1
|
Chen Z, Xu T, Liu X, Becker B, Li W, Xia L, Zhao W, Zhang R, Huo Z, Hu B, Tang Y, Xiao Z, Feng Z, Chen J, Feng T. Cortical gradient perturbation in attention deficit hyperactivity disorder correlates with neurotransmitter-, cell type-specific and chromosome- transcriptomic signatures. Psychiatry Clin Neurosci 2024; 78:309-321. [PMID: 38334172 DOI: 10.1111/pcn.13649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024]
Abstract
AIMS This study aimed to illuminate the neuropathological landscape of attention deficit hyperactivity disorder (ADHD) by a multiscale macro-micro-molecular perspective from in vivo neuroimaging data. METHODS The "ADHD-200 initiative" repository provided multi-site high-quality resting-state functional connectivity (rsfc-) neuroimaging for ADHD children and matched typically developing (TD) cohort. Diffusion mapping embedding model to derive the functional connectome gradient detecting biologically plausible neural pattern was built, and the multivariate partial least square method to uncover the enrichment of neurotransmitomic, cellular and chromosomal gradient-transcriptional signatures of AHBA enrichment and meta-analytic decoding. RESULTS Compared to TD, ADHD children presented connectopic cortical gradient perturbations in almost all the cognition-involved brain macroscale networks (all pBH <0.001), but not in the brain global topology. As an intermediate phenotypic variant, such gradient perturbation was spatially enriched into distributions of GABAA/BZ and 5-HT2A receptors (all pBH <0.01) and co-varied with genetic transcriptional expressions (e.g. DYDC2, ATOH7, all pBH <0.01), associated with phenotypic variants in episodic memory and emotional regulations. Enrichment models demonstrated such gradient-transcriptional variants indicated the risk of both cell-specific and chromosome- dysfunctions, especially in enriched expression of oligodendrocyte precursors and endothelial cells (all pperm <0.05) as well enrichment into chromosome 18, 19 and X (pperm <0.05). CONCLUSIONS Our findings bridged brain macroscale neuropathological patterns to microscale/cellular biological architectures for ADHD children, demonstrating the neurobiologically pathological mechanism of ADHD into the genetic and molecular variants in GABA and 5-HT systems as well brain-derived enrichment of specific cellular/chromosomal expressions.
Collapse
Affiliation(s)
- Zhiyi Chen
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ting Xu
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Xuerong Liu
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Benjamin Becker
- Department of Psychology, The University of Hong Kong, Hong Kong, China
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
| | - Wei Li
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Lei Xia
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Wenqi Zhao
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Zhenzhen Huo
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Bowen Hu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Yancheng Tang
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Zhibing Xiao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Zhengzhi Feng
- Experimental Research Center of Medical and Psychological Science, School of Psychology, Third Military Medical University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Ji Chen
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China
- Department of Psychiatry, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
2
|
van Ruitenbeek P, Franzen L, Mason NL, Stiers P, Ramaekers JG. Methylphenidate as a treatment option for substance use disorder: a transdiagnostic perspective. Front Psychiatry 2023; 14:1208120. [PMID: 37599874 PMCID: PMC10435872 DOI: 10.3389/fpsyt.2023.1208120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
A transition in viewing mental disorders from conditions defined as a set of unique characteristics to one of the quantitative variations on a collection of dimensions allows overlap between disorders. The overlap can be utilized to extend to treatment approaches. Here, we consider the overlap between attention-deficit/hyperactivity disorder and substance use disorder to probe the suitability to use methylphenidate as a treatment for substance use disorder. Both disorders are characterized by maladaptive goal-directed behavior, impaired cognitive control, hyperactive phasic dopaminergic neurotransmission in the striatum, prefrontal hypoactivation, and reduced frontal cortex gray matter volume/density. In addition, methylphenidate has been shown to improve cognitive control and normalize associated brain activation in substance use disorder patients and clinical trials have found methylphenidate to improve clinical outcomes. Despite the theoretical basis and promising, but preliminary, outcomes, many questions remain unanswered. Most prominent is whether all patients who are addicted to different substances may equally profit from methylphenidate treatment.
Collapse
Affiliation(s)
- Peter van Ruitenbeek
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | | | | | | | | |
Collapse
|
3
|
Bianchi L, Espinosa E, Lazzari J, Asnaghi R, Poles I, Clementi L, Santambrogio MD. Rethinking Theta/Beta Ratio in ADHD through Functional Data Analysis. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083088 DOI: 10.1109/embc40787.2023.10340127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
ADHD is a neurodevelopmental disorder largely diffused among children and adolescents. The current method of diagnosis is based on agreed clinical literature such as DSM-5, by identifying and evaluating signs of hyperactivity and inattention. Multiple reviews have assessed that EEG is not sufficiently reliable for the diagnosis of ADHD. Theta-Beta Ratio is now the sole EEG parameter considered for analysis, although it is not robust enough to be utilized as a confirmatory technique for diagnosis. In this setting, new objective approaches for reliably classifying neurotypical and ADHD subjects are required. As a result, we suggest a new methodology based on Functional Data Analysis, a statistical class of methods for dealing with curves and functions. The initial stage in our method is to separate frequency bands from the EEG signal using a wavelet decomposition. We next compute the Power Spectral Densities of each of these bands and represent them as mathematical functions via spline interpolation. Finally, the relevance of the collected features is assessed using the Permutation ANOVA test. Using this method, we can detect different patterns in the PSDs of the groups and identify statistically significant features, confirming prior findings in the literature. We validate the features using classification techniques such as Bagging trees, Random Forest, and AdaBoost. The latter reaches the highest accuracy score of 76.65%, confirming the relevance of the extracted features.
Collapse
|
4
|
Chen XJ, Kwak Y. Contribution of the sensorimotor beta oscillations and the cortico-basal ganglia-thalamic circuitry during value-based decision making: A simultaneous EEG-fMRI investigation. Neuroimage 2022; 257:119300. [PMID: 35568351 DOI: 10.1016/j.neuroimage.2022.119300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 04/20/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022] Open
Abstract
In decision neuroscience, the motor system has primarily been considered to be involved in executing choice actions. However, a competing perspective suggests its engagement in the evaluation of options, traditionally considered to be performed by the brain's valuation system. Here, we investigate the role of the motor system in value-based decision making by determining the neural circuitries associated with the sensorimotor beta oscillations previously identified to encode decision options. In a simultaneous EEG-fMRI study, participants evaluated reward and risk associated with a forthcoming action. A significant sensorimotor beta desynchronization was identified prior to and independent of response. The level of beta desynchronization showed evidence of encoding the reward levels. This beta desynchronization covaried, on a trial-by-trial level, with BOLD activity in the cortico-basal ganglia-thalamic circuitry. In contrast, there was only a weak covariation within the valuation network, despite significant modulation of its BOLD activity by reward levels. These results suggest that the way in which decision variables are processed differs in the valuation network and in the cortico-basal ganglia-thalamic circuitry. We propose that sensorimotor beta oscillations indicate incentive motivational drive towards a choice action computed from the decision variables even prior to making a response, and it arises from the cortico-basal ganglia-thalamic circuitry.
