Knut Wiik Vollset
- Department of Climate & Environment, NORCE Norwegian Research Centre, Bergen, Norway
| | - Fabio M Zennaro
- Department of Informatics, University of Bergen, Bergen, Norway
| | - Marc Mangel
- Department of Biological Sciences, University of Bergen, Bergen, Norway; Department of Applied Mathematics, University of California, Santa Cruz, USA
| | - Sergey Budaev
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| |
Collapse
|
4
|
Meijboom FLB, Bovenkerk B. Fish resilience as an ethical issue. JOURNAL OF FISH BIOLOGY 2025; 106:6-11. [PMID: 39425614 PMCID: PMC11758194 DOI: 10.1111/jfb.15973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 10/04/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024]
Abstract
Fish resilience can be understood as the capacity of fish to successfully respond to a challenge so that they are able to function and flourish in much the same way as they did prior to the occurrence of the challenge. Resilience is a function not only of individual fish, but also of a whole fish population. Enhancing the resilience of fish requires both adapting the robustness of the animals and adapting the (production) environment to the specific needs of the fish. Rather than a mere biological capacity of fish, resilience also comes with ethical questions. These questions occur at four levels. First, in practice resilience often comes with a "rhetoric" of optimalization. The view that aquaculture that strives for resilient fish is good for both fish welfare and production is inherently normative. It assumes a 'win-win situation', but thereby makes certain normative assumptions. Second, especially when the win-win situation is not achievable, resilience means making trade-offs between preferred responses to challenges from the perspective of individual animals and groups or between individual housing and larger aquaculture systems. Third, the discussions on resilience and fish demonstrate the need to move beyond an animal welfare framework when discussing the treatment of fish in aquaculture. Recently, animal ethics has seen a turn towards centering animals' own agency. This means that we should not only focus on improving animal welfare, but also on asking what the animals themselves want and how they can be given more control over their situation. This may also impact the definition of resilience and how it is made operational. Finally, the use of the concept of resilience may reveal a certain moral outlook with regard to fish. On the one hand, resilience is portrayed as a positive characteristic of animals that enables improvement of the quality of life of fish. At the same time, it raises the question of how far we should stretch the "manufacturability" of fish. When we physically adapt animals so that they can cope with difficult circumstances we may be stretching moral boundaries. For example, this raises the objection that we are instrumentalizing animals. In this article, we reflect on these types of ethical issues and aim to show that the ethical dimensions of resilience need to be taken into account by professionals in aquaculture in order to make resilience operational and to contribute to a responsible interaction with fish in aquaculture.
Collapse
Affiliation(s)
- Franck L. B. Meijboom
- Faculty of Veterinary Medicine, Centre for Sustainable Animal Stewardship, Department of Population Health ScienceUtrecht UniversityUtrechtThe Netherlands
| | - Bernice Bovenkerk
- Wageningen University and Research, Philosophy GroupWageningenThe Netherlands
| |
Collapse
|
5
|
Boileau A, Blais J, Van Bressem MF, Hunt KE, Ahloy-Dallaire J. Physical Measures of Welfare in Fin ( Balaenoptera physalus) and Humpback Whales ( Megaptera novangliae) Found in an Anthropized Environment: Validation of a First Animal-Based Indicator in Mysticetes. Animals (Basel) 2024; 14:3519. [PMID: 39682484 DOI: 10.3390/ani14233519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/23/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Anthropogenic activities impacting marine environments are internationally recognized as welfare issues for wild cetaceans. This study validates a first evidence-based physical indicator for the welfare assessment protocol of humpback (n = 50) and fin whales (n = 50) living in a highly anthropized environment. Visual assessments of body condition, skin health, prevalence of injuries and parasite/epibiont loads were performed using a species-specific multi-scale measuring tool. A total of 6403 images were analyzed (fin, n = 3152; humpback, n = 3251) and results were validated through reliability and positive discrimination statistical tests. Based on physical measures, welfare assessment results showed that 60% of humpback whales were considered in a good welfare state compared to only 46% of fin whales. Significant relationships were observed in both species, between environmental parameters like dissolved oxygen levels, and prevalence of cutaneous lesions like pale skin patch syndrome. Furthermore, animals with injuries due to anthropogenic activities were more likely to be in poorer body condition, suggesting chronic stress affecting welfare.
Collapse
Affiliation(s)
- Anik Boileau
- Faculté des Sciences Animales, Université Laval, Québec, QC G1V 0A6, Canada
- Centre d'Éducation et de Recherche de Sept-Îles, Sept-Îles, QC G4R 2Y8, Canada
| | - Jonathan Blais
- Centre d'Éducation et de Recherche de Sept-Îles, Sept-Îles, QC G4R 2Y8, Canada
| | - Marie-Françoise Van Bressem
- Cetacean Conservation Medicine Group, Peruvian Centre for Cetacean Research, Museo de Delfines, Lima 20, Peru
- ProDelphinus, Miraflores, Lima 18, Peru
| | - Kathleen E Hunt
- Department of Biology, Smithsonian-Mason School of Conservation, George Mason University, 1500 Remount Rd, Front Royal, VA 22630, USA
| | | |
Collapse
|
6
|
Hillerer KM, Gimsa U. Adult neurogenesis and the microbiota-gut-brain axis in farm animals: underestimated and understudied parameters for improving welfare in livestock farming. Front Neurosci 2024; 18:1493605. [PMID: 39664450 PMCID: PMC11631930 DOI: 10.3389/fnins.2024.1493605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/05/2024] [Indexed: 12/13/2024] Open
Abstract
Welfare in commercial livestock farming is becoming increasingly important in current agriculture research. Unfortunately, there is a lack of understanding about the neuronal mechanisms that underlie well-being on an individual level. Neuroplasticity in the hippocampus, the subventricular zone (SVZ), the olfactory bulb (OB) and the hypothalamus may be essential regulatory components in the context of farm animal behaviour and welfare that may be altered by providing environmental enrichment (EE). The importance of pre-and probiotics as a form of EE and the microbiota-gut-brain axis (MGBA) has come under the spotlight in the last 20 years, particularly in the contexts of research into stress and of stress resilience. However, it could also be an important regulatory system for animal welfare in livestock farming. This review aims to present a brief overview of the effects of EE on physiology and behaviour in farm animals and briefly discusses literature on behavioural flexibility, as well as inter-individual stress-coping styles and their relationship to animal welfare. Most importantly, we will summarise the literature on different forms of neural plasticity in farm animals, focusing on neurogenesis in various relevant brain regions. Furthermore, we will provide a brief outlook connecting these forms of neuroplasticity, stress, EE, the MGBA and welfare measures in modern livestock farming, concentrating on pigs.
Collapse
Affiliation(s)
- Katharina M. Hillerer
- Research Institute for Farm Animal Biology (FBN), Dummerstorf, Mecklenburg-Vorpommern, Germany
| | | |
Collapse
|
7
|
Wijffels G, Lees AM, Sullivan ML, Sammes SL, Li Y, Gaughan JB. Allostasis as a consequence of high heat load in grain-fed feedlot cattle. Transl Anim Sci 2024; 8:txae133. [PMID: 39387096 PMCID: PMC11462089 DOI: 10.1093/tas/txae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 08/31/2024] [Indexed: 10/12/2024] Open
Abstract
Heat wave intensity, frequency, and duration are increasing in many regions of the world, including locations where highly productive livestock are raised. There are animal health and welfare, as well as economic impacts from these events. In this study, the physiological responses of grain-fed steers during a high heat load challenge through to recovery in climate-controlled rooms (CCR) were intensively evaluated. Two cohorts of 12 Black Angus steers (BW, 615.4 ± 40.1 kg) sequentially underwent a simulated heatwave event that consisted of 3 phases in the CCR: PreChallenge (5 d duration and temperature humidity index (THI) range of 65 to 71), Challenge (7-d duration and THI 66 to 95 with diurnal cycling), and Recovery (5 d duration and THI 65 to 70). The Challenge period was modeled on a severe heat wave, characterized by 3 very hot days. Individual rumen temperature (RumT, °C) was collected every 10 min, and respiration rate (RR, breaths per minute), panting score (PS), and water usage (L·steer-1·day-1) were obtained at multiple time points daily, by trained observers. Individual animal daily DMI was also determined. Morning (0700 hours) rectal temperature (RecT, °C) was measured on days 3, 5, 7 to 13, 15, and 17. Not unexpectedly, RumT, RecT, RR, and PS rose during Challenge and fell rapidly as conditions eased. Conversely, DMI was reduced during Challenge. During the transition between PreChallenge and Challenge, there were abrupt increases in RumT, and RR. It was also very apparent that during Recovery the steers did not return to the baseline PreChallenge state. Compared to PreChallenge, Recovery was characterized by persistent lowered daily mean RumT (P = 0.0010), RecT (P = 0.0922), RR (P = 0.0257), PS (P ≤ 0.0001), and DMI (P ≤ 0.0001). These results provide evidence that these steers have undergone an allostatic response in response to high heat load, and the new adjusted physiological state post-heat event may not be transient.
Collapse
Affiliation(s)
- Gene Wijffels
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - Angela M Lees
- School of Agriculture and Food Sustainability, Animal Science Group, The University of Queensland, Gatton, QLD 4343, Australia
| | - Megan L Sullivan
- School of Agriculture and Food Sustainability, Animal Science Group, The University of Queensland, Gatton, QLD 4343, Australia
| | - Stephanie L Sammes
- School of Agriculture and Food Sustainability, Animal Science Group, The University of Queensland, Gatton, QLD 4343, Australia
| | - Yutao Li
- CSIRO Agriculture and Food, St Lucia, QLD 4067, Australia
| | - John B Gaughan
- School of Agriculture and Food Sustainability, Animal Science Group, The University of Queensland, Gatton, QLD 4343, Australia
| |
Collapse
|
8
|
Oh S, Lee S. Fish Welfare-Related Issues and Their Relevance in Land-Based Olive Flounder ( Paralichthys olivaceus) Farms in Korea. Animals (Basel) 2024; 14:1693. [PMID: 38891740 PMCID: PMC11171225 DOI: 10.3390/ani14111693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/21/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Korean aquaculture has expanded considerably in recent decades; however, this growth has often prioritized quantity over fish welfare. Therefore, we analyzed the aquaculture practices of olive flounder, the predominant species in Korean consumption and production, within the framework of fish welfare. We conducted extensive interviews and surveys across olive flounder farms in Jeju-do and Wando to examine prevalent issues impacting fish welfare in aquaculture. These issues include stressors, mass mortality events, and disease outbreaks, all of which strain the welfare of farmed fish. Moreover, our survey revealed farmers' varying perceptions of fish welfare, highlighting the necessity for a cohesive approach. Accordingly, we propose recommendations to enhance fish welfare and establish a more sustainable aquaculture model in Korea. Ensuring fish welfare in aquaculture operations requires a comprehensive approach that considers the physiological and behavioral needs of fish throughout the farming lifecycle. By prioritizing fish welfare, Korean aquaculture can strengthen its growth while maintaining ethical standards and ensuring the well-being of farmed fish. This welfare-centric approach is crucial for the long-term sustainability and resilience of the Korean aquaculture industry. By addressing welfare concerns and promoting responsible practices, Korean aquaculture can foster an ethically sound and sustainable future.
