1
|
Johnson RR, Maldonado Bouchard S, Prentice TW, Bridegam P, Rassu F, Young CR, Steelman AJ, Welsh TH, Welsh CJ, Meagher MW. Neonatal experience interacts with adult social stress to alter acute and chronic Theiler's virus infection. Brain Behav Immun 2014; 40:110-20. [PMID: 24632225 DOI: 10.1016/j.bbi.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/19/2014] [Accepted: 03/03/2014] [Indexed: 12/30/2022] Open
Abstract
Previous research has shown that neonatal handling has prolonged protective effects associated with stress resilience and aging, yet little is known about its effect on stress-induced modulation of infectious disease. We have previously demonstrated that social disruption stress exacerbates the acute and chronic phases of the disease when applied prior to Theiler's virus infection (PRE-SDR) whereas it attenuates disease severity when applied concurrently with infection (CON-SDR). Here, we asked whether neonatal handling would protect adult mice from the detrimental effects of PRE-SDR and attenuate the protective effects of CON-SDR on Theiler's virus infection. As expected, handling alone decreased IL-6 and corticosterone levels, protected the non-stressed adult mice from motor impairment throughout infection and reduced antibodies to myelin components (PLP, MBP) during the autoimmune phase of disease. In contrast, neonatal handling X PRE/CON-SDR elevated IL-6 and reduced corticosterone as well as increased motor impairment during the acute phase of the infection. Neonatal handling X PRE/CON-SDR continued to exacerbate motor impairment during the chronic phase, whereas only neonatal handling X PRE-SDR increased in antibodies to PLP, MOG, MBP and TMEV. Together, these results imply that while handling reduced the severity of later Theiler's virus infection in non-stressed mice, brief handling may not be protective when paired with later social stress.
Collapse
Affiliation(s)
- R R Johnson
- Advanced brain Monitoring, Inc, Carlsbad, CA 92008, United States
| | - S Maldonado Bouchard
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States; Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX 77843, United States
| | - T W Prentice
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - P Bridegam
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - F Rassu
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States
| | - C R Young
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - A J Steelman
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - T H Welsh
- Department of Animal Science, College of Agriculture and Life Sciences, Texas A&M University, United States
| | - C J Welsh
- Departments of Veterinary Integrative Biosciences and Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, United States
| | - M W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, United States.
| |
Collapse
|
2
|
Chronic social stress impairs virus specific adaptive immunity during acute Theiler's virus infection. J Neuroimmunol 2012; 254:19-27. [PMID: 23021485 DOI: 10.1016/j.jneuroim.2012.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/08/2012] [Accepted: 08/23/2012] [Indexed: 01/12/2023]
Abstract
Prior exposure to social disruption (SDR) stress exacerbates Theiler's murine encephalomyelitis virus (TMEV) infection, a model of multiple sclerosis. Here we examined the impact of SDR on T cell responses to TMEV infection in SJL mice. SDR impaired viral clearance and exacerbated acute disease. Moreover, TMEV infection alone increased CD4 and CD8 mRNA expression in brain and spleen while SDR impaired this response. SDR decreased both CD4(+) and CD8(+) virus-specific T cells in CNS, but not spleen. These findings suggest that SDR-induced suppression of virus-specific T cell responses contributes to impairments in viral clearance and exacerbation of acute disease.
Collapse
|
3
|
Herder V, Hansmann F, Stangel M, Schaudien D, Rohn K, Baumgärtner W, Beineke A. Cuprizone inhibits demyelinating leukomyelitis by reducing immune responses without virus exacerbation in an infectious model of multiple sclerosis. J Neuroimmunol 2012; 244:84-93. [PMID: 22329906 DOI: 10.1016/j.jneuroim.2012.01.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 10/28/2022]
Abstract
Multiple sclerosis is one of the most common demyelinating central nervous system diseases in young adults. Theiler's murine encephalomyelitis (TME) is a widely used virus-induced murine model for human myelin disorders. Immunosuppressive approaches generally reduce antiviral immunity and therefore increase virus dissemination with clinical worsening. In the present study, the progressive course of TME was significantly delayed due to a five-week cuprizone feeding period. Cuprizone was able to minimize demyelinating leukomyelitis without virus exacerbation. This phenomenon is supposed to be a consequence of selective inhibition of detrimental inflammatory responses with maintained protective immunity against the virus.