Collapse
Affiliation(s)
- Xing-Jie Chen
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Youngbin Kwak
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA.
| |
Collapse
|
5
|
Canseco-Alba A, Sanabria B, Hammouda M, Bernadin R, Mina M, Liu QR, Onaivi ES. Cell-Type Specific Deletion of CB2 Cannabinoid Receptors in Dopamine Neurons Induced Hyperactivity Phenotype: Possible Relevance to Attention-Deficit Hyperactivity Disorder. Front Psychiatry 2022; 12:803394. [PMID: 35211038 PMCID: PMC8860836 DOI: 10.3389/fpsyt.2021.803394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/31/2021] [Indexed: 12/23/2022] Open
Abstract
DAT-Cnr2 mice are conditional knockout (cKO) animals that do not express cannabinoid CB2 receptors (CB2R), in midbrain dopamine neurons. The hyperactivity phenotype of DAT-Cnr2 cKO mice were paradoxically reduced by low dose of amphetamine. Here, we report on the locomotor activity analysis in male and female adolescent (PND 30 ± 2) mice in basal conditions and in response to different doses of amphetamine, using the Open Field (OF), Elevated Plus-Maze (EPM) tests and the Novel Object Recognition (NOR) task as a putative model of attention deficit hyperactivity disorder (ADHD). Results showed that both male and female adolescent DAT-Cnr2 mice displayed significant increases in distance traveled in the OF test compared with WT mice. However, 2 mg/kg dose of amphetamine reduced the distance traveled by the DAT-Cnr2 but was increased in the WT mice. In the EPM test of anxiety-like behavioral responses, DAT-Cnr2 spent more time in the open arms of the maze than the WT mice, suggesting a reduction in anxiety-like response. DAT-Cnr2 mice showed significant increase in the number of unprotected head dips in the maze test and in the cliff avoidance reaction (CAR) test demonstrating impulsivity and risky behavior. DAT-Cnr2 mice also exhibited deficient response in the delay decision making (DDM), with impulsive choice. Both DAT-Cnr2 and WT were able to recognize the new object in the NOR task, but the exploration by the DAT-Cnr2 was less than that of the WT mice. Following the administration of 2 mg/kg of amphetamine, the similarities and differential performances of the DAT-Cnr2 and WT mice in the EPM test and NOR task was probably due to increase in attention. Microglia activation detected by Cd11b immunolabelling was enhanced in the hippocampus in DAT-Cnr2 cKO than in WT mice, implicating neuro-immune modulatory effects of CB2R. The results demonstrates that DAT-Cnr2 cKO mice with cell-type specific deletion of CB2R in midbrain dopaminergic neurons may represent a possible model for studying the neurobiological basis of ADHD.
Collapse
Affiliation(s)
- Ana Canseco-Alba
- Dirección de Investigación, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City, Mexico
| | - Branden Sanabria
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Mariam Hammouda
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Rollanda Bernadin
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Marizel Mina
- Department of Biology, William Paterson University, Wayne, NJ, United States
| | - Qing-Rong Liu
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Emmanuel S. Onaivi
- Department of Biology, William Paterson University, Wayne, NJ, United States
| |
Collapse
|
6
|
Buck JM, Yu L, Knopik VS, Stitzel JA. DNA methylome perturbations: an epigenetic basis for the emergingly heritable neurodevelopmental abnormalities associated with maternal smoking and maternal nicotine exposure†. Biol Reprod 2021; 105:644-666. [PMID: 34270696 PMCID: PMC8444709 DOI: 10.1093/biolre/ioab138] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 11/13/2022] Open
Abstract
Maternal smoking during pregnancy is associated with an ensemble of neurodevelopmental consequences in children and therefore constitutes a pressing public health concern. Adding to this burden, contemporary epidemiological and especially animal model research suggests that grandmaternal smoking is similarly associated with neurodevelopmental abnormalities in grandchildren, indicative of intergenerational transmission of the neurodevelopmental impacts of maternal smoking. Probing the mechanistic bases of neurodevelopmental anomalies in the children of maternal smokers and the intergenerational transmission thereof, emerging research intimates that epigenetic changes, namely DNA methylome perturbations, are key factors. Altogether, these findings warrant future research to fully elucidate the etiology of neurodevelopmental impairments in the children and grandchildren of maternal smokers and underscore the clear potential thereof to benefit public health by informing the development and implementation of preventative measures, prophylactics, and treatments. To this end, the present review aims to encapsulate the burgeoning evidence linking maternal smoking to intergenerational epigenetic inheritance of neurodevelopmental abnormalities, to identify the strengths and weaknesses thereof, and to highlight areas of emphasis for future human and animal model research therein.
Collapse
Affiliation(s)
- Jordan M Buck
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| | - Li Yu
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Valerie S Knopik
- Department of Human Development and Family Studies, Purdue University, West Lafayette, IN, USA
| | - Jerry A Stitzel
- Institute for Behavioral Genetics, University of Colorado Boulder, Boulder, CO, USA
- Department of Integrative Physiology, University of Colorado, Boulder, Boulder, CO, USA
| |
Collapse
|
7
|
Yang Y, Lee SM, Imamura F, Gowda K, Amin S, Mailman RB. D1 dopamine receptors intrinsic activity and functional selectivity affect working memory in prefrontal cortex. Mol Psychiatry 2021; 26:645-655. [PMID: 30532019 PMCID: PMC9710464 DOI: 10.1038/s41380-018-0312-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/29/2023]
Abstract
Dopamine D1 agonists enhance cognition, but the role of different signaling pathways (e.g., cAMP or β-arrestin) is unclear. The current study compared 2-methyldihydrexidine and CY208,243, drugs with different degrees of both D1 intrinsic activity and functional selectivity. 2-Methyldihydrexidine is a full agonist at adenylate cyclase and a super-agonist at β-arrestin recruitment, whereas CY208,243 has relatively high intrinsic activity at adenylate cyclase, but much lower at β-arrestin recruitment. Both drugs decreased, albeit in dissimilar ways, the firing rate of neurons in prefrontal cortex sensitive to outcome-related aspects of a working memory task. 2-Methyldihydrexidine was superior to CY208,243 in prospectively enhancing similarity and retrospectively distinguishing differences between correct and error outcomes based on firing rates, enhancing the micro-network measured by oscillations of spikes and local field potentials, and improving behavioral performance. This study is the first to examine how ligand signaling bias affects both behavioral and neurophysiological endpoints in the intact animal. The data show that maximal enhancement of cognition via D1 activation occurred with a pattern of signaling that involved full unbiased intrinsic activity, or agonists with high β-arrestin activity.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA, 17033, USA.