Collapse
Affiliation(s)
- Seoyeon Oh
- Fisheries Policy Research Department, The Korean Maritime Institute Busan, Busan 49111, Republic of Korea;
| | - Seunghyung Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
9
|
Ghimire R, Brown JL, Thitaram C, Bansiddhi P. Comparison of animal welfare assessment tools and methodologies: need for an effective approach for captive elephants in Asia. Front Vet Sci 2024; 11:1370909. [PMID: 38532794 PMCID: PMC10964907 DOI: 10.3389/fvets.2024.1370909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Welfare is a fundamental aspect of animal management and conservation. In light of growing public awareness and welfare concerns about captive elephants, there is an urgent need for comprehensive, globally coordinated efforts for Asian elephants (Elephas maximus) that participate in religious, logging, or tourist activities in range countries where the majority reside, and where welfare issues have been identified but not addressed. This review provides a comparative analysis of available animal assessment tools. Each offers distinct features for assessment that allow institutions to select criteria for specific needs and available resources. Most are applied to general animal welfare assessments, although some are tailored to particular species, including elephants. The tools span diverse formats, from digital to primarily paper-based assessments. Assessments operate at individual and institutional levels and across multiple welfare domains. Methodologies rely on keeper ratings or expert evaluations, incorporate numerical scoring and Likert scales for welfare grading, and encompass inputs including behaviors, health, and physiological indicators. For tourist camp elephants, one challenge is that the tools were developed in zoos, which may or may not have application to non-zoological settings. Digital tools and assessment methodologies such as keeper ratings face logistical challenges when applied across tourist venues. As with any tool, reliability, validity, and repeatability are essential and must address the unique welfare challenges of diverse captive settings. We propose that a holistic, context-specific, evidence-based, and practical tool be developed to ensure high elephant welfare standards in non-zoological facilities throughout Asia.
Collapse
Affiliation(s)
- Raman Ghimire
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Janine L. Brown
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
- Center for Species Survival, Smithsonian Conservation Biology Institute, Front Royal, VA, United States
| | - Chatchote Thitaram
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
| | - Pakkanut Bansiddhi
- Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Elephant and Wildlife Health, Chiang Mai University Animal Hospital, Chiang Mai, Thailand
- Elephant, Wildlife, and Companion Animals Research Group, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
10
|
Powell DM, Beetem D, Breitigan R, Eyres A, Speeg B. A perspective on ungulate management and welfare assessment across the traditional zoo to large landscape spectrum. Zoo Biol 2024; 43:5-14. [PMID: 37171165 DOI: 10.1002/zoo.21772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 01/23/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
Wild ungulates are managed in human care in a range of settings from traditional zoos to large ranches. These varied settings present different portfolios of risks for good or poor welfare, which leads some to question whether a particular setting is "good for welfare" and have frustrated others interested in comparing the welfare of ungulates across these settings. Differing housing and management scenarios present different challenges and opportunities in terms of welfare but this commentary posits that good welfare is possible in all of these settings. In this commentary, we also consider natural behaviors that may, at face value, compromise welfare and discuss how taking a long view on welfare addresses concerns about these behaviors, in part using arguments related to normal behavioral development that likely improves welfare at other life stages. We also highlight the role of motivation in seemingly welfare-compromising behaviors. Finally, some indicators of welfare that we believe transcend management scenarios, and are thus able to be compared across scenarios, are suggested.
Collapse
Affiliation(s)
- David M Powell
- Department of Reproductive and Behavioral Sciences, Saint Louis Zoo, Saint Louis, Missouri, USA
| | | | | | - Adam Eyres
- Fossil Rim Wildlife Center, Glen Rose, Texas, USA
| | | |
Collapse
|
11
|
Costa EDO, Gordiano LA, Ferreira FG, Santos SA, de Carvalho GGP, de Araújo MLGML, Tosto MSL. Thermography as an indicator of goat welfare in an intensive production system. Trop Anim Health Prod 2023; 55:373. [PMID: 37874396 DOI: 10.1007/s11250-023-03791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 10/10/2023] [Indexed: 10/25/2023]
Abstract
This study evaluated the welfare of Saanen, Moxoto, and Anglo-Nubian goats kept in collective or individual pens for a feedlot system, evaluated with infrared thermography. A total of twenty-four goats were used, eight for each breed. Animals were distributed in a completely randomized design, with a 2 × 3 factorial with two fixed effects: housing type (collective or individual pens) and breed (Moxoto, Saanen, and Anglo-Nubian). The surface temperature was evaluated using an infrared thermographic camera, and behavioral analysis was based on the qualitative behavior assessment using a fixed list of descriptors. The breed was not different for all behavior evaluations and surface temperature (p>0.05). There was a difference between the housing types, where the collective pens showed goats more agitated, frustrated, and sociable (p<0.05). There was an influence of agitated, apathetic, frustrated, attentive, and curious behaviors on surface temperatures, in which feet and body temperatures decreased in these goats. (p<0.05). Moxoto, Anglo-Nubian, and Saanen goats showed similar behavior even when kept in collective or individual pens. Individual pens can restrict the goats' social relationships but reduce negative behaviors such as irritation and frustration. The lower foot temperatures of feedlot goats are related to the attention behavior in 86.75% of the observations.
Collapse
Affiliation(s)
- Eduardo de O Costa
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Layse A Gordiano
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Fernanda G Ferreira
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | - Stefanie A Santos
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil
| | | | | | - Manuela S L Tosto
- School of Veterinary Medicine and Animal Science, Federal University of Bahia (UFBA), Salvador, Brazil.
- Department of Animal Science, School of Veterinary Medicine and Animal Science/Federal University of Bahia, Salvador, Bahia, 40.170-110, Brazil.
| |
Collapse
|
12
|
Manteuffel C, Spitschak M, Ludwig C, Wirthgen E. New Perspectives In The Objective Evaluation Of Animal Welfare, With Focus On The Domestic Pig. J APPL ANIM WELF SCI 2023; 26:518-529. [PMID: 34727795 DOI: 10.1080/10888705.2021.1998774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Animal welfare can be viewed as the result of integrating repeated affective evaluations of success in coping with environmental challenges, i.e., subjective challenge adequacy. The present work summarizes why established physiological and behavioral welfare parameters are inadequate to assess challenge adequacy. Behavioral tests based on the mood-congruent judgment effect and physiologic parameters based on components of the somatotropic axis are proposed as an alternative. Here, the judgment bias measures an animal's subjective confidence to cope successfully with a challenge, which is in turn modulated by the animal's previous experience. The somatotropic axis incorporates the insulin-like growth factor (IGF) and its binding proteins (IGFBP), which are involved in the regulation of metabolism and growth. First results indicate that in particular IGF-1 and IGFBP-3 react with higher latency and higher inertness to short-term stressful events than established physiological stress parameters. Before these indicators can be utilized for overall welfare assessment, further validation studies are necessary that provide more insights into how repeatable the measurements are under different conditions and which other factors may confound the measures.
Collapse
Affiliation(s)
- Christian Manteuffel
- Leibniz Institute of Farm Animal Biology, Institute of Behavioural Physiology, Ethology Unit, Dummerstorf, Germany
- Department of Mucosal Immunity, Rostock University Medical Center, Rostock, Germany
| | - Marion Spitschak
- Leibniz Institute of Farm Animal Biology, Institute of Genome Biology, Signal Transduction Unit, Dummerstorf, Germany
| | - Carolin Ludwig
- Leibniz Institute of Farm Animal Biology,Institute of Reproductive Biology, Reproductive Biochemistry Unit, Dummerstorf, Germany
| | - Elisa Wirthgen
- Leibniz Institute of Farm Animal Biology, Institute of Genome Biology, Signal Transduction Unit, Dummerstorf, Germany
| |
Collapse
|
13
|
Gaffney LP, Lavery JM, Schiestl M, Trevarthen A, Schukraft J, Miller R, Schnell AK, Fischer B. A theoretical approach to improving interspecies welfare comparisons. FRONTIERS IN ANIMAL SCIENCE 2023. [DOI: 10.3389/fanim.2022.1062458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The number of animals bred, raised, and slaughtered each year is on the rise, resulting in increasing impacts to welfare. Farmed animals are also becoming more diverse, ranging from pigs to bees. The diversity and number of species farmed invite questions about how best to allocate currently limited resources towards safeguarding and improving welfare. This is of the utmost concern to animal welfare funders and effective altruism advocates, who are responsible for targeting the areas most likely to cause harm. For example, is tail docking worse for pigs than beak trimming is for chickens in terms of their pain, suffering, and general experience? Or are the welfare impacts equal? Answering these questions requires making an interspecies welfare comparison; a judgment about how good or bad different species fare relative to one another. Here, we outline and discuss an empirical methodology that aims to improve our ability to make interspecies welfare comparisons by investigating welfare range, which refers to how good or bad animals can fare. Beginning with a theory of welfare, we operationalize that theory by identifying metrics that are defensible proxies for measuring welfare, including cognitive, affective, behavioral, and neuro-biological measures. Differential weights are assigned to those proxies that reflect their evidential value for the determinants of welfare, such as the Delphi structured deliberation method with a panel of experts. The evidence should then be reviewed and its quality scored to ascertain whether particular taxa may possess the proxies in question to construct a taxon-level welfare range profile. Finally, using a Monte Carlo simulation, an overall estimate of comparative welfare range relative to a hypothetical index species can be generated. Interspecies welfare comparisons will help facilitate empirically informed decision-making to streamline the allocation of resources and ultimately better prioritize and improve animal welfare.
Collapse
|
14
|
Tiemann I, Fijn LB, Bagaria M, Langen EMA, van der Staay FJ, Arndt SS, Leenaars C, Goerlich VC. Glucocorticoids in relation to behavior, morphology, and physiology as proxy indicators for the assessment of animal welfare. A systematic mapping review. Front Vet Sci 2023; 9:954607. [PMID: 36686168 PMCID: PMC9853183 DOI: 10.3389/fvets.2022.954607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
Translating theoretical concepts of animal welfare into quantitative assessment protocols is an ongoing challenge. Glucocorticoids (GCs) are frequently used as physiological measure in welfare assessment. The interpretation of levels of GCs and especially their relation to welfare, however, is not as straightforward, questioning the informative power of GCs. The aim of this systematic mapping review was therefore to provide an overview of the relevant literature to identify global patterns in studies using GCs as proxy for the assessment of welfare of vertebrate species. Following a systematic protocol and a-priory inclusion criteria, 509 studies with 517 experiments were selected for data extraction. The outcome of the experiments was categorized based on whether the intervention significantly affected levels of GCs, and whether these effects were accompanied by changes in behavior, morphology and physiology. Additional information, such as animal species, type of intervention, experimental set up and sample type used for GC determination was extracted, as well. Given the broad scope and large variation in included experiments, meta-analyses were not performed, but outcomes are presented to encourage further, in-depth analyses of the data set. The interventions did not consistently lead to changes in GCs with respect to the original authors hypothesis. Changes in GCs were not consistently paralleled by changes in additional assessment parameter on behavior, morphology and physiology. The minority of experiment quantified GCs in less invasive sample matrices compared to blood. Interventions showed a large variability, and species such as fish were underrepresented, especially in the assessment of behavior. The inconclusive effects on GCs and additional assessment parameter urges for further validation of techniques and welfare proxies. Several conceptual and technical challenges need to be met to create standardized and robust welfare assessment protocols and to determine the role of GCs herein.
Collapse
Affiliation(s)
- Inga Tiemann
- Faculty of Agriculture, Institute of Agricultural Engineering, University of Bonn, Bonn, Germany,*Correspondence: Inga Tiemann ✉
| | - Lisa B. Fijn
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Marc Bagaria
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Esther M. A. Langen
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - F. Josef van der Staay
- Division of Farm Animal Health, Behaviour and Welfare Group, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Saskia S. Arndt
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Cathalijn Leenaars
- Institute for Laboratory Animal Science, Hannover Medical School, Hanover, Germany
| | - Vivian C. Goerlich
- Division of Animals in Science and Society, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
15
|
Durosaro SO, Iyasere OS, Ilori BM, Oyeniran VJ, Ozoje MO. Molecular regulation, breed differences and genes involved in stress control in farm animals. Domest Anim Endocrinol 2023; 82:106769. [PMID: 36244194 DOI: 10.1016/j.domaniend.2022.106769] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 11/18/2022]
Abstract
Stress is a state of disturbed homeostasis evoking a multiplicity of somatic and mental adaptive reactions resulting from any of the 5 freedoms of animals being violated. Many environmental forces disrupt homeostasis in farm animals, such as extreme temperatures, poor nutrition, noise, hunger, and thirst. During stressful situations, neuronal circuits in the limbic system and prefrontal cortex are activated, which lead to the release of adrenalin and noradrenalin. The hormones released during stress are needed for adaptation to acute stress and are regulated by many genes. This review examined molecular regulation, breed differences, and genes involved in stress control in farm animals. Major molecular regulation of stress, such as oxidative, cytosolic heat shock, unfolded protein, and hypoxic responses, were discussed. The responses of various poultry, ruminant, and pig breeds to different stress types were also discussed. Gene expressions and polymorphisms in the neuroendocrine and neurotransmitter pathways were also elucidated. The information obtained from this review will help farmers mitigate stress in farm animals through appropriate breed and gene-assisted selection. Also, information obtained from this review will add to the field of stress genetics since stress is a serious welfare issue in farm animals.