Collapse
Affiliation(s)
- Vanessa Herder
- Department of Pathology, University of Veterinary Medicine Hannover, Bünteweg 17, D-30559 Hannover, Germany
| | | | | | | | | | | | | |
Collapse
|
4
|
Vichaya EG, Young EE, Frazier MA, Cook JL, Welsh CJ, Meagher MW. Social disruption induced priming of CNS inflammatory response to Theiler's virus is dependent upon stress induced IL-6 release. J Neuroimmunol 2011; 239:44-52. [PMID: 22000153 DOI: 10.1016/j.jneuroim.2011.08.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Revised: 07/17/2011] [Accepted: 08/10/2011] [Indexed: 01/09/2023]
Abstract
Chronic social disruption stress (SDR) exacerbates acute and chronic phase Theiler's murine encephalomyelitis virus (TMEV) infection, a mouse model of multiple sclerosis. However, the precise mechanism by which this occurs remains unknown. The present study suggests that SDR exacerbates TMEV disease course by priming virus-induced neuroinflammation. It was demonstrated that IL-1β mRNA expression increases following acute SDR; however, IL-6 mRNA expression, but not IL-1β, is upregulated in response to chronic SDR. Furthermore, this study demonstrated SDR prior to infection increases infection related central IL-6 and IL-1β mRNA expression, and administration of IL-6 neutralizing antibody during SDR reverses this increase in neuroinflammation.
Collapse
Affiliation(s)
- E G Vichaya
- Dept. of Psychology, College of Liberal Arts, Texas A&M University, United States
| | | | | | | | | | | |
Collapse
|
5
|
Hunzeker JT, Elftman MD, Mellinger JC, Princiotta MF, Bonneau RH, Truckenmiller ME, Norbury CC. A marked reduction in priming of cytotoxic CD8+ T cells mediated by stress-induced glucocorticoids involves multiple deficiencies in cross-presentation by dendritic cells. THE JOURNAL OF IMMUNOLOGY 2010; 186:183-94. [PMID: 21098225 DOI: 10.4049/jimmunol.1001737] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Protracted psychological stress elevates circulating glucocorticoids, which can suppress CD8(+) T cell-mediated immunity, but the mechanisms are incompletely understood. Dendritic cells (DCs), required for initiating CTL responses, are vulnerable to stress/corticosterone, which can contribute to diminished CTL responses. Cross-priming of CD8(+) T cells by DCs is required for initiating CTL responses against many intracellular pathogens that do not infect DCs. We examined the effects of stress/corticosterone on MHC class I (MHC I) cross-presentation and priming and show that stress/corticosterone-exposed DCs have a reduced ability to cross-present OVA and activate MHC I-OVA(257-264)-specific T cells. Using a murine model of psychological stress and OVA-loaded β(2)-microglobulin knockout "donor" cells that cannot present Ag, DCs from stressed mice induced markedly less Ag-specific CTL proliferation in a glucocorticoid receptor-dependent manner, and endogenous in vivo T cell cytolytic activity generated by cross-presented Ag was greatly diminished. These deficits in cross-presentation/priming were not due to altered Ag donation, Ag uptake (phagocytosis, receptor-mediated endocytosis, or fluid-phase uptake), or costimulatory molecule expression by DCs. However, proteasome activity in corticosterone-treated DCs or splenic DCs from stressed mice was partially suppressed, which limits formation of antigenic peptide-MHC I complexes. In addition, the lymphoid tissue-resident CD11b(-)CD24(+)CD8α(+) DC subset, which carries out cross-presentation/priming, was preferentially depleted in stressed mice. At the same time, CD11b(-)CD24(+)CD8α(-) DC precursors were increased, suggesting a block in development of CD8α(+) DCs. Therefore, glucocorticoid-induced changes in both the cellular composition of the immune system and intracellular protein degradation contribute to impaired CTL priming in stressed mice.