| | - Sang-Min Lee
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Fumiaki Imamura
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Krishne Gowda
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Shantu Amin
- Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033
| | - Richard B. Mailman
- Department of Neurology, Penn State University College of Medicine, Hershey PA 17033.,Department of Pharmacology, Penn State University College of Medicine, Hershey PA 17033.,Correspondence to: ,
| |
Collapse
|
8
|
Attention Networks in ADHD Adults after Working Memory Training with a Dual n-Back Task. Brain Sci 2020; 10:brainsci10100715. [PMID: 33050115 PMCID: PMC7600375 DOI: 10.3390/brainsci10100715] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/08/2023] Open
Abstract
Patients affected by Attention-Deficit/Hyperactivity Disorder (ADHD) are characterized by impaired executive functioning and/or attention deficits. Our study aim is to determine whether the outcomes measured by the Attention Network Task (ANT), i.e., the reaction times (RTs) to specific target and cue conditions and alerting, orienting, and conflict (or executive control) effects are affected by cognitive training with a Dual n-back task. We considered three groups of young adult participants: ADHD patients without medication (ADHD), ADHD with medication (MADHD), and age/education-matched controls. Working memory training consisted of a daily practice of 20 blocks of Dual n-back task (approximately 30 min per day) for 20 days within one month. Participants of each group were randomly assigned into two subgroups, the first one with an adaptive mode of difficulty (adaptive training), while the second was blocked at the level 1 during the whole training phase (1-back task, baseline training). Alerting and orienting effects were not modified by working memory training. The dimensional analysis showed that after baseline training, the lesser the severity of the hyperactive-impulsive symptoms, the larger the improvement of reaction times on trials with high executive control/conflict demand (i.e., what is called Conflict Effect), irrespective of the participants’ group. In the categorical analysis, we observed the improvement in such Conflict Effect after the adaptive training in adult ADHD patients irrespective of their medication, but not in controls. The ex-Gaussian analysis of RT and RT variability showed that the improvement in the Conflict Effect correlated with a decrease in the proportion of extreme slow responses. The Dual n-back task in the adaptive mode offers as a promising candidate for a cognitive remediation of adult ADHD patients without pharmaceutical medication.
Collapse
|
9
|
Recovery of BDNF and CB1R in the Prefrontal Cortex Underlying Improvement of Working Memory in Prenatal DEHP-Exposed Male Rats after Aerobic Exercise. Int J Mol Sci 2020; 21:ijms21113867. [PMID: 32485872 PMCID: PMC7312003 DOI: 10.3390/ijms21113867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/21/2020] [Accepted: 05/28/2020] [Indexed: 01/02/2023] Open
Abstract
Early-life exposure to di-(2-ethylhexyl)-phthalate (DEHP) has been suggested to relate to hyperactivity, lack of attention, and working memory deficits in school-age children. Brain-derived neurotrophic factor (BDNF) and endocannabinoids are induced by aerobic exercises to provide beneficial effects on brain functions. This study investigated the mechanisms underlying working memory impairment and the protective role of exercise in prenatal DEHP-exposed male rats. Sprague Dawley dams were fed with vehicle or DEHP during gestation. The male offspring were trained to exercise on a treadmill for 5 weeks, which was followed by an assessment of their working memory with a T-maze delayed non-match-to-sample task. The expressions of BDNF, dopamine D1 receptor (D1R), cannabinoid receptor 1 (CB1R), and fatty acid amide hydrolase (FAAH) in the prefrontal cortex were detected by Western blot. The results showed that DEHP-exposed rats exhibited working memory impairments without significant alterations in locomotor activities. The reduced expressions of prefrontal BDNF and CB1R were obtained in the DEHP-exposed rats, while D1R and FAAH were barely affected. Importantly, aerobic exercise during childhood-adolescence prevented the impairment of working memory in the DEHP-exposed rats by recovering the BDNF and CB1R expressions in the prefrontal cortex. These findings suggest that exercise may provide beneficial effects in ameliorating the impairment of working memory in the prenatal DEHP-exposed male rats at late adolescence.
Collapse
|
10
|
Zhou R, Wang J, Han X, Ma B, Yuan H, Song Y. Baicalin regulates the dopamine system to control the core symptoms of ADHD. Mol Brain 2019; 12:11. [PMID: 30736828 PMCID: PMC6368814 DOI: 10.1186/s13041-019-0428-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/17/2019] [Indexed: 12/13/2022] Open
Abstract
We aimed to test the therapeutic effects of baicalin on attention deficit hyperactivity disorder (ADHD) in an animal model and to explain the potential mechanism. We investigated the therapeutic effects and mechanisms of baicalin in a spontaneously hypertensive rat (SHR) model of ADHD depending on the dopamine (DA) deficit theory. In this study, fifty SHRs were randomly divided into five groups: methylphenidate (MPH), baicalin (50 mg/kg, 100 mg/kg, or 150 mg/kg), and saline-treated. Ten Wistar Kyoto (WKY) rats were used as controls. All rats were orally administered the treatment for four weeks. Motor activity, spatial learning and memory ability were assessed with the open-field and Morris water-maze tests. The mRNA and protein levels of tyrosine hydroxylase (TH), vesicular monoamine transporter 2 (VMAT2), synaptosomal-associated protein of molecular mass 25kD (SNAP25) and synataxin 1a in synaptosomes were detected with real-time polymerase chain reaction (PCR) and Western blot. In addition, DA levels were measured in the prefrontal cortex and striatum. The results indicated that both MPH and baicalin at doses of 150 mg/kg and 100 mg/kg significantly decreased the hyperactivity and improved the spatial learning memory deficit in the SHRs and increased the synaptosomal mRNA and protein levels of TH, SNAP25, VMAT2 and synataxin 1a compared with saline treatment. MPH significantly increased DA levels in both the prefrontal cortex (PFC) and striatum, while baicalin significantly increased DA levels only in the striatum. The results of the present study showed that baicalin treatment was effective for controlling the core symptoms of ADHD. Baicalin increased DA levels only in the striatum, which suggested that baicalin may target the striatum. The increased DA levels may partially be attributed to the increased mRNA and protein expression of TH, SNAP25, VMAT2, and syntaxin 1a. Therefore, these results suggested that the pharmacological effects of baicalin were associated with the synthesis, vesicular localization, and release of DA and might be effective in treating ADHD. However, further studies are required to better understand the molecular mechanisms underlying these findings.