Collapse
Affiliation(s)
- S O Durosaro
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria; Department of Animal Sciences, Purdue University, West Lafayette, IN 47907, USA.
| | - O S Iyasere
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - B M Ilori
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - V J Oyeniran
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - M O Ozoje
- Department of Animal Breeding and Genetics, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| |
Collapse
|
16
|
Smits M, Joosten H, Faye B, Burger PA. The Flourishing Camel Milk Market and Concerns about Animal Welfare and Legislation. Animals (Basel) 2022; 13:47. [PMID: 36611656 PMCID: PMC9817819 DOI: 10.3390/ani13010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/17/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The worldwide dromedary milk production has increased sharply since the beginning of this century due to prolonged shelf life, improved food-safety and perceived health benefits. Scientific confirmation of health claims will expand the market of dromedary milk further. As a result, more and more dromedaries will be bred for one purpose only: the highest possible milk production. However, intensive dromedary farming systems have consequences for animal welfare and may lead to genetic changes. Tighter regulations will be implemented to restrict commercialization of raw milk. Protocols controlling welfare of dromedaries and gene databases of milk-dromedaries will prevent negative consequences of intensive farming. In countries where dromedaries have only recently been introduced as production animal, legislators have limited expertise on this species. This is exemplified by an assessment on behalf of the Dutch government, recommending prohibiting keeping this species from 2024 onwards because the dromedary was deemed to be insufficiently domesticated. Implementation of this recommendation in Dutch law would have devastating effects on existing dromedary farms and could also pave the way for adopting similar measures in other European countries. In this paper it is shown that the Dutch assessment lacks scientific rigor. Awareness of breeders and legislators for the increasing knowledge about dromedaries and their products would strengthen the position of dromedaries as one of the most adapted and sustainable animals.
Collapse
Affiliation(s)
- Marcel Smits
- European Camel Research Society, Johanniterlaan 7, 6721 XX Bennekom, The Netherlands
| | - Han Joosten
- Emeritus Professor Microbiology, Chemin de Crocus 1, 1073 Mollie Margot, Switzerland
| | - Bernard Faye
- UMR SELMET, CIRAD-ES, Campus International de Baillarguet, 34398 Montpellier, France
| | - Pamela A. Burger
- Research Institute of Wildlife Ecology, University of Veterinary Medicine, Savoyenstrasse 1, 1160 Vienna, Austria
| |
Collapse
|
17
|
Anders N, Hannaas S, Saltskår J, Schuster E, Tenningen M, Totland B, Vold A, Øvredal JT, Breen M. Vitality as a measure of animal welfare during purse seine pumping related crowding of Atlantic mackerel (Scomber scrombrus). Sci Rep 2022; 12:21949. [PMID: 36536033 PMCID: PMC9763418 DOI: 10.1038/s41598-022-26373-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/14/2022] [Indexed: 12/24/2022] Open
Abstract
The impacts of wild capture fishing on animal welfare are poorly understood. During purse seine fishing for Atlantic mackerel (Scomber scrombrus), catches are crowded to high densities to facilitate pumping onboard. This study aimed to monitor fish welfare during crowding events in the Norwegian purse seine fishery, and to identify relevant drivers. We first correlated a suite of neuro-endocrine, physiological and physical stress responses (integrated into a single measure of welfare using multivariate analysis) to the behavioural vitality of individual mackerel in controlled crowding trials in aquaculture cages. Vitality was found to be a useful measure of welfare. We then assessed individual fish vitality onboard a commercial purse seiner. Catch welfare, measured using vitality, was observed to be negatively impacted during pumping related crowding. Larger catches and longer crowding exposure times resulted in greater negative impacts. Vitality was not significantly impacted by crowding density or dissolved oxygen concentrations inside the net, although methodological limitations limited accurate measurement of these parameters. Blood lactate levels correlated negatively with vitality, suggesting that high-intensity anaerobic locomotory activity was associated with the reduction in welfare. Based on these findings, catch welfare could be improved by targeting smaller schools to minimise crowding exposure times.
Collapse
Affiliation(s)
- Neil Anders
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Sigurd Hannaas
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Jostein Saltskår
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Erik Schuster
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Maria Tenningen
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Bjørn Totland
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Aud Vold
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Jan Tore Øvredal
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| | - Mike Breen
- grid.10917.3e0000 0004 0427 3161Institute of Marine Research (IMR), Fish Capture Division, Nordnes. NO-5817, Nordnesgaten 50, P.O. Box 1870, 5005 Bergen, Norway
| |
Collapse
|
18
|
Potrebić MS, Pavković ŽZ, Srbovan MM, Ðmura GM, Pešić VT. Changes in the Behavior and Body Weight of Mature, Adult Male Wistar Han Rats after Reduced Social Grouping and Social Isolation. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2022; 61:615-623. [PMID: 36328417 PMCID: PMC9732776 DOI: 10.30802/aalas-jaalas-22-000032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Changes in housing density, including individual housing, are commonly necessary in animal research. Obtaining reproducibility and translational validity in biomedical research requires an understanding of how animals adapt to changes in housing density. Existing literature mainly addresses acclimatization after transportation. We used a within-subject design to examine changes in behavior and weight gain of 4-mo-old male Wistar Han rats after reduction of their social group (RSG; due to removal of one rat from a cage containing 3 rats) and social isolation (SI; the removed rat) for the subsequent 2 wk. Changes in weight gain and in exploratory and center-avoidance behavior in an inescapable open arena (OA) were measured before (D0) and on days 7 and 14 (D7 and D14, respectively) after social change. The motor response to d-amphetamine (1.5 mg/kg), which stimulates behavioral arousal in response to novelty, was assessed at D14. Within-subject design revealed that RSG rats in OA had less locomotion at D7 but not more center-avoidance behavior and had returned to the D0 activity level at D14; SI rats in OA had consistently less locomotion and more center-avoidance behavior. Rearing behavior during OA exposure did not change in either group. However, SI rats showed more center-avoidance behavior in OA, greater weight gain, and less amphetamine-induced rearing at D14 as compared with RSG rats. These data indicate that after RSG, mature adult male rats require 2 wk to return to their baseline level of OA-related behavior, while after SI they gain weight and acquire maladaptive exploratory and center-avoidance behavior. The finding that SI produces maladaptive behavioral and physiologic alterations in adult male rats deserves attention because these changes could have confounding effects on research findings.
Collapse
Affiliation(s)
- Milica S Potrebić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Željko Z Pavković
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Maja M Srbovan
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Goran M Ðmura
- Animal Facility, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Vesna T Pešić
- Department of Neurobiology, Institute for Biological Research Siniša Stanković – National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia,,Corresponding author.
| |
Collapse
|
19
|
Kumar P, Abubakar AA, Sazili AQ, Kaka U, Goh YM. Application of Electroencephalography in Preslaughter Management: A Review. Animals (Basel) 2022; 12:2857. [PMID: 36290243 PMCID: PMC9597730 DOI: 10.3390/ani12202857] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022] Open
Abstract
Electroencephalography (EEG) can be reliable for assessing the brain's electrical activity of preslaughter stress and pain. The duration between the ventral neck cut and induction of a state of unconsciousness/insensibility is crucial in the slaughtering of animals, reducing pain, fear, and distress. Various EEG variables, such as median frequency (F50), the total power of EEG spectrum (Ptot), waves patterns (amplitude and frequencies), epileptiform EEG, index of consciousness, and isoelectric EEG, are used to identify a valid indicator of the state of unconsciousness. Association among various behavioral, physiological, and hematological parameters with EEG variables could provide an overall assessment and deep insights into the animal stress levels or welfare status during various managemental and preslaughter operations, such as transport, stunning, and slaughtering operations. The application of EEG could help in further refining the stunning technologies and slaughter protocols in livestock, poultry, and fish. The present review analyzed the application of EEG as a neurophysiological tool for assessing animal welfare during the critical state of preslaughter handling and slaughter, thus ensuring proper compliance with animal welfare principles.
Collapse
Affiliation(s)
- Pavan Kumar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Livestock Products Technology, College of Veterinary Science, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004, India
| | - Ahmed A. Abubakar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Awis Qurni Sazili
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Ubedullah Kaka
- Halal Products Research Institute, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Companion Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Yong-Meng Goh
- Department of Veterinary Preclinical Sciences, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
20
|
Carbonara P, Alfonso S, Zupa W, Manfrin A, Fiocchi E, Buratin A, Bertazzo V, Cammarata M, Spedicato MT, Lembo G. Investigating the physiological response and antibody concentration of gilthead sea bream (Sparus aurata) following Vibrio anguillarum vaccination depending on the stress coping style. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.951179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Stress coping styles (SCSs) are defined as coherent sets of individual physiological and behavioral differences in stress response consistent across time and context and are described in a wide range of taxa, including fishes. These differences in behavior and physiology are of great interest because they may have direct implications on animal health, welfare, and performance in farming systems, including aquaculture. In this study, the physiological responses of sea bream (Sparus aurata) from different SCSs following Vibrio anguillarum vaccination were monitored. Fish were first screened either bold or shy (proxy of proactive and reactive SCSs, respectively) using group risk-taking tests and were then injected with a vaccine against V. anguillarum. Following vaccination, the fish were implanted with an accelerometer tag to monitor their swimming activity (proxy of energy expenditure), and blood sampling was carried out to measure health and welfare parameters (e.g., cortisol, glucose, hemoglobin) and aspecific immunity (e.g., protease, total proteins). In addition, blood was also collected at three different sampling times to screen antibody levels and, thus, to evaluate the efficiency of the vaccine. Following vaccination, bold fish displayed lower swimming activity values, indicative of lower energy expenditure, and also displayed higher levels of hematocrit, total proteins, and lysozyme in the plasma than the shy ones, which could be indicative of better health/welfare status and greater aspecific immunity. Finally, the V. anguillarum vaccination appeared to be more efficient in bold fish since the number of total antibodies was found higher than in shy fish 1 month after vaccination. Such results could help improve both health/welfare and productivity of farmed sea breams by selecting more robust fish, better adapted to farming conditions.
Collapse
|
21
|
Seeley KE, Proudfoot KL, Edes AN. The application of allostasis and allostatic load in animal species: A scoping review. PLoS One 2022; 17:e0273838. [PMID: 36040981 PMCID: PMC9426905 DOI: 10.1371/journal.pone.0273838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Principles of allostasis and allostatic load have been widely applied in human research to assess the impacts of chronic stress on physiological dysregulation. Over the last few decades, researchers have also applied these concepts to non-human animals. However, there is a lack of uniformity in how the concept of allostasis is described and assessed in animals. The objectives of this review were to: 1) describe the extent to which the concepts of allostasis and allostatic load are applied theoretically to animals, with a focus on which taxa and species are represented; 2) identify when direct assessments of allostasis or allostatic load are made, which species and contexts are represented, what biomarkers are used, and if an allostatic load index was constructed; and 3) detect gaps in the literature and identify areas for future research. A search was conducted using CABI, PubMed, Agricola, and BIOSIS databases, in addition to a complementary hand-search of 14 peer-reviewed journals. Search results were screened, and articles that included non-human animals, as well as the terms "allostasis" or "allostatic" in the full text, were included. A total of 572 articles met the inclusion criteria (108 reviews and 464 peer-reviewed original research). Species were represented across all taxa. A subset of 63 publications made direct assessments of allostatic load. Glucocorticoids were the most commonly used biomarker, and were the only biomarker measured in 25 publications. Only six of 63 publications (9.5%) constructed an allostatic load index, which is the preferred methodology in human research. Although concepts of allostasis and allostatic load are being applied broadly across animal species, most publications use single biomarkers that are more likely indicative of short-term rather than chronic stress. Researchers are encouraged to adopt methodologies used in human research, including the construction of species-specific allostatic load indexes.