Collapse
Affiliation(s)
- John T Hunzeker
- Department of Microbiology and Immunology, College of Medicine, Pennsylvania State University, Hershey, PA 17033, USA
| | | | | | | | | | | | | |
Collapse
|
6
|
Young EE, Sieve AN, Vichaya EG, Carcoba LM, Young CR, Ambrus A, Storts R, Welsh CJR, Meagher MW. Chronic restraint stress during early Theiler's virus infection exacerbates the subsequent demyelinating disease in SJL mice: II. CNS disease severity. J Neuroimmunol 2010; 220:79-89. [PMID: 20167380 PMCID: PMC2856483 DOI: 10.1016/j.jneuroim.2010.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 01/22/2010] [Accepted: 01/22/2010] [Indexed: 12/20/2022]
Abstract
Theiler's murine encephalomyelitis virus (TMEV) infection is a well-characterized model of multiple sclerosis (MS). Previous research has shown that chronic restraint stress (RS) during early TMEV infection exacerbates behavioral signs of the disease. The present data suggest that RS-induced increases in CNS inflammation, demyelination, and axonal degeneration may underlie this exacerbation. In addition, we report that males exhibit greater CNS inflammation and higher numbers of demyelinating lesions while females show greater susceptibility to RS-induced exacerbation. These findings indicate that RS during early TMEV infection increases CNS lesion formation during the late phase and suggest that the effects of RS are sex-dependent.
Collapse
MESH Headings
- Animals
- Axons/immunology
- Axons/pathology
- Axons/virology
- Cardiovirus Infections/immunology
- Cardiovirus Infections/physiopathology
- Central Nervous System/immunology
- Central Nervous System/pathology
- Central Nervous System/virology
- Chronic Disease
- Demyelinating Autoimmune Diseases, CNS/immunology
- Demyelinating Autoimmune Diseases, CNS/physiopathology
- Demyelinating Autoimmune Diseases, CNS/virology
- Disease Models, Animal
- Disease Progression
- Encephalomyelitis/immunology
- Encephalomyelitis/physiopathology
- Encephalomyelitis/virology
- Female
- Male
- Mice
- Nerve Fibers, Myelinated/immunology
- Nerve Fibers, Myelinated/pathology
- Nerve Fibers, Myelinated/virology
- Restraint, Physical/adverse effects
- Restraint, Physical/psychology
- Severity of Illness Index
- Sex Characteristics
- Stress, Psychological/immunology
- Stress, Psychological/physiopathology
- Theilovirus/immunology
- Wallerian Degeneration/immunology
- Wallerian Degeneration/pathology
- Wallerian Degeneration/virology
Collapse
Affiliation(s)
- Erin E Young
- Department of Psychology, College of Liberal Arts, Texas A&M University College Station, TX 77843, United States.
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Meagher MW, Sieve AN, Johnson RR, Satterlee D, Belyavskyi M, Mi W, Prentice TW, Welsh TH, Welsh CJR. Neonatal maternal separation alters immune, endocrine, and behavioral responses to acute Theiler's virus infection in adult mice. Behav Genet 2010; 40:233-49. [PMID: 20135342 DOI: 10.1007/s10519-010-9333-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 01/09/2010] [Indexed: 12/01/2022]
Abstract
Previous studies have established a link between adverse early life events and subsequent disease vulnerability. The present study assessed the long-term effects of neonatal maternal separation on the response to Theiler's murine encephalomyelitis virus infection, a model of multiple sclerosis. Balb/cJ mouse pups were separated from their dam for 180-min/day (180-min MS), 15-min/day (15-min MS), or left undisturbed from postnatal days 2-14. During adolescence, mice were infected with Theiler's virus and sacrificed at days 14, 21, or 35 post-infection. Prolonged 180-min MS increased viral load