Collapse
Affiliation(s)
- Rongyi Zhou
- The First Affiliated Hospital of Henan University of Chinese Medicine, Renmin road no.19, Jinshui District, Zhengzhou City, 450000, Henan Province, China.
| | - Jiaojiao Wang
- Nanjing University of Chinese Medicine, Xianlin road no.138, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Xinmin Han
- Nanjing University of Chinese Medicine, Xianlin road no.138, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Bingxiang Ma
- The First Affiliated Hospital of Henan University of Chinese Medicine, Renmin road no.19, Jinshui District, Zhengzhou City, 450000, Henan Province, China
| | - Haixia Yuan
- Nanjing University of Chinese Medicine, Xianlin road no.138, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| | - Yuchen Song
- Nanjing University of Chinese Medicine, Xianlin road no.138, Qixia District, Nanjing City, Jiangsu Province, 210023, China
| |
Collapse
|
11
|
Jhang CL, Huang TN, Hsueh YP, Liao W. Mice lacking cyclin-dependent kinase-like 5 manifest autistic and ADHD-like behaviors. Hum Mol Genet 2018; 26:3922-3934. [PMID: 29016850 DOI: 10.1093/hmg/ddx279] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 07/10/2017] [Indexed: 01/02/2023] Open
Abstract
Neurodevelopmental disorders frequently share common clinical features and appear high rate of comorbidity, such as those present in patients with attention-deficit hyperactivity disorder (ADHD) and autism spectrum disorders (ASD). While characterizing behavioral phenotypes in the mouse model of cyclin-dependent kinase-like 5 (CDKL5) disorder, a neurodevelopmental disorder caused by mutations in the X-linked gene encoding CDKL5, we found that these mice manifested behavioral phenotypes mimicking multiple key features of ASD, such as impaired social interaction and communication, as well as increased stereotypic digging behaviors. These mice also displayed hyper-locomotion, increased aggressiveness and impulsivity, plus deficits in motor and associative learning, resembling primary symptoms of ADHD. Through brain region-specific biochemical analysis, we uncovered that loss of CDKL5 disrupts dopamine synthesis and the expression of social communication-related key genes, such as forkhead-box P2 and mu-opioid receptor, in the corticostriatal circuit. Together, our findings support that CDKL5 plays a role in the comorbid features of autism and ADHD, and mice lacking CDKL5 may serve as an animal model to study the molecular and circuit mechanisms underlying autism-ADHD comorbidity.
Collapse
Affiliation(s)
- Cian-Ling Jhang
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan
| | - Tzyy-Nan Huang
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, Taipei 115, Taiwan
| | - Wenlin Liao
- Institute of Neuroscience, National Cheng-Chi University, Taipei 116, Taiwan.,Research Center for Mind, Brain and Learning, National Cheng-Chi University, Taipei 116, Taiwan
| |
Collapse
|
12
|
Íbias J, Miguéns M, Pellón R. Effects of dopamine agents on a schedule-induced polydipsia procedure in the spontaneously hypertensive rat and in Wistar control rats. J Psychopharmacol 2016; 30:856-66. [PMID: 27296274 DOI: 10.1177/0269881116652598] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The spontaneously hypertensive rat (SHR) has been proposed as an animal model for attention deficit hyperactivity disorder (ADHD), and typically develops excessive patterns of response under most behavioural protocols. Schedule-induced polydipsia (SIP) is the excessive water consumption that occurs as a schedule effect when food is intermittently delivered and animals are partially food- but not water-deprived. SIP has been used as a model of excessive behaviour, and considerable evidence has involved the dopaminergic system in its development and maintenance. The aim of this study was to evaluate the effects of the most common psychostimulants used in ADHD treatment on SIP, comparing their effects in SHRs with rats from control populations. SHR, Wistar Kyoto (WKY) and Wistar rats were submitted to a multiple fixed time (FT) food schedule with two components: 30 s and 90 s. The acute effects of different dopaminergic compounds were evaluated after 40 sessions of SIP acquisition. All animals showed higher adjunctive drinking under FT 30 s than FT 90 s, and SHRs displayed higher asymptotic SIP levels in FT 90 s compared to WKY and Wistar rats. SHRs were less sensitive to dopaminergic agents than control rats in terms of affecting rates of adjunctive drinking. These differences point to an altered dopaminergic system in the SHR and provide new insights into the neurobiological basis of ADHD pharmacological treatments.
Collapse
Affiliation(s)
- Javier Íbias
- Animal Behaviour Laboratories, Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Miguel Miguéns
- Animal Behaviour Laboratories, Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Ricardo Pellón
- Animal Behaviour Laboratories, Departamento de Psicología Básica I, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| |
Collapse
|
13
|
Parker KL, Ruggiero RN, Narayanan NS. Infusion of D1 Dopamine Receptor Agonist into Medial Frontal Cortex Disrupts Neural Correlates of Interval Timing. Front Behav Neurosci 2015; 9:294. [PMID: 26617499 PMCID: PMC4639709 DOI: 10.3389/fnbeh.2015.00294] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/19/2015] [Indexed: 12/02/2022] Open
Abstract
Medial frontal cortical (MFC) dopamine is essential for the organization of behavior in time. Our prior work indicates that blocking D1 dopamine receptors (D1DR) attenuates temporal processing and low-frequency oscillations by MFC neuronal networks. Here we investigate the effects of focal infusion of the D1DR agonist SKF82958 into MFC during interval timing. MFC D1DR agonist infusion impaired interval timing performance without changing overall firing rates of MFC neurons. MFC ramping patterns of neuronal activity that reflect temporal processing were attenuated following infusion of MFC D1DR agonist. MFC D1DR agonist infusion also altered MFC field potentials by enhancing delta activity between 1 and 4 Hz and attenuating alpha activity between 8 and 15 Hz. These data support the idea that the influence of D1-dopamine signals on frontal neuronal activity adheres to a U-shaped curve, and that cognition requires optimal levels of dopamine in frontal cortex.
Collapse
|
14
|
Kishore A, Meunier S, Popa T. Cerebellar influence on motor cortex plasticity: behavioral implications for Parkinson's disease. Front Neurol 2014; 5:68. [PMID: 24834063 PMCID: PMC4018542 DOI: 10.3389/fneur.2014.00068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 04/21/2014] [Indexed: 11/13/2022] Open
Abstract
Normal motor behavior involves the creation of appropriate activity patterns across motor networks, enabling firing synchrony, synaptic integration, and normal functioning of these networks. Strong topography-specific connections among the basal ganglia, cerebellum, and their projections to overlapping areas in the motor cortices suggest that these networks could influence each other's plastic responses and functions. The defective striatal signaling in Parkinson's disease (PD) could therefore lead to abnormal oscillatory activity and aberrant plasticity at multiple levels within the interlinked motor networks. Normal striatal dopaminergic signaling and cerebellar sensory processing functions influence the scaling and topographic specificity of M1 plasticity. Both these functions are abnormal in PD and appear to contribute to the abnormal M1 plasticity. Defective motor map plasticity and topographic specificity within M1 could lead to incorrect muscle synergies, which could manifest as abnormal or undesired movements, and as abnormal motor learning in PD. We propose that the loss of M1 plasticity in PD reflects a loss of co-ordination among the basal ganglia, cerebellar, and cortical inputs which translates to an abnormal plasticity of motor maps within M1 and eventually to some of the motor signs of PD. The initial benefits of dopamine replacement therapy on M1 plasticity and motor signs are lost during the progressive course of disease. Levodopa-induced dyskinesias in patients with advanced PD is linked to a loss of M1 sensorimotor plasticity and the attenuation of dyskinesias by cerebellar inhibitory stimulation is associated with restoration of M1 plasticity. Complimentary interventions should target reestablishing physiological communication between the striatal and cerebellar circuits, and within striato-cerebellar loop. This may facilitate correct motor synergies and reduce abnormal movements in PD.