Collapse
Affiliation(s)
- Kathryn E. Seeley
- Department of Preventive Medicine, The Ohio State University College of Veterinary Medicine, Columbus, Ohio, United States of America
| | - Kathryn L. Proudfoot
- Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Ashley N. Edes
- Department of Reproductive and Behavioral Sciences, Saint Louis Zoo, St. Louis, Missouri, United States of America
| |
Collapse
|
22
|
Mieske P, Hobbiesiefken U, Fischer-Tenhagen C, Heinl C, Hohlbaum K, Kahnau P, Meier J, Wilzopolski J, Butzke D, Rudeck J, Lewejohann L, Diederich K. Bored at home?—A systematic review on the effect of environmental enrichment on the welfare of laboratory rats and mice. Front Vet Sci 2022; 9:899219. [PMID: 36061113 PMCID: PMC9435384 DOI: 10.3389/fvets.2022.899219] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Boredom is an emotional state that occurs when an individual has nothing to do, is not interested in the surrounding, and feels dreary and in a monotony. While this condition is usually defined for humans, it may very well describe the lives of many laboratory animals housed in small, barren cages. To make the cages less monotonous, environmental enrichment is often proposed. Although housing in a stimulating environment is still used predominantly as a luxury good and for treatment in preclinical research, enrichment is increasingly recognized to improve animal welfare. To gain insight into how stimulating environments influence the welfare of laboratory rodents, we conducted a systematic review of studies that analyzed the effect of enriched environment on behavioral parameters of animal well–being. Remarkably, a considerable number of these parameters can be associated with symptoms of boredom. Our findings show that a stimulating living environment is essential for the development of natural behavior and animal welfare of laboratory rats and mice alike, regardless of age and sex. Conversely, confinement and under-stimulation has potentially detrimental effects on the mental and physical health of laboratory rodents. We show that boredom in experimental animals is measurable and does not have to be accepted as inevitable.
Collapse
Affiliation(s)
- Paul Mieske
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Ute Hobbiesiefken
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Carola Fischer-Tenhagen
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Céline Heinl
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Katharina Hohlbaum
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Pia Kahnau
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jennifer Meier
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Jenny Wilzopolski
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Daniel Butzke
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Juliane Rudeck
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Lars Lewejohann
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, Germany
| | - Kai Diederich
- German Center for the Protection of Laboratory Animals (Bf3R), German Federal Institute for Risk Assessment (BfR), Berlin, Germany
- *Correspondence: Kai Diederich
| |
Collapse
|
23
|
Arndt SS, Goerlich VC, van der Staay FJ. A dynamic concept of animal welfare: The role of appetitive and adverse internal and external factors and the animal’s ability to adapt to them. FRONTIERS IN ANIMAL SCIENCE 2022. [DOI: 10.3389/fanim.2022.908513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Animal welfare is a multifaceted issue that can be approached from different viewpoints, depending on human interests, ethical assumptions, and culture. To properly assess, safeguard and promote animal welfare, concepts are needed to serve as guidelines in any context the animal is kept in. Several different welfare concepts have been developed during the last half decade. The Five Freedoms concept has provided the basis for developing animal welfare assessment to date, and the Five Domains concept has guided those responsible for safeguarding animal welfare, while the Quality of Life concept focuses on how the individual perceives its own welfare state. This study proposes a modified and extended version of an earlier animal welfare concept - the Dynamic Animal Welfare Concept (DAWCon). Based on the adaptability of the animal, and taking the importance of positive emotional states and the dynamic nature of animal welfare into account, an individual animal is likely in a positive welfare state when it is mentally and physically capable and possesses the ability and opportunity to react adequately to sporadic or lasting appetitive and adverse internal and external stimuli, events, and conditions. Adequate reactions are elements of an animal’s normal behavior. They allow the animal to cope with and adapt to the demands of the (prevailing) environmental circumstances, enabling it to reach a state that it perceives as positive, i.e., that evokes positive emotions. This paper describes the role of internal as well as external factors in influencing welfare, each of which exerts their effects in a sporadic or lasting manner. Behavior is highlighted as a crucial read-out parameter. As most animals under human care are selected for certain traits that may affect their behavioral repertoire it is crucial to have thorough ethograms, i.e., a catalogue of specific behaviors of the species/strain/breed under study. DAWCon highlights aspects that need to be addressed when assessing welfare and may stimulate future research questions.
Collapse
|
24
|
Phillips HN, Heins BJ. Alternative Practices in Organic Dairy Production and Effects on Animal Behavior, Health, and Welfare. Animals (Basel) 2022; 12:1785. [PMID: 35883331 PMCID: PMC9311922 DOI: 10.3390/ani12141785] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 01/22/2023] Open
Abstract
The number of organic dairy farms has increased because of the increased growth of the organic market, higher organic milk price, and because some consumers prefer to purchase products from less intensive production systems. Best management practices are expected from organic dairy farms to ensure animal health and milk production. Organic dairy producers typically transition from conventional systems to avoid chemicals and pesticides, enhance economic viability, improve the environment, and increase soil fertility. Organic dairy producers respect and promote a natural environment for their animals, is also an important component of animal welfare. Organic producers have few options to mitigate pain in dairy calves. In the United States, therapies to mitigate pain for disbudded organic dairy calves are regulated by the US National Organic Program. Organic producers regularly use naturally derived alternatives for the treatment of health disorders of dairy calves, heifers, and cows. Alternative natural products may provide an option to mitigate pain in organic dairy calves. Despite the reluctance to implement pain alleviation methods, some organic farmers have expressed interest in or currently implement plant-based alternatives. Efficacy studies of alternative remedies for organic livestock are needed to verify that their use improves animal welfare. Non-effective practices represent a major challenge for organic dairy animal welfare. The relationship between humans and animals may be jeopardized during milking because first-lactation cows may exhibit adverse behaviors during the milking process, such as kicking and stomping. The periparturient period is particularly challenging for first-lactation cows. Adverse behaviors may jeopardize animal welfare and reduce safety for humans because stressed heifers may kick off the milking unit, kick at milkers, and display other unwanted behaviors in the milking parlor. This may reduce milking efficiency, overall production, and ultimately reduce the profitability of the dairy farm. Positive animal welfare is a challenging balancing act between the three overlapping ethic concerns. Identifying animal welfare deficits in organic livestock production is the first step in capitalizing on these opportunities to improve welfare.
Collapse
Affiliation(s)
- Hannah N. Phillips
- Department of Animal Science, University of Minnesota, Saint Paul, MN 55108, USA
| | - Bradley J. Heins
- West Central Research and Outreach Center, University of Minnesota, 46352 MN-329, Morris, MN 56267, USA
| |
Collapse
|
25
|
Cerasoli F, Podaliri Vulpiani M, Saluti G, Conte A, Ricci M, Savini G, D’Alterio N. Assessment of Welfare in Groups of Horses with Different Management, Environments and Activities by Measuring Cortisol in Horsehair, Using Liquid Chromatography Coupled to Hybrid Orbitrap High-Resolution Mass Spectrometry. Animals (Basel) 2022; 12:ani12141739. [PMID: 35883286 PMCID: PMC9312200 DOI: 10.3390/ani12141739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Horses have always been animals used for companionship, work, transportation, and performance purposes over the history of humanity; there are different ways of managing horses, but studies on how horse welfare is influenced by different activities and managements are scanty. Understanding how the management, the environment, and the different uses of horses can affect the level of stress and well-being is important not only for people associated with horses. Three groups of horses with different management, environments, and activities were selected: (1) stabled horses ridden frequently, (2) horses that perform public order service under the Italian state police, and (3) free-ranging horses. Cortisol analysis was carried out on horsehair samples using liquid chromatography coupled to hybrid orbitrap high-resolution mass spectrometry (LC-HRMS/MS), a laboratory technique used for the first time to quantify horsehair cortisol. The selection of horses to be included in the three groups was carried out by including only subjects with positive welfare assessment in accordance with the horse welfare assessment protocol (AWIN). These analyses demonstrated that the cortisol levels detected in the horsehair of free-ranging animals were significantly higher compared to those detected in stabled and working horses. These results may have been a consequence of complex environmental, managerial, and behavioral factors, which should be worth further investigation
Collapse
|
26
|
Coria-Avila GA, Pfaus JG, Orihuela A, Domínguez-Oliva A, José-Pérez N, Hernández LA, Mota-Rojas D. The Neurobiology of Behavior and Its Applicability for Animal Welfare: A Review. Animals (Basel) 2022; 12:ani12070928. [PMID: 35405916 PMCID: PMC8997080 DOI: 10.3390/ani12070928] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/17/2022] [Accepted: 03/31/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Animal welfare is the result of physical and psychological well-being and is expected to occur if animals are free: (1) from hunger, thirst and malnutrition, (2) from discomfort, (3) from pain, (4) to express normal behavior, and (5) from fear and distress. Nevertheless, well-being is not a constant state but rather the result of certain brain dynamics underlying innate motivated behaviors and learned responses. Thus, by understanding the foundations of the neurobiology of behavior we fathom how emotions and well-being occur in the brain. Herein, we discuss the potential applicability of this approach for animal welfare. First, we provide a general view of the basic responses coordinated by the central nervous system from the processing of internal and external stimuli. Then, we discuss how those stimuli mediate activity in seven neurobiological systems that evoke innate emotional and behavioral responses that directly influence well-being and biological fitness. Finally, we discuss the basic mechanisms of learning and how it affects motivated responses and welfare. Abstract Understanding the foundations of the neurobiology of behavior and well-being can help us better achieve animal welfare. Behavior is the expression of several physiological, endocrine, motor and emotional responses that are coordinated by the central nervous system from the processing of internal and external stimuli. In mammals, seven basic emotional systems have been described that when activated by the right stimuli evoke positive or negative innate responses that evolved to facilitate biological fitness. This review describes the process of how those neurobiological systems can directly influence animal welfare. We also describe examples of the interaction between primary (innate) and secondary (learned) processes that influence behavior.
Collapse
Affiliation(s)
- Genaro A. Coria-Avila
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N, Col. Industrial Ánimas, Xalapa 91190, Mexico;
- Correspondence: (G.A.C.-A.); (D.M.-R.)
| | - James G. Pfaus
- Instituto de Investigaciones Cerebrales, Universidad Veracruzana, Avenida Luis Castelazo S/N, Col. Industrial Ánimas, Xalapa 91190, Mexico;
- Department of Psychology and Life Sciences, Charles University, 182 00 Prague, Czech Republic
- Czech National Institute of Mental Health, 250 67 Klecany, Czech Republic
| | - Agustín Orihuela
- Facultad de Ciencias Agropecuarias, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Nancy José-Pérez
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Laura Astrid Hernández
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana (UAM), Unidad Xochimilco, Mexico City 04960, Mexico; (A.D.-O.); (N.J.-P.); (L.A.H.)
- Correspondence: (G.A.C.-A.); (D.M.-R.)
| |
Collapse
|
27
|
Tveit GM, Anders N, Bondø MS, Mathiassen JR, Breen M. Atlantic mackerel (Scomber scombrus) change skin colour in response to crowding stress. JOURNAL OF FISH BIOLOGY 2022; 100:738-747. [PMID: 34958484 PMCID: PMC9306841 DOI: 10.1111/jfb.14987] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Wild capture can be stressful for fish. Stress has the potential to induce mortality in released unwanted catches or negative flesh quality consequences in retained ones. Such effects compromise sustainable natural resource management and industry profitability. Mitigating stress during capture is therefore desirable. Biological indicators of stress can objectively inform fishers as to the functional welfare status of catches during fishing operations. If they are to be of practical use in mitigating stress during wild capture events, such indicators must be quantifiable, respond rapidly, reflect the level of induced stress and be easily observable. Atlantic mackerel (Scomber scombrus) are extensively targeted by purse seine fisheries in European waters but are particularly vulnerable to stress. Excessive crowding in the net is thought to be the principal stress mechanism. There is therefore a need to develop indicators of crowding stress for this species so that catch welfare can be improved. Here, we demonstrate that S. scombrus exhibit a skin colour change from predominately green to predominately blue when exposed to crowding stress. In sea cage trials, we induced various degrees of stress in groups of wild-caught S. scombrus by manipulating crowding density and its duration. Skin colour was quantified in air using digital photography. The colour change occurred rapidly (within the typical duration of crowding events in the fishery), and its magnitude was correlated to the severity and duration of crowding. Bluer fish were also associated with higher levels of plasma lactate. No appreciable colour change was observed in uncrowded (control) groups during the treatment period. Nonetheless, unstressed S. scombrus did turn blue <1 h after death. Together, these results indicate that skin colour change has the potential to be a useful real-time indicator of crowding stress for S. scombrus and could therefore be used to improve welfare during wild capture fishing.
Collapse
Affiliation(s)
- Guro M. Tveit
- Department of Seafood TechnologySINTEF Ocean ASTrondheimNorway
| | - Neil Anders
- Fish Capture DivisionInstitute of Marine Research (IMR)BergenNorway
| | - Morten S. Bondø
- Department of Seafood TechnologySINTEF Ocean ASTrondheimNorway
| | | | - Mike Breen
- Fish Capture DivisionInstitute of Marine Research (IMR)BergenNorway
| |
Collapse
|
28
|
Augustine L, Baskir E, Kozlowski CP, Hammack S, Elden J, Wanner MD, Franklin AD, Powell DM. Investigating Welfare Metrics for Snakes at the Saint Louis Zoo. Animals (Basel) 2022; 12:373. [PMID: 35158696 PMCID: PMC8833826 DOI: 10.3390/ani12030373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
Modern herpetoculture has seen a rise in welfare-related habitat modifications, although ethologically-informed enclosure design and evidence-based husbandry are lacking. The diversity that exists within snakes complicates standardizing snake welfare assessment tools and evaluation techniques. Utilizing behavioral indicators in conjunction with physiological measures, such as fecal glucocorticoid metabolite concentrations, could aid in the validation of evidence-based metrics for evaluating snake welfare. We increased habitat cleaning, to identify behavioral or physiological indicators that might indicate heightened arousal in snakes as a response to the disturbance. While glucocorticoid metabolite concentrations increased significantly during a period of increased disturbance, this increase was not associated with a significant increase in tongue-flicking, a behavior previously associated with arousal in snakes. Locomotion behavior and the proportion of time spent exposed were also not affected by more frequent habitat cleaning. These results demonstrate the need to further investigate the behavioral and physiological responses of snakes to different aspects of animal care at a species and individual level. They also highlight the need to collect baseline behavioral and physiological data for animals, in order to make meaningful comparisons when evaluating changes in animal care.
Collapse
Affiliation(s)
- Lauren Augustine
- Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63116, USA; (E.B.); (C.P.K.); (S.H.); (J.E.); (M.D.W.); (A.D.F.); (D.M.P.)
- Smithsonian National Zoological Park, 3001 Connecticut Avenue NW, Washington, DC 20008, USA
| | - Eli Baskir
- Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63116, USA; (E.B.); (C.P.K.); (S.H.); (J.E.); (M.D.W.); (A.D.F.); (D.M.P.)
| | - Corinne P. Kozlowski
- Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63116, USA; (E.B.); (C.P.K.); (S.H.); (J.E.); (M.D.W.); (A.D.F.); (D.M.P.)
| | - Stephen Hammack
- Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63116, USA; (E.B.); (C.P.K.); (S.H.); (J.E.); (M.D.W.); (A.D.F.); (D.M.P.)
| | - Justin Elden
- Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63116, USA; (E.B.); (C.P.K.); (S.H.); (J.E.); (M.D.W.); (A.D.F.); (D.M.P.)
| | - Mark D. Wanner
- Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63116, USA; (E.B.); (C.P.K.); (S.H.); (J.E.); (M.D.W.); (A.D.F.); (D.M.P.)
| | - Ashley D. Franklin
- Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63116, USA; (E.B.); (C.P.K.); (S.H.); (J.E.); (M.D.W.); (A.D.F.); (D.M.P.)
| | - David M. Powell
- Saint Louis Zoo, 1 Government Drive, Saint Louis, MO 63116, USA; (E.B.); (C.P.K.); (S.H.); (J.E.); (M.D.W.); (A.D.F.); (D.M.P.)
| |
Collapse
|
29
|
Vaz J, McElligott AG, Narayan E. Linking the roles of personality and stress physiology for managing the welfare of captive big cats. Anim Welf 2022. [DOI: 10.7120/09627286.31.1.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Animal welfare is important for the humane treatment of animals under our care. Zoos and rescue centres manage various charismatic animals, such as big cats, with limited resources. It is therefore essential for caretakers to understand the needs of an individual big cat to ensure its
welfare. However, these needs may differ due to a big cat's personality, which may be identified by its coping style in a stressful situation. In addition, stress is one of the major factors affecting animal welfare. There is limited evidence showing strong associations between personality
and stress physiology in big cats. This review focuses on the integration of personality and stress physiology of captive big cats, to highlight possible improvements in their husbandry. Our review identifies key factors that may influence big cat responses to stressors. These influencing
factors include: i) social interactions; ii) environment; iii) life history and evolutionary traits; iv) genetics; and v) health. The first two factors are relatively well covered in the literature; however, the final three are potentially very promising avenues for future research to better
understand how we can improve big cat welfare.
Collapse
Affiliation(s)
- J Vaz
- School of Science, Western Sydney University, Locked Bag 1797, Penrith 2751, NSW, Australia
| | - AG McElligott
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| | - E Narayan
- Centre for Animal Health and Welfare, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
30
|
Gaffney LP, Lavery JM. Research Before Policy: Identifying Gaps in Salmonid Welfare Research That Require Further Study to Inform Evidence-Based Aquaculture Guidelines in Canada. Front Vet Sci 2022; 8:768558. [PMID: 35155641 PMCID: PMC8835349 DOI: 10.3389/fvets.2021.768558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/24/2021] [Indexed: 11/30/2022] Open
Abstract
Aquaculture is a growing industry worldwide and Canadian finfish culture is dominated by marine salmonid farming. In part due to increasing public and stakeholder concerns around fish welfare protection, the first-ever Canadian Code of Practice for the Care and Handling of Farmed Salmonids was recently completed, following the National Farm Animal Care Council's (NFACC) rigorous Code development process. During this process, both the Scientific (responsible for reviewing existing literature and producing a peer-reviewed report that informs the Code) and Code Development (a diverse group of stakeholders including aquaculture producers, fish transporters, aquaculture veterinarians, animal welfare advocates, food retailers, government, and researchers) Committees identified research gaps in tandem, as they worked through the literature on salmonid physiology, health, husbandry, and welfare. When those lists are combined with the results of a public "top-of-mind" survey conducted by NFACC, they reveal several overlapping areas of scientific, stakeholder, and public concern where scientific evidence is currently lacking: (1) biodensity; (2) health monitoring and management, with a focus on sea lice infection prevention and management; (3) feed quality and management, particularly whether feed restriction or deprivation has consequences for welfare; (4) enclosure design, especially focused on environmental enrichment provision and lighting design; and (5) slaughter and euthanasia. For each of these five research areas, we provide a brief overview of current research on the topic and outline the specific research gaps present. The final section of this review identifies future research avenues that will help address these research gaps, including using existing paradigms developed by terrestrial animal welfare researchers, developing novel methods for assessing fish welfare, and the validation of new salmonid welfare indices. We conclude that there is no dearth of relevant research to be done in the realm of farmed salmonid welfare that can support crucial evidence-based fish welfare policy development.
Collapse
Affiliation(s)
- Leigh P. Gaffney
- National Animal Welfare Representative, Code Development Committee (NFACC) for the Code of Practice for the Care and Handling of Farm Animal Care Council (NFACC), Ottawa, ON, Canada
- Department of Biology, University of Victoria, Victoria, BC, Canada
| | - J. Michelle Lavery
- Scientific Committee (NFACC) for the Code of Practice for the Care and Handling of Farmed Salmonids, National Farm Animal Care Council (NFACC), Ottawa, ON, Canada
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
31
|
Overlooked and Under-Studied: A Review of Evidence-Based Enrichment in Varanidae. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enrichment has become a key aspect of captive husbandry practices as a means of improving animal welfare by increasing environmental stimuli. However, the enrichment methods that are most effective varies both between and within species, and thus evaluation underpins successful enrichment programs. Enrichment methods are typically based upon previously reported successes and those primarily with mammals, with one of the main goals of enrichment research being to facilitate predictions about which methods may be most effective for a particular species. Yet, despite growing evidence that enrichment is beneficial for reptiles, there is limited research on enrichment for Varanidae, a group of lizards known as monitor lizards. As a result, it can be difficult for keepers to implement effective enrichment programs as time is a large limiting factor. In order for appropriate and novel enrichment methods to be created, it is necessary to understand a species’ natural ecology, abilities, and how they perceive the world around them. This is more difficult for non-mammalian species as the human-centered lens can be a hinderance, and thus reptile enrichment research is slow and lagging behind that of higher vertebrates. This review discusses the physiological, cognitive, and behavioral abilities of Varanidae to suggest enrichment methods that may be most effective.
Collapse
|
32
|
Fox S. Synchronous Generative Development amidst Situated Entropy. ENTROPY (BASEL, SWITZERLAND) 2022; 24:89. [PMID: 35052115 PMCID: PMC8775003 DOI: 10.3390/e24010089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/04/2022] [Indexed: 12/04/2022]
Abstract
The Sustainable Development Goals have been criticized for not providing sufficient balance between human well-being and environmental well-being. By contrast, joint agent-environment systems theory is focused on reciprocal synchronous generative development. The purpose of this paper is to extend this theory towards practical application in sustainable development projects. This purpose is fulfilled through three interrelated contributions. First, a practitioner description of the theory is provided. Then, the theory is extended through reference to research concerned with multilevel pragmatics, competing signals, commitment processes, technological mediation, and psychomotor functioning. In addition, the theory is related to human-driven biosocial-technical innovation through the example of digital twins for agroecological urban farming. Digital twins being digital models that mirror physical processes; that are connected to physical processes through, for example, sensors and actuators; and which carry out analyses of physical processes in order to improve their performance. Together, these contributions extend extant theory towards application for synchronous generative development that balances human well-being and environmental well-being. However, the practical examples in the paper indicate that counterproductive complexity can arise from situated entropy amidst biosocial-technical innovations: even when those innovations are compatible with synchronous generative development.