Collapse
Affiliation(s)
- Asha Kishore
- Department of Neurology, Comprehensive Care Centre for Movement Disorders, Sree Chitra Tirunal Institute for Medical Sciences and Technology , Kerala , India
| | - Sabine Meunier
- Institut du Cerveau et de la Moelle epiniere (ICM), INSERM U1127, CNRS UMR 7225, Université Pierre et Marie Curie-Paris 6 UMR S975 , Paris , France ; Centre de Neuroimagerie de Recherche (CENIR), l'Institut du Cerveau et de la Moelle epiniere (ICM) , Paris , France
| | - Traian Popa
- Institut du Cerveau et de la Moelle epiniere (ICM), INSERM U1127, CNRS UMR 7225, Université Pierre et Marie Curie-Paris 6 UMR S975 , Paris , France ; Centre de Neuroimagerie de Recherche (CENIR), l'Institut du Cerveau et de la Moelle epiniere (ICM) , Paris , France
| |
Collapse
|
15
|
Neonatal +-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists. Int J Neuropsychopharmacol 2013; 16:377-91. [PMID: 22391043 PMCID: PMC4594858 DOI: 10.1017/s1461145712000144] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neonatal exposure to (+)-methamphetamine (Meth) results in long-term behavioural abnormalities but its developmental mechanisms are unknown. In a series of experiments, rats were treated from post-natal days (PD) 11-20 (stage that approximates human development from the second to third trimester) with Meth or saline and assessed using locomotor activity as the readout following pharmacological challenge doses with dopamine, serotonin and glutamate agonists or antagonists during adulthood. Exposure to Meth early in life resulted in an exaggerated adult locomotor hyperactivity response to the dopamine D1 agonist SKF-82958 at multiple doses, a high dose only under-response activating effect of the D2 agonist quinpirole, and an exaggerated under-response to the activating effect of the N-methyl-d-aspartic acid (NMDA) receptor antagonist, MK-801. No change in locomotor response was seen following challenge with the 5-HT releaser p-chloroamphetamine or the 5-HT2/3 receptor agonist, quipazine. These are the first data to show that PD 11-20 Meth exposure induces long-lasting alterations to dopamine D1, D2 and glutamate NMDA receptor function and may suggest how developmental Meth exposure leads to many of its long-term adverse effects.
Collapse
|
16
|
Ha CM, Park D, Han JK, Jang JI, Park JY, Hwang EM, Seok H, Chang S. Calcyon forms a novel ternary complex with dopamine D1 receptor through PSD-95 protein and plays a role in dopamine receptor internalization. J Biol Chem 2012; 287:31813-22. [PMID: 22843680 DOI: 10.1074/jbc.m112.370601] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Calcyon, once known for interacting directly with the dopamine D(1) receptor (D(1)DR), is implicated in various neuropsychiatric disorders including schizophrenia, bipolar disorder, and attention deficit hyperactivity disorder. Although its direct interaction with D(1)DR has been shown to be misinterpreted, it still plays important roles in D(1)DR signaling. Here, we found that calcyon interacts with the PSD-95 and subsequently forms a ternary complex with D(1)DR through PSD-95. Calcyon is phosphorylated on Ser-169 by the PKC activator phorbol 12-myristate 13-acetate or by the D(1)DR agonist SKF-81297, and its phosphorylation increases its association with PSD-95 and recruitment to the cell surface. Interestingly, the internalization of D(1)DR at the cell surface was enhanced by phorbol 12-myristate 13-acetate and SKF-81297 in the presence of calcyon, but not in the presence of its S169A phospho-deficient mutant, suggesting that the phosphorylation of calcyon and the internalization of the surface D(1)DR are tightly correlated. Our results suggest that calcyon regulates D(1)DR trafficking by forming a ternary complex with D(1)DR through PSD-95 and thus possibly linking glutamatergic and dopamine receptor signalings. This also raises the possibility that a novel ternary complex could represent a potential therapeutic target for the modulation of related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Chang Man Ha
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Calcyon regulates activity-dependent internalization of α-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate (AMPA) glutamate receptors and long-term depression of excitatory synapses. Elevated levels of calcyon are consistently observed in brains from schizophrenic patients, and the calcyon gene is associated with attention-deficit hyperactivity disorder. Executive function deficits are common to both disorders, and at least for schizophrenia, the etiology appears to involve both heritable and neurodevelopmental factors. Here, we show with calcyon-overexpressing Cal(OE) transgenic mice that lifelong calcyon upregulation impairs executive functions including response inhibition and working memory, without producing learning and memory deficits in general. As response inhibition and working memory, as well as the underlying neural circuitry, continue to mature into early adulthood, we functionally silenced the transgene during postnatal days 28-49, a period corresponding to adolescence. Remarkably, the response inhibition and working memory deficits including perseverative behavior were absent in adult Cal(OE) mice with the transgene silenced in adolescence. Suppressing the calcyon transgene in adulthood only partially rescued the deficits, suggesting calcyon upregulation in adolescence irreversibly alters development of neural circuits supporting mature response inhibition and working memory. Brain regional immunoblots revealed a prominent downregulation of AMPA GluR1 subunits in hippocampus and GluR2/3 subunits in hippocampus and prefrontal cortex of the Cal(OE) mice. Silencing the transgene in adolescence prevented the decrease in hippocampal GluR1, further implicating altered fronto-hippocampal connectivity in the executive function deficits observed in the Cal(OE) mice. Treatments that mitigate the effects of high levels of calcyon during adolescence could preempt adult deficits in executive functions in individuals at risk for serious mental illness.
Collapse
|
18
|
Bernhardt V, Garcia-Reyero N, Vovk A, Denslow N, Davenport PW. Tracheal occlusion modulates the gene expression profile of the medial thalamus in anesthetized rats. J Appl Physiol (1985) 2011; 111:117-24. [PMID: 21527662 DOI: 10.1152/japplphysiol.01317.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conscious awareness of breathing requires the activation of higher brain centers and is believed to be a neural gated process. The thalamus could be responsible for the gating of respiratory sensory information to the cortex. It was reasoned that if the thalamus is the neural gate, then tracheal obstructions will modulate the gene expression profile of the thalamus. Anesthetized rats were instrumented with an inflatable cuff sutured around the trachea. The cuff was inflated to obstruct 2-4 breaths, then deflated for a minimum of 15 breaths. Obstructions were repeated for 10 min followed by immediate dissection of the medial thalamus. Following the occlusion protocol, 588 genes were found to be altered (P < 0.05; log(2) fold change ≥ 0.4), with 327 genes downregulated and 261 genes upregulated. A significant upregulation of the serotonin HTR2A receptor and significant downregulation of the dopamine DRD1 receptor genes were found. A pathway analysis was performed that targeted serotonin and dopamine receptor pathways. The mitogen-activated protein kinase 1 (MAPK1) gene was significantly downregulated. MAPK1 is an inhibitory regulator of HTR2A and facilitatory regulator for DRD1. Downregulation of MAPK1 may be related to the significant upregulation of HTR2A and downregulation of DRD1, suggesting an interaction in the medial thalamus serotonin-dopamine pathway elicited by airway obstruction. These results demonstrate an immediate change in gene expression in thalamic arousal, fear, anxiety motivation-related serotonin and dopamine receptors in response to airway obstruction. The results support the hypothesis that the thalamus is a component in the respiratory mechanosensory neural pathway.
Collapse
Affiliation(s)
- Vipa Bernhardt
- Department of Physiological Sciences, University of Florida, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
19
|
Su YA, Zhang Q, Su DM, Tang MX. Rat mitochondrion-neuron focused microarray (rMNChip) and bioinformatics tools for rapid identification of differential pathways in brain tissues. Int J Biol Sci 2011; 7:308-22. [PMID: 21494430 PMCID: PMC3076503 DOI: 10.7150/ijbs.7.308] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2011] [Accepted: 03/25/2011] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial function is of particular importance in brain because of its high demand for energy (ATP) and efficient removal of reactive oxygen species (ROS). We developed rat mitochondrion-neuron focused microarray (rMNChip) and integrated bioinformatics tools for rapid identification of differential pathways in brain tissues. rMNChip contains 1,500 genes involved in mitochondrial functions, stress response, circadian rhythms and signal transduction. The bioinformatics tool includes an algorithm for computing of differentially expressed genes, and a database for straightforward and intuitive interpretation for microarray results. Our application of these tools to RNA samples derived from rat frontal cortex (FC), hippocampus (HC) and hypothalamus (HT) led to the identification of differentially-expressed signal-transduction-bioenergenesis and neurotransmitter-synthesis pathways with a dominant number of genes (FC/HC = 55/6; FC/HT = 55/4) having significantly (p<0.05, FDR<10.70%) higher (≥1.25 fold) RNA levels in the frontal cortex than the others, strongly suggesting active generation of ATP and neurotransmitters and efficient removal of ROS. Thus, these tools for rapid and efficient identification of differential pathways in brain regions will greatly facilitate our systems-biological study and understanding of molecular mechanisms underlying complex and multifactorial neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan A Su
- Department of Gene and Protein Biomarkers, GenProMarkers Inc., Rockville, MD 20850, USA.
| | | | | | | |
Collapse
|
20
|
Koziol LF, Budding DE, Chidekel D. Adaptation, expertise, and giftedness: towards an understanding of cortical, subcortical, and cerebellar network contributions. THE CEREBELLUM 2011; 9:499-529. [PMID: 20680539 DOI: 10.1007/s12311-010-0192-7] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Current cortico-centric models of cognition lack a cohesive neuroanatomic framework that sufficiently considers overlapping levels of function, from "pathological" through "normal" to "gifted" or exceptional ability. While most cognitive theories presume an evolutionary context, few actively consider the process of adaptation, including concepts of neurodevelopment. Further, the frequent co-occurrence of "gifted" and "pathological" function is difficult to explain from a cortico-centric point of view. This comprehensive review paper proposes a framework that includes the brain's vertical organization and considers "giftedness" from an evolutionary and neurodevelopmental vantage point. We begin by discussing the current cortico-centric model of cognition and its relationship to intelligence. We then review an integrated, dual-tiered model of cognition that better explains the process of adaptation by simultaneously allowing for both stimulus-based processing and higher-order cognitive control. We consider the role of the basal ganglia within this model, particularly in relation to reward circuitry and instrumental learning. We review the important role of white matter tracts in relation to speed of adaptation and development of behavioral mastery. We examine the cerebellum's critical role in behavioral refinement and in cognitive and behavioral automation, particularly in relation to expertise and giftedness. We conclude this integrated model of brain function by considering the savant syndrome, which we believe is best understood within the context of a dual-tiered model of cognition that allows for automaticity in adaptation as well as higher-order executive control.
Collapse
|
21
|
Martin P, Rautenstrauβ B, Abicht A, Fahrbach J, Koster S. Severe Myoclonic Epilepsy in Infancy - Adult Phenotype with Bradykinesia, Hypomimia, and Perseverative Behavior: Report of Five Cases. Mol Syndromol 2011; 1:231-238. [PMID: 22140375 DOI: 10.1159/000326746] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2011] [Indexed: 11/19/2022] Open
Abstract
Dravet syndrome or severe myoclonic epilepsy in infancy (SMEI) is an epileptic syndrome characterised by refractory epilepsy and intellectual disability, typically presenting with febrile and afebrile generalised and unilateral clonic/tonic-clonic seizures in the first year of life and other types of seizures appearing later in the course of the disease. Five adult patients with SMEI and SCN1A mutations are reported, in which motor and behavioural abnormalities were outstanding symptoms. Bradykinesia, responding with latency, slow speaking with a thin voice, midface hypomimia and perseveration were distinctive features in all cases. These symptoms may be fit to define the adult phenotype of SMEI beyond seizure/epilepsy criteria. The motor and behavioural symptoms are discussed in the context of a possibly underlying frontal lobe/mesofrontal and cerebellar dysfunction.
Collapse
Affiliation(s)
- P Martin
- Séguin-Clinic for Persons with Severe Intellectual Disability, Kehl-Kork, Munich, Germany
| | | | | | | | | |
Collapse
|
22
|
Summer treatment program for children with attention deficit hyperactivity disorder: Japanese experience in 5 years. Brain Dev 2011; 33:260-7. [PMID: 20934284 DOI: 10.1016/j.braindev.2010.09.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 09/12/2010] [Accepted: 09/13/2010] [Indexed: 11/21/2022]
Abstract
In 2005 we established the first American-style summer treatment program (STP) for children with attention deficit hyperactivity disorder (ADHD) located outside North America. This program was based on methods established by professor Pelham and has been used in a number of studies and at a number of sites in the USA. A total of 137 children diagnosed with ADHD, ranging in age from 6 to 12 years, participated in at least one of five annual summer treatment programs in Kurume city, Japan, during 2005-2009. The duration of the STP was 2 weeks in 2005, 2008, and 2009; 3 weeks in 2006 and 2007. A set of evidence-based behavioral modification techniques comprising the STP behavioral program (e.g., point system, daily report card, positive reinforcement, time out) was used. We also assessed the cognitive function of individual children before and after STP using the CogState(R) batteries. Every year, regardless of the duration of the STP, most children showed positive behavioral changes in multiple domains of functioning, demonstrated by significant improvement in points earned daily, which reflect behavior frequencies. Cognitive functions, particularly the rate of anticipatory errors in executive function, significantly improved after the STP, suggesting that STP has positive effects not only on behavioral aspects but also on some cognitive functions. Further studies are necessary to confirm this finding by studying sequential cognitive function of age-matched children who do not attend STP.