Collapse
Affiliation(s)
- Stephen Fox
- VTT Technical Research Centre of Finland, FI-02150 Espoo, Finland
| |
Collapse
|
33
|
Tamminen LM, Keeling LJ, Svensson A, Briot L, Emanuelson U. Unraveling the Complexity to Observe Associations Between Welfare Indicators and Hair Cortisol Concentration in Dairy Calves. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.793558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Using levels of the stress hormone cortisol as an indicator for welfare is a common, but debated practice. In this observational study, hair cortisol concentration (HCC) of samples from 196 dairy calves from 7 to 302 days of age collected from 12 Swedish farms was determined using a commercially available ELISA. An assessment of animal welfare, assessed using animal-based indicators, was performed on the day of sampling. First, methodological factors with the potential to impact HCC and the effect of age were analyzed using generalized additive models. This revealed a significant peak in hair cortisol in young calves (around 50 days of age) and an association between fecal contamination of hair samples and the level of cortisol extracted. Second, associations between welfare indicators and HCC were explored using cluster analysis and regularized regression. The results show a complex pattern, possibly related to different coping styles of the calves, and indicators of poor welfare were associated with both increased and decreased hair cortisol levels. High cortisol levels were associated with potential indicators of competition, while low cortisol levels were associated with the signs of poor health or a poor environment. When running the regularized regression analysis without the contaminated hair samples and with the contaminated samples (including a contamination score), the results did not change, indicating that it may be possible to use a contamination score to correct for contamination.
Collapse
|
34
|
Cascarano MC, Stavrakidis-Zachou O, Mladineo I, Thompson KD, Papandroulakis N, Katharios P. Mediterranean Aquaculture in a Changing Climate: Temperature Effects on Pathogens and Diseases of Three Farmed Fish Species. Pathogens 2021; 10:1205. [PMID: 34578236 PMCID: PMC8466566 DOI: 10.3390/pathogens10091205] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 02/07/2023] Open
Abstract
Climate change is expected to have a drastic effect on aquaculture worldwide. As we move forward with the agenda to increase and diversify aquaculture production, rising temperatures will have a progressively relevant impact on fish farming, linked to a multitude of issues associated with fish welfare. Temperature affects the physiology of both fish and pathogens, and has the potential to lead to significant increases in disease outbreaks within aquaculture systems, resulting in severe financial impacts. Significant shifts in future temperature regimes are projected for the Mediterranean Sea. We therefore aim to review and discuss the existing knowledge relating to disease outbreaks in the context of climate change in Mediterranean finfish aquaculture. The objective is to describe the effects of temperature on the physiology of both fish and pathogens, and moreover to list and discuss the principal diseases of the three main fish species farmed in the Mediterranean, namely gilthead seabream (Sparus aurata), European seabass (Dicentrarchus labrax), and meagre (Argyrosomus regius). We will attempt to link the pathology of each disease to a specific temperature range, while discussing potential future disease threats associated with the available climate change trends for the Mediterranean Sea.
Collapse
Affiliation(s)
- Maria Chiara Cascarano
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Orestis Stavrakidis-Zachou
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
- Department of Biology, University of Crete, 71003 Heraklion, Greece
| | - Ivona Mladineo
- Biology Center of Czech Academy of Sciences, Laboratory of Functional Helminthology, Institute of Parasitology, 370 05 Ceske Budejovice, Czech Republic;
| | - Kim D. Thompson
- Vaccines and Diagnostics, Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, Midlothian EH26 0PZ, UK;
| | - Nikos Papandroulakis
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| | - Pantelis Katharios
- Hellenic Centre for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, 71500 Heraklion, Greece; (M.C.C.); (O.S.-Z.); (N.P.)
| |
Collapse
|
35
|
Lunkes LC, Paiva IM, Egger RC, Braga WF, Alvarez-Leite JI, da Cunha Barreto-Vianna AR, Murgas LDS. Melatonin administration attenuates acute stress by inducing sleep state in zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 2021; 246:109044. [PMID: 33838315 DOI: 10.1016/j.cbpc.2021.109044] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
Melatonin plays a fundamental homeostatic role in basic biological functions, and an anti-stress role has been also proposed for this hormone. This study aimed to evaluate hormonal, enzymatic and behavioral parameters of zebrafish that received administration of melatonin and were submitted to acute stress. A total of 120 wild-type zebrafish were divided into five groups: naïve control (N), negative control group (Stress/C), positive control treated with diazepam (Stress/Diaz), treatment with melatonin at dose 1 (Stress/Melt. 1) and treatment with melatonin at dose 2 (Stress/Melt. 2). The exposure to treatments (diazepam or melatonin) was performed prior to the acute stress protocol, based on a chase by a fishing net during 5 min followed by exposure to the air for 1 min. The body cortisol levels were assessed, as well as oxidative stress (thiobarbituric acid reactive substances, reactive species of oxygen and antioxidant activity), and fish behavior (open field test). Melatonin was able to modulate acute stress effects on zebrafish by inhibiting cortisol increasing levels, reducing locomotor parameters, inducing a sleep state, reducing lipid peroxidation and stimulating antioxidant enzymatic activity.
Collapse
Affiliation(s)
- Luciana Crepaldi Lunkes
- Federal University of Lavras, Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Lavras, MG, Brazil
| | - Isadora Marques Paiva
- Federal University of Minas Gerais, Graduate Program in Genetics, Institute of Biological Sciences, Belo Horizonte, MG, Brazil
| | - Renata Catão Egger
- Federal University of Lavras, Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Lavras, MG, Brazil
| | - Weslley Fernandes Braga
- Federal University of Minas Gerais, Postgraduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Belo Horizonte, MG, Brazil
| | - Jacqueline Isaura Alvarez-Leite
- Federal University of Minas Gerais, Postgraduate Program in Biochemistry and Immunology, Department of Biochemistry and Immunology, Belo Horizonte, MG, Brazil
| | | | - Luis David Solis Murgas
- Federal University of Lavras, Graduate Program in Veterinary Sciences, Department of Veterinary Medicine, Lavras, MG, Brazil.
| |
Collapse
|
36
|
van Marle-Köster E, Visser C. Unintended consequences of selection for increased production on the health and welfare of livestock. Arch Anim Breed 2021; 64:177-185. [PMID: 34109267 PMCID: PMC8182664 DOI: 10.5194/aab-64-177-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 11/25/2022] Open
Abstract
Modern farming technologies, including quantitative selection and breeding methods in farm animal species, resulted in increased production and efficiency. Selection for increased output in both intensive and extensive production systems has trade-offs and negative outcomes, often more pronounced in intensive systems. Animal welfare and health are often adversely affected and this influences sustainable production. The relative importance of animal welfare differs among developed and developing countries due to the level of economic development, food security and education, as well as religious and cultural practices which presents challenges for sound scientific research. Due to breeding goals in the past set on growth performance, traits such as fertility, welfare and health have been neglected. Fertility is the single most important trait in all livestock species. Reduced fertility and lameness, claw health and mastitis results in unnecessary culling and reduced longevity. Selection pressure for growth accompanied with inbreeding has resulted in a number of genetic defects in beef, sheep and pigs. This review demonstrated the importance of inclusion of animal welfare concepts into breeding objectives and selection strategies. Accurate phenotyping of welfare traits is a limiting factor in the implementation of mitigating strategies, which include diagnostic testing, control of inbreeding and genomic selection.
Collapse
Affiliation(s)
- Este van Marle-Köster
- Faculty of Natural and Agricultural Sciences, Department of Animal Science, University of Pretoria, Pretoria 0028,
South Africa
| | - Carina Visser
- Faculty of Natural and Agricultural Sciences, Department of Animal Science, University of Pretoria, Pretoria 0028,
South Africa
| |
Collapse
|
37
|
Calibrating Accelerometer Tags with Oxygen Consumption Rate of Rainbow Trout ( Oncorhynchus mykiss) and Their Use in Aquaculture Facility: A Case Study. Animals (Basel) 2021; 11:ani11061496. [PMID: 34064216 PMCID: PMC8224291 DOI: 10.3390/ani11061496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Measuring metabolic rates in free-swimming fish would provide valuable insights about the energetic costs of different life activities this is challenging to implement in the field due to the difficulty of performing such measurements. Thus, the calibration of acoustic transmitters with the oxygen consumption rate (MO2) could be promising to counter the limitations observed in the field. In this study, calibrations were performed in rainbow trout (Oncorhynchus mykiss), and a subsample of fish was implanted with such a transmitter and then followed under aquaculture conditions. The use of acoustic transmitters calibrated with MO2 appeared to be a promising tool to estimate energetic costs in free-swimming rainbow trout, and for welfare assessment in the aquaculture industry. Abstract Metabolic rates are linked to the energetic costs of different activities of an animal’s life. However, measuring the metabolic rate in free-swimming fish remains challenging due to the lack of possibilities to perform these direct measurements in the field. Thus, the calibration of acoustic transmitters with the oxygen consumption rate (MO2) could be promising to counter these limitations. In this study, rainbow trout (Oncorhynchus mykiss Walbaum, 1792; n = 40) were challenged in a critical swimming test (Ucrit) to (1) obtain insights about the aerobic and anaerobic metabolism throughout electromyograms; and (2) calibrate acoustic transmitters’ signal with the MO2 to be later used as a proxy of energetic costs. After this calibration, the fish (n = 12) were implanted with the transmitter and were followed during ~50 days in an aquaculture facility, as a case study, to evaluate the potential of such calibration. Accelerometer data gathered from tags over a long time period were converted to estimate the MO2. The MO2 values indicated that all fish were reared under conditions that did not impact their health and welfare. In addition, a diurnal pattern with higher MO2 was observed for the majority of implanted trout. In conclusion, this study provides (1) biological information about the muscular activation pattern of both red and white muscle; and (2) useful tools to estimate the energetic costs in free-ranging rainbow trout. The use of acoustic transmitters calibrated with MO2, as a proxy of energy expenditure, could be promising for welfare assessment in the aquaculture industry.
Collapse
|
38
|
Colditz IG. Adrenergic Tone as an Intermediary in the Temperament Syndrome Associated With Flight Speed in Beef Cattle. FRONTIERS IN ANIMAL SCIENCE 2021. [DOI: 10.3389/fanim.2021.652306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The temperament of farm animals can influence their resilience to everyday variations within the managed production environment and has been under strong direct and indirect selection during the course of domestication. A prominent objective measure used for assessing temperament in beef cattle is the behavioral flight response to release from confinement in a crush or chute. This behavioral measure, termed flight speed (also known as escape velocity) is associated with physiological processes including body temperature, feeding behavior, growth rate, carcass composition, immune function, and health outcomes. This review examines the functional links between this suite of traits and adrenergic activity of the sympathetic nervous system and the adrenomedullary hormonal system. It is suggested that flight speed is the behavioral aspect of an underlying “flightiness” temperament syndrome, and that elevated adrenergic tone in animals with a high level of flightiness (i.e., flighty animals) tunes physiological activities toward a sustained “fight or flight” defense profile that reduces productivity and the capacity to flourish within the production environment. Nonetheless, despite a common influence of adrenergic tone on this suite of traits, variation in each trait is also influenced by other regulatory pathways and by the capacity of tissues to respond to a range of modulators in addition to adrenergic stimuli. It is suggested that tuning by adrenergic tone is an example of homeorhetic regulation that can help account for the persistent expression of behavioral and somatic traits associated with the flight speed temperament syndrome across the life of the animal. At a population level, temperament may modulate ecological fit within and across generations in the face of environmental variability and change. Associations of flight speed with the psychological affective state of the animal, and implications for welfare are also considered. The review will help advance understanding of the developmental biology and physiological regulation of temperament syndromes.