Collapse
|
23
|
Abstract
Various data from scientific research studies conducted over the past three decades suggest that central neurotransmitters play a key role in the modulation of aggression in all mammalian species, including humans. Specific neurotransmitter systems involved in mammalian aggression include serotonin, dopamine, norepinephrine, GABA, and neuropeptides such as vasopressin and oxytocin. Neurotransmitters not only help to execute basic behavioral components but also serve to modulate these preexisting behavioral states by amplifying or reducing their effects. This chapter reviews the currently available data to present a contemporary view of how central neurotransmitters influence the vulnerability for aggressive behavior and/or initiation of aggressive behavior in social situations. Data reviewed in this chapter include emoiric information from neurochemical, pharmaco-challenge, molecular genetic and neuroimaging studies.
Collapse
Affiliation(s)
- Rachel Yanowitch
- Clinical Neuroscience Research Unit, Department of Psychiatry, The University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | | |
Collapse
|
24
|
Comparison of SHR, WKY and Wistar rats in different behavioural animal models: effect of dopamine D1 and alpha2 agonists. ACTA ACUST UNITED AC 2010; 3:1-12. [PMID: 21432613 DOI: 10.1007/s12402-010-0034-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 09/06/2010] [Indexed: 02/05/2023]
Abstract
Spontaneously hypertensive rats (SHR) and its counterpart, the Wistar-Kyoto rats (WKY), are probably the most often used animal model of ADHD. However, SHR as model of ADHD have also been criticised partly because of not differing to outbred rat strains. In the present study, adolescent SHR, WKY and Wistar rats from Charles River were tested in open-field, elevated plus maze and novel object recognition and on gastrointestinal transport to more intensively evaluate the strain characteristics. Non-habituated SHR and Wistar rats were more active than WKY rats but contrary to Wistar rats SHR stay hyperactive in a familiar environment. SHR were more sensitive to the alpha2-adrenoceptor agonist guanfacine and the dopamine D1 agonist A-68930 than WKY and Wistar rats, whereas amphetamine, the D1/D5 agonist ABT431 and the D2 agonist quinpirole, similarly affected open-field activity in all strains. In the elevated plus maze, SHR and Wistar rats showed less anxiety-related behaviour than WKY rats. Guanfacine and amphetamine induced an anxiolytic-like activity in SHR but not in WKY and Wistar rats. SHR showed the highest long-term memory in the novel object recognition. Gastrointestinal transport was similar and comparably affected by guanfacine in all rat strains. The present study shows clear differences in the behaviour of SHR and Wistar rats but also of WKY and Wistar rats. The use of SHR as animal model of ADHD is supported.
Collapse
|
25
|
Goto Y, Hatakeyama K, Kitama T, Sato Y, Kanemura H, Aoyagi K, Sugita K, Aihara M. Saccade eye movements as a quantitative measure of frontostriatal network in children with ADHD. Brain Dev 2010; 32:347-55. [PMID: 19505783 DOI: 10.1016/j.braindev.2009.04.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 02/13/2009] [Accepted: 04/25/2009] [Indexed: 11/15/2022]
Abstract
BACKGROUND Evidence of poor inhibition in attention deficit hyperactivity disorder (ADHD) comes primarily from neuropsychological tasks and neuroimaging studies, many of which have revealed structural/functional abnormalities of the frontostriatal network with opposing functions of disinhibition and inhibition. Studies of saccades have therefore contributed to the understanding of the pathophysiological basis of ADHD. OBJECT To investigate the development of reflexive/voluntary control of saccades in normal children, compare saccade parameters between ADHD and control groups, and clarify dysfunctional nervous systems in ADHD. METHODS Subjects comprised 50 normal subjects (6-35 years), 19 ADHD patients (6-11 years) and four patients with frontal lesions (13-15 years). Saccade latency and accuracy were computed in all saccade tasks, while percentage of anticipatory errors (PAE) was determined in memory-guided saccade task, and percentage of direction errors (PDE) was determined in antisaccade task. RESULTS In normal controls, significant correlations were observed between saccade latency, saccade accuracy, error rates and age. Significant differences existed between ADHD and 6- to 8-year-old controls in saccade latency and accuracy. The ADHD group showed significantly higher PAE and PDE rates than controls. Patients with frontal lesions showed significantly higher PAE and PDE. CONCLUSIONS These results suggest that saccade eye movements do not fully mature until adolescence, and that ADHD patients show dysfunction in "response inhibition", which is modulated by the frontal lobe, particularly the prefrontal cortex, cingulate cortex and basal ganglia.
Collapse
Affiliation(s)
- Yusuke Goto
- Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Chuo, Yamanashi, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Lebestky T, Chang JSC, Dankert H, Zelnik L, Kim YC, Han KA, Wolf FW, Perona P, Anderson DJ. Two different forms of arousal in Drosophila are oppositely regulated by the dopamine D1 receptor ortholog DopR via distinct neural circuits. Neuron 2009; 64:522-36. [PMID: 19945394 PMCID: PMC2908595 DOI: 10.1016/j.neuron.2009.09.031] [Citation(s) in RCA: 167] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/16/2009] [Indexed: 01/12/2023]
Abstract
Arousal is fundamental to many behaviors, but whether it is unitary or whether there are different types of behavior-specific arousal has not been clear. In Drosophila, dopamine promotes sleep-wake arousal. However, there is conflicting evidence regarding its influence on environmentally stimulated arousal. Here we show that loss-of-function mutations in the D1 dopamine receptor DopR enhance repetitive startle-induced arousal while decreasing sleep-wake arousal (i.e., increasing sleep). These two types of arousal are also inversely influenced by cocaine, whose effects in each case are opposite to, and abrogated by, the DopR mutation. Selective restoration of DopR function in the central complex rescues the enhanced stimulated arousal but not the increased sleep phenotype of DopR mutants. These data provide evidence for at least two different forms of arousal, which are independently regulated by dopamine in opposite directions, via distinct neural circuits.
Collapse
Affiliation(s)
- Tim Lebestky
- Division of Biology 216-76, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Luft AR, Schwarz S. Dopaminergic signals in primary motor cortex. Int J Dev Neurosci 2009; 27:415-21. [PMID: 19446627 DOI: 10.1016/j.ijdevneu.2009.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022] Open
Abstract
Brainstem monoamine areas such as the ventral tegmental area (VTA) send dopaminergic projections to the cerebral cortex that are widely distributed across different cortical regions. Whereas the projection to prefrontal areas (PFC) has been studied in detail, little is known about dopaminergic projections to primary motor cortex (M1). These projections have been anatomically characterized in rat and primate M1. Primates have even denser dopaminergic projections to M1 than rats. The physiological role, the effects of dopaminergic input on the activity of M1 circuits, and the behavioral function of this projection are unknown. This review explores the existing anatomical, electrophysiological and behavioral evidence on dopaminergic projections to M1 and speculates about its functional role. The projection may explain basic features of motor learning and memory phenomena. It is of clinical interest because of its potential for augmenting motor recovery after a brain lesion as well as for understanding the symptomatology of patients with Parkinson's disease. Therefore, targeted investigations are necessary.
Collapse
Affiliation(s)
- Andreas R Luft
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Switzerland.
| | | |
Collapse
|
28
|
Su SY, Hsieh CL, Wu SL, Cheng WY, Li CC, Lo HY, Ho TY, Hsiang CY. Transcriptomic analysis of EGb 761-regulated neuroactive receptor pathway in vivo. JOURNAL OF ETHNOPHARMACOLOGY 2009; 123:68-73. [PMID: 19429342 DOI: 10.1016/j.jep.2009.02.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 10/20/2008] [Accepted: 02/16/2009] [Indexed: 05/27/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE EGb 761, a well-defined extract from Ginkgo biloba, has been widely used in patients with cerebral disorders. AIM OF THE STUDY Although EGb 761 exhibits neuroprotective effects and exerts beneficial effects on many neurological disorders, its mechanism on the neuronal functions is unclear so far. MATERIALS AND METHODS In this study, we used oligonucleotide microarray technique to investigate the effect of EGb 761 on the transcriptional profile of mouse genes. RNA samples were obtained from frontal cortex, straitum, and kidneys after the oral administration of EGb 761 for seven consecutive days. RESULTS Our data showed that EGb 761 significantly altered the neuroactive ligand-receptor interaction pathway in frontal cortex but not in straitum and kidney. Then we analyzed 26 receptor genes that were significantly altered by EGb 761 in this pathway and found that EGb 761 treatment highly up-regulated the subgroup of dopamine receptors, especially dopamine receptor 1a (Drd1a), in frontal cortex. Quantitative real-time reverse transcription-polymerase chain reaction and immunohistochemical staining confirmed the increased level of Drd1a expression after EGb 761 treatment. CONCLUSIONS In summary, we investigated for the first time the overall effects of EGb 761 on the gene expression in brain using a powerful systemic biological technique. Our results suggested that EGb 761 altered unique pathways and regulated the expressions of some specific neuronal receptor genes exclusively in frontal cortex.
Collapse
Affiliation(s)
- Shan-Yu Su
- Graduate Institute of Chinese Medical Science, China Medical University, Taichung 40402, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
We used diffusion tensor imaging to investigate fractional anisotropy (FA), a measure of fiber tract integrity, in attention-deficit hyperactivity disorder (ADHD). Using a tract-based atlasing approach on six-direction diffusion tensor imaging data, we examined FA within the cingulum, corpus callosum, corticospinal tract, fornix, optic radiations, superior longitudinal fasciculus, uncinate fasciculus, and the superior and inferior occipitofrontal fasciculi in an all-male sample of 17 children and adolescents with ADHD and 16 age-matched controls. ADHD patients had significantly lower FA in the corticospinal tract (P=0.02) and the superior longitudinal fasciculus (P=0.017) compared with controls. Results support that disruptions in motor and attentional networks may contribute toward ADHD pathophysiology. Future research may clarify how ADHD subtype and psychiatric comorbidities affect diffusion measures.
Collapse
|
30
|
Wang H, Wu LJ, Kim SS, Lee FJS, Gong B, Toyoda H, Ren M, Shang YZ, Xu H, Liu F, Zhao MG, Zhuo M. FMRP acts as a key messenger for dopamine modulation in the forebrain. Neuron 2008; 59:634-47. [PMID: 18760699 DOI: 10.1016/j.neuron.2008.06.027] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 03/14/2008] [Accepted: 06/13/2008] [Indexed: 11/17/2022]
Abstract
The fragile X mental retardation protein (FMRP) is an RNA-binding protein that controls translational efficiency and regulates synaptic plasticity. Here, we report that FMRP is involved in dopamine (DA) modulation of synaptic potentiation. AMPA glutamate receptor subtype 1 (GluR1) surface expression and phosphorylation in response to D1 receptor stimulation were reduced in cultured Fmr1(-/-) prefrontal cortex (PFC) neurons. Furthermore, D1 receptor signaling was impaired, accompanied by D1 receptor hyperphosphorylation at serine sites and subcellular redistribution of G protein-coupled receptor kinase 2 (GRK2) in both PFC and striatum of Fmr1(-/-) mice. FMRP interacted with GRK2, and pharmacological inhibition of GRK2 rescued D1 receptor signaling in Fmr1(-/-) neurons. Finally, D1 receptor agonist partially rescued hyperactivity and enhanced the motor function of Fmr1(-/-) mice. Our study has identified FMRP as a key messenger for DA modulation in the forebrain and may provide insights into the cellular and molecular mechanisms underlying fragile X syndrome.
Collapse
Affiliation(s)
- Hansen Wang
- Department of Physiology, Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON M5S1A8, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Miller CJ, Miller SR, Newcorn JH, Halperin JM. Personality characteristics associated with persistent ADHD in late adolescence. JOURNAL OF ABNORMAL CHILD PSYCHOLOGY 2007; 36:165-73. [PMID: 17701339 DOI: 10.1007/s10802-007-9167-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2007] [Accepted: 07/25/2007] [Indexed: 11/30/2022]
Abstract
This study focused on the personality characteristics associated with Attention-deficit/Hyperactivity disorder (ADHD) in a longitudinal sample of youth, with a particular focus on differences between those with and without persisting ADHD symptoms. Participants with ADHD (n = 90) were initially evaluated when they were 7-11 years old, and re-assessed at 16-22 years of age. Matched control subjects (n = 80) were recruited at the time of the follow-up evaluation. At follow-up, the Kiddie-SADS-PL, a semi-structured psychiatric interview, and the NEO-PI, a self-report personality inventory, were administered. Data were analyzed using multivariate analyses of variance (MANOVA). Results indicate that childhood ADHD is associated with lower scores on the NEO Conscientiousness subscale in adolescents/young adults--irrespective of the degree of ADHD persistence. In contrast, ratings of Neuroticism and Agreeableness appear to be more closely linked to adolescent status; those with persisting symptoms only exhibited increased Neuroticism and decreased Agreeableness. These results suggest that ADHD, and the degree to which symptoms persist into adolescence, may be closely linked to personality structure.
Collapse
Affiliation(s)
- Carlin J Miller
- Department of Psychology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada.
| | | | | | | |
Collapse
|