Collapse
|
39
|
Barany A, Fuentes J, Martínez-Rodríguez G, Mancera JM. Aflatoxicosis Dysregulates the Physiological Responses to Crowding Densities in the Marine Teleost Gilthead Seabream ( Sparus aurata). Animals (Basel) 2021; 11:ani11030753. [PMID: 33803392 PMCID: PMC7999881 DOI: 10.3390/ani11030753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 11/16/2022] Open
Abstract
Several studies in fish have shown that aflatoxin B1 (AFB1) causes a disparity of species-dependent physiological disorders without compromising survival. We studied the effect of dietary administration of AFB1 (2 mg AFB1 kg-1 diet) in gilthead seabream (Sparus aurata) juveniles in combination with a challenge by stocking density (4 vs. 40 g L-1). The experimental period duration was ten days, and the diet with AFB1 was administered to the fish for 85 days prior to the stocking density challenge. Our results indicated an alteration in the carbohydrate and lipid metabolites mobilization in the AFB1 fed group, which was intensified at high stocking density (HSD). The CT group at HSD increased plasma cortisol levels, as expected, whereas the AFB1-HSD group did not. The star mRNA expression, an enzyme involved in cortisol synthesis in the head kidney, presented a ninefold increase in the AFB1 group at low stocking density (LSD) compared to the CT-LSD group. Adenohypophyseal gh mRNA expression increased in the AFB1-HSD but not in the CT-HSD group. Overall, these results confirmed that chronic AFB1 dietary exposure alters the adequate endocrinological physiological cascade response in S. aurata, compromising the expected stress response to an additional stressor, such as overcrowding.
Collapse
Affiliation(s)
- Andre Barany
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI MAR), University of Cádiz, Puerto Real, 11519 Cádiz, Spain;
- Correspondence:
| | - Juan Fuentes
- Centre of Marine Sciences (CCMar), Universidade do Algarve, Gambelas, 8005-139 Faro, Portugal;
| | - Gonzalo Martínez-Rodríguez
- Instituto de Ciencias Marinas de Andalucía, Consejo Superior de Investigaciones Científicas (ICMAN-CSIC), Puerto Real, 11519 Cádiz, Spain;
| | - Juan Miguel Mancera
- Department of Biology, Faculty of Marine and Environmental Sciences, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI MAR), University of Cádiz, Puerto Real, 11519 Cádiz, Spain;
| |
Collapse
|
40
|
Jörgensen S, Lindsjö J, Weber EM, Röcklinsberg H. Reviewing the Review: A Pilot Study of the Ethical Review Process of Animal Research in Sweden. Animals (Basel) 2021; 11:708. [PMID: 33807898 PMCID: PMC8002130 DOI: 10.3390/ani11030708] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/16/2022] Open
Abstract
The use of animals in research entails a range of societal and ethical issues, and there is widespread consensus that animals are to be kept safe from unnecessary suffering. Therefore, harm done to animals in the name of research has to be carefully regulated and undergo ethical review for approval. Since 2013, this has been enforced within the European Union through Directive 2010/63/EU on the protection of animals used for scientific purposes. However, critics argue that the directive and its implementation by member states do not properly consider all aspects of animal welfare, which risks causing unnecessary animal suffering and decreased public trust in the system. In this pilot study, the ethical review process in Sweden was investigated to determine whether or not the system is in fact flawed, and if so, what may be the underlying cause of this. Through in-depth analysis of 18 applications and decisions of ethical reviews, we found that there are recurring problems within the ethical review process in Sweden. Discrepancies between demands set by legislation and the structure of the application form lead to submitted information being incomplete by design. In turn, this prevents the Animal Ethics Committees from being able to fulfill their task of performing a harm-benefit analysis and ensuring Replacement, Reduction, and Refinement (the 3Rs). Results further showed that a significant number of applications failed to meet legal requirements regarding content. Similarly, no Animal Ethics Committee decision contained any account of evaluation of the 3Rs and a majority failed to include harm-benefit analysis as required by law. Hence, the welfare may be at risk, as well as the fulfilling of the legal requirement of only approving "necessary suffering". We argue that the results show an unacceptably low level of compliance in the investigated applications with the legal requirement of performing both a harm-benefit analysis and applying the 3Rs within the decision-making process, and that by implication, public insight through transparency is not achieved in these cases. In order to improve the ethical review, the process needs to be restructured, and the legal demands put on both the applicants and the Animal Ethics Committees as such need to be made clear. We further propose a number of improvements, including a revision of the application form. We also encourage future research to further investigate and address issues unearthed by this pilot study.
Collapse
Affiliation(s)
- Svea Jörgensen
- Department of Animal Environment and Health (HMH), Swedish University of Agricultural Sciences, P.O. Box 7068, 750 07 Uppsala, Sweden; (S.J.); (J.L.)
| | - Johan Lindsjö
- Department of Animal Environment and Health (HMH), Swedish University of Agricultural Sciences, P.O. Box 7068, 750 07 Uppsala, Sweden; (S.J.); (J.L.)
| | - Elin M. Weber
- Department of Animal Environment and Health (HMH), Swedish University of Agricultural Sciences, P.O. Box 234, 532 23 Skara, Sweden;
| | - Helena Röcklinsberg
- Department of Animal Environment and Health (HMH), Swedish University of Agricultural Sciences, P.O. Box 7068, 750 07 Uppsala, Sweden; (S.J.); (J.L.)
| |
Collapse
|
41
|
Tschirren L, Bachmann D, Güler AC, Blaser O, Rhyner N, Seitz A, Zbinden E, Wahli T, Segner H, Refardt D. MyFishCheck: A Model to Assess Fish Welfare in Aquaculture. Animals (Basel) 2021; 11:ani11010145. [PMID: 33440704 PMCID: PMC7826897 DOI: 10.3390/ani11010145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/06/2021] [Indexed: 11/28/2022] Open
Abstract
Simple Summary Welfare is a key aspect in animal husbandry. However, in aquaculture, scientifically validated and practically proven methods to evaluate fish welfare are largely missing. With raising societal requirements for animal-friendly husbandry, this lack represents a problem for farmers and scientists alike. We therefore developed MyFishCheck, a comprehensive model and a user-friendly app to assess and document welfare as part of the working routines in fish husbandry. The app enables an easy and standardised measurement of relevant, practicable and reliable parameters, from which the model calculates intuitive welfare grades. Both the model and the app are explicitly designed to be adaptable to new knowledge and any fish species and husbandry system. MyFishCheck allows a standardised evaluation and digital documentation of fish welfare. As a result, improvements can be tracked and problems identified early. We hope that MyFishCheck proves to be a useful tool for fish farmers and supports them in their effort to improve welfare in aquaculture. Abstract Welfare in animal husbandry includes considerations of biology, ethics, ecology, law and economics. These diverse aspects must be translated into common quantifiable parameters and applicable methods to objectively assess welfare in animals. To assist this process in the field of aquaculture, where such methods are largely missing, we developed a model to assess fish welfare. A network of information was created to link needs, i.e., fundamental requirements for welfare, with parameters, i.e., quantifiable aspects of welfare. From this ontology, 80 parameters that are relevant for welfare, have practicable assessment methods and deliver reliable results were selected and incorporated into a model. The model, named MyFishCheck, allows the evaluation of welfare in five distinct modules: farm management, water quality, fish group behaviour, fish external and fish internal appearance, thereby yielding five individual grades categorising welfare ranging from critical, to poor, to acceptable, and good. To facilitate the use of the model, a software application was written. With its adaptability to different fish species, farming systems, regulations and purposes as well as its user-friendly digital version, MyFishCheck is a next step towards improved fish welfare assessment and provides a basis for ongoing positive developments for the industry, the farmers and the fish.
Collapse
Affiliation(s)
- Linda Tschirren
- Research Group for Aquaculture Systems, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (D.B.); (A.C.G.); (O.B.); (A.S.); (D.R.)
- Centre for Fish and Wildlife Health, University of Berne, 3012 Bern, Switzerland; (T.W.); (H.S.)
- Correspondence: ; Tel.: +41-(0)-58-934-52-31
| | - David Bachmann
- Research Group for Aquaculture Systems, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (D.B.); (A.C.G.); (O.B.); (A.S.); (D.R.)
| | - Ali Cem Güler
- Research Group for Aquaculture Systems, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (D.B.); (A.C.G.); (O.B.); (A.S.); (D.R.)
| | - Oliver Blaser
- Research Group for Aquaculture Systems, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (D.B.); (A.C.G.); (O.B.); (A.S.); (D.R.)
| | - Nicola Rhyner
- Research Group for Environmental Genomics and Systems Biology, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Andreas Seitz
- Research Group for Aquaculture Systems, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (D.B.); (A.C.G.); (O.B.); (A.S.); (D.R.)
| | - Erich Zbinden
- Research Group for Knowledge Engineering, Institute of Applied Simulation, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland;
| | - Thomas Wahli
- Centre for Fish and Wildlife Health, University of Berne, 3012 Bern, Switzerland; (T.W.); (H.S.)
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Berne, 3012 Bern, Switzerland; (T.W.); (H.S.)
| | - Dominik Refardt
- Research Group for Aquaculture Systems, Institute of Natural Resource Sciences, Zurich University of Applied Sciences, 8820 Wädenswil, Switzerland; (D.B.); (A.C.G.); (O.B.); (A.S.); (D.R.)
| |
Collapse
|
42
|
Moreira M, Schrama D, Farinha AP, Cerqueira M, Raposo de Magalhães C, Carrilho R, Rodrigues P. Fish Pathology Research and Diagnosis in Aquaculture of Farmed Fish; a Proteomics Perspective. Animals (Basel) 2021; 11:E125. [PMID: 33430015 PMCID: PMC7827161 DOI: 10.3390/ani11010125] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 12/22/2022] Open
Abstract
One of the main constraints in aquaculture production is farmed fish vulnerability to diseases due to husbandry practices or external factors like pollution, climate changes, or even the alterations in the dynamic of product transactions in this industry. It is though important to better understand and characterize the intervenients in the process of a disease outbreak as these lead to huge economical losses in aquaculture industries. High-throughput technologies like proteomics can be an important characterization tool especially in pathogen identification and the virulence mechanisms related to host-pathogen interactions on disease research and diagnostics that will help to control, prevent, and treat diseases in farmed fish. Proteomics important role is also maximized by its holistic approach to understanding pathogenesis processes and fish responses to external factors like stress or temperature making it one of the most promising tools for fish pathology research.
Collapse
Affiliation(s)
- Márcio Moreira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
- IPMA—Portuguese Institute for the Sea and Atmosphere, EPPO—Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Denise Schrama
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Ana Paula Farinha
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Marco Cerqueira
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
| | - Cláudia Raposo de Magalhães
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Raquel Carrilho
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | - Pedro Rodrigues
- CCMAR—Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal; (M.M.); (D.S.); (A.P.F.); (M.C.); (C.R.d.M.); (R.C.)
- University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
43
|
Tilbrook AJ, Fisher AD. Stress, health and the welfare of laying hens. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
It is essential to understand responses to stress and the impact of stress on physiological and behavioural functioning of hens, so as to assess their welfare. The current understanding of stress in laying hens is comprehensively reviewed here. Most research on stress in hens has focussed on the activity of the adrenal glands, with the most common approach being to measure corticosterone, which is the predominant glucocorticoid produced by birds in response to stress. While these measures are useful, there is a need to understand how the brain regulates stress responses in hens. A greater understanding of the sympathoadrenal system and its interaction with the hypothalamo–pituitary–adrenal axis is required. There is also a lack of knowledge about the many other peptides and regulatory systems involved in stress responses in hens. The usefulness of understanding stress in hens in terms of assessing welfare depends on appreciating that different stressors elicit different responses and that there are often differences in responses to, and impacts of, acute and chronic stress. It is also important to establish the actions and fate of stress hormones within target tissues. It is the consequences of these actions that are important to welfare. A range of other measures has been used to assess stress in hens, including a ratio of heterophils to lymphocytes and haematocrit:packed cell-volume ratio and measures of corticosterone or its metabolites in eggs, excreta, feathers and the secretions of the uropygial gland. Measures in eggs have proffered varying results while measures in feathers may be useful to assess chronic stress. There are various studies in laying hens to indicate impacts of stress on the immune system, health, metabolism, appetite, and the quality of egg production, but, generally, these are limited, variable and are influenced by the management system, environment, genetic selection, type of stressor and whether or not the birds are subjected to acute or chronic stress. Further research to understand the regulation of stress responses and the impact of stress on normal functioning of hens will provide important advances in the assessment of stress and, in turn, the assessment of welfare of laying hens.
Collapse
|
44
|
Evaluation of the Effects of the Enriched-Organic Diets Composition on European Sea Bass Welfare through a Multi-Parametric Approach. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110934] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Three groups of European sea bass (Dicentrarchus labrax) were fed for seven months, with either a conventional diet or two different organic diets, which contain organic vegetables and a natural antioxidant compound. The two organic diets differed themselves in terms of raw proteins, fish oil, and lipid contents. Sea bass welfare condition was assessed in relation to these three diets, using 16 different indicators. These were: swimming activity (recovery test, muscle activity), haematological and serological stress indicators (haematocrit, haemoglobin, red-blood-cell count, cortisol, glucose, lactate), aspecific immunity parameter (lysozyme), indicators of exposure to organic contaminants (7-ethoxyresorufin-O-deethylase and glutathione-S-transferase), and growth parameters (weight gain, specific growth rate, feed conversion ratio, protein efficiency ratio, and hepato-somatic index). Most of these parameters individually did not give consistent responses, but their integration can provide an accurate evaluation of the fish welfare conditions among the three diet experimental groups. The multiparametric approach outlined a comprehensive picture of sea bass physiological state. The principal component analysis and the multi-criteria-decision-analysis were found to be useful tools for an integrated fish welfare assessment, highlighting that the best welfare condition was achieved in the experimental group fed with the protein-rich organic diet.
Collapse
|
45
|
Longitudinal Improvements in Zoo-Housed Elephant Welfare: A Case Study at ZSL Whipsnade Zoo. Animals (Basel) 2020; 10:ani10112029. [PMID: 33158053 PMCID: PMC7694121 DOI: 10.3390/ani10112029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/30/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
Simple Summary Zoo elephant welfare has been the topic of much debate over the last two decades, with criticisms made regarding the husbandry and welfare of these species held in European and North American zoos. The aim of this study was to evidence the value of a species-specific behavioural monitoring programme and highlight the positive improvements in elephant welfare that were made in a single collection case study, by the comparison of behavioural activity budgets (time spent performing a particular behaviour) with previous published literature. This study identifies numerous indicators of positive welfare in our collection, including species-appropriate levels of feeding, low engagement in stereotypy (abnormal repetitive behaviour), and proportions of resting behaviour that are consistent with figures published from comparative zoo individuals. Additionally, we show that positive social associations exist between individuals in our study group, with low incidences of agonistic social behaviour and high engagement in positive social interactions. Finally, we acknowledge that improvements are required to further enhance elephant welfare in zoos and we have used the data collected throughout this research programme to adopt an evidence-based approach to the husbandry and management of Asian elephants at Zoological Society of London (ZSL) Whipsnade Zoo. Abstract Over the last two decades, criticisms were raised regarding the welfare experienced by elephants in European and North American zoos. Concerns regarding the welfare of zoo-housed elephants in the UK and Europe were consolidated in the publication of several key reports, and media interest peaked. Throughout this study we aim to outline the behavioural measures of welfare observed in the current group of Asian elephants (Elephas maximus) at Zoological Society of London (ZSL) Whipsnade Zoo, using key welfare indicators for this species and comparing them to previous published work. Following the instigation of a species-specific research programme, empirical behavioural data were available to quantify any developments in care and welfare. The collection of behavioural information revealed that individuals in our study group engage in low levels of stereotypic behaviour, have formed and maintain strong associations with one another and display a high proportion of engagement in lying rest. We outline that by applying simple, low-cost methods of behavioural data collection and analysis, it is possible to collect evidence that allows us to evaluate individual level welfare. This facilitates the adoption of an evidence-based approach to zoo management as well as demonstrating compliance with updated legislation for this species.
Collapse
|
46
|
Freire CA, Cuenca AL, Leite RD, Prado AC, Rios LP, Stakowian N, Sampaio FD. Biomarkers of homeostasis, allostasis, and allostatic overload in decapod crustaceans of distinct habitats and osmoregulatory strategies: an empirical approach. Comp Biochem Physiol A Mol Integr Physiol 2020; 248:110750. [DOI: 10.1016/j.cbpa.2020.110750] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 06/22/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
|
47
|
Acceptance and Feasibility of a Guideline for the Animal Welfare Assessment of Fattening Pigs from Farmers' Point of View. Animals (Basel) 2020; 10:ani10040711. [PMID: 32325872 PMCID: PMC7222739 DOI: 10.3390/ani10040711] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/02/2022] Open
Abstract
Simple Summary The German Association for Technology and Structures in Agriculture has published the guide “Animal Welfare Indicators: Practical Guide—Pigs”, which is intended to help farmers to evaluate the welfare of pigs. Crucial for the acceptance of the guide by farmers is a high degree of feasibility of the contained indicators as well as the proposed procedure for recording them. To evaluate this, 40 farmers keeping fattening pigs were interviewed. The result is that, apart from faecal soiling and tail length, all the other eleven indicators are accepted for the assessment of fattening pig welfare by a majority of the interviewed farmers (between 57.5% and 90% acceptance per indicator). The feasibility of the individual indicators is overall assessed as positive. However, the study also shows a need for revision of the guide and makes suggestions for its improvement. Abstract The welfare of farm animals is being increasingly discussed in society and politics. To evaluate animal welfare, indicator systems are often used. Such a system has been developed by the German Association for Technology and Structures in Agriculture and suggested in the publication “Animal Welfare Indicators: Practical Guide—Pigs”. The association’s aim is to provide farmers with a useful method for recording the welfare of pigs. Crucial for the acceptance of the guide by farmers is a high degree of feasibility of the recommended indicators as well as the proposed methods for their recording. To evaluate this, 40 farmers keeping fattening pigs were interviewed. The guided semi-structured interview was conducted on the farms after the farmers evaluated the welfare of their fattening pigs according to the guide. The results are: Apart from the indicators faecal soiling and tail length, all the other eleven indicators are accepted for the assessment of fattening pig welfare by a majority of the interviewed farmers (between 57.5% and 90% acceptance per indicator). Furthermore, the feasibility of the individual indicators was assessed as being positive. The relationship between time expenditure and benefit was rated on a five-point scale at an average of 3.1 (medium), which clearly shows that there is a need for further development of this guide. Some possible changes with a potential for improvement could be identified; for example, the aggregation of the results after the collection of the individual indicators to an overall result that can be compared and interpreted.
Collapse
|
48
|
Raposo de Magalhães C, Schrama D, Farinha AP, Revets D, Kuehn A, Planchon S, Rodrigues PM, Cerqueira M. Protein changes as robust signatures of fish chronic stress: a proteomics approach to fish welfare research. BMC Genomics 2020; 21:309. [PMID: 32306896 PMCID: PMC7168993 DOI: 10.1186/s12864-020-6728-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 04/13/2020] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Aquaculture is a fast-growing industry and therefore welfare and environmental impact have become of utmost importance. Preventing stress associated to common aquaculture practices and optimizing the fish stress response by quantification of the stress level, are important steps towards the improvement of welfare standards. Stress is characterized by a cascade of physiological responses that, in-turn, induce further changes at the whole-animal level. These can either increase fitness or impair welfare. Nevertheless, monitorization of this dynamic process has, up until now, relied on indicators that are only a snapshot of the stress level experienced. Promising technological tools, such as proteomics, allow an unbiased approach for the discovery of potential biomarkers for stress monitoring. Within this scope, using Gilthead seabream (Sparus aurata) as a model, three chronic stress conditions, namely overcrowding, handling and hypoxia, were employed to evaluate the potential of the fish protein-based adaptations as reliable signatures of chronic stress, in contrast with the commonly used hormonal and metabolic indicators. RESULTS A broad spectrum of biological variation regarding cortisol and glucose levels was observed, the values of which rose higher in net-handled fish. In this sense, a potential pattern of stressor-specificity was clear, as the level of response varied markedly between a persistent (crowding) and a repetitive stressor (handling). Gel-based proteomics analysis of the plasma proteome also revealed that net-handled fish had the highest number of differential proteins, compared to the other trials. Mass spectrometric analysis, followed by gene ontology enrichment and protein-protein interaction analyses, characterized those as humoral components of the innate immune system and key elements of the response to stimulus. CONCLUSIONS Overall, this study represents the first screening of more reliable signatures of physiological adaptation to chronic stress in fish, allowing the future development of novel biomarker models to monitor fish welfare.
Collapse
Affiliation(s)
- Cláudia Raposo de Magalhães
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Denise Schrama
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Ana Paula Farinha
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Dominique Revets
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Annette Kuehn
- Luxembourg Institute of Health, Department of Infection and Immunity, 29, rue Henri Koch, L-4354, Esch-sur-Alzette, Luxembourg
| | - Sébastien Planchon
- Luxembourg Institute of Science and Technology, Environmental Research and Innovation (ERIN) Department, 5, avenue des Hauts-Fourneaux, L-4362, Esch-sur-Alzette, Luxembourg
| | - Pedro Miguel Rodrigues
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal
| | - Marco Cerqueira
- Centre of Marine Sciences, CCMAR, Universidade do Algarve, Campus de Gambelas, Edifício 7, 8005-139, Faro, Portugal.
| |
Collapse
|
49
|
Lesimple C. Indicators of Horse Welfare: State-of-the-Art. Animals (Basel) 2020; 10:E294. [PMID: 32069888 PMCID: PMC7070675 DOI: 10.3390/ani10020294] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 11/16/2022] Open
Abstract
Animal welfare is defined as a chronic state reflecting an individual's subjective perception of its situation. Because it is possible to be in a good welfare state and nevertheless experience acute fear or pain, and conversely, short-term positive emotions can be experienced during impaired welfare states, welfare as a chronic state has to be clearly distinguished from temporary states related to emotions, pain or stress. The evaluation of non-verbal individuals' welfare state, particularly in interspecific situations, is a real challenge that necessarily implies animal-based measures and requires multidisciplinary scientifically validated measures. In the last decade, studies investigating horses' welfare flourished together with new measures that were not always scientifically tested before being used. At a time were legal decisions are made on animal welfare, it is crucial to rely on reliable welfare indicators in order to prevent false evaluation. The aim of this review is to identify the scientifically tested and reliable indicators of horses' welfare (e.g., body lesions, apathy, aggressiveness, stereotypic behaviours) from signals of temporary states related to acute pain emotions or stress and from popular beliefs, in order to give the scientific community and the horse industry accurate evaluation tools.
Collapse
Affiliation(s)
- Clémence Lesimple
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie Animale et Humaine)-UMR 6552, F-35380 Paimpont, France
| |
Collapse
|
50
|
Abstract
Animal welfare is a growing societal concern and the well-being of animals used
for experimental purposes is under particular scrutiny. The vast majority of
laboratory animals are mice living in small cages that do not offer very much
variety. Moreover, the experimental procedure often takes very little time
compared to the time these animals have been bred to the desired age or are
being held available for animal experimentation. However, for the assessment of
animal welfare, the time spent waiting for an experiment or the time spent after
finishing an experiment has also to be taken into account. In addition to
experimental animals, many additional animals (e.g. for breeding and maintenance
of genetic lines, surplus animals) are related to animal experimentation and
usually face similar living conditions. Therefore, in terms of improving the
overall welfare of laboratory animals, there is not only a need for refinement
of experimental conditions but especially for improving living conditions
outside the experiment. The improvement of animal welfare thus depends to a
large extent on the housing and maintenance conditions of all animals related to
experimentation. Given the current state of animal welfare research there is
indeed a great potential for improving the overall welfare of laboratory
animals.
Collapse
Affiliation(s)
- Lars Lewejohann
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany.,Institute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Germany
| | - Kerstin Schwabe
- Department of Neurosurgery, Hannover Medical School, Germany
| | - Christine Häger
- Institute for Laboratory Animal Science, Hannover Medical School, Germany
| | - Paulin Jirkof
- Department Animal Welfare and 3Rs, University of Zurich, Switzerland
| |
Collapse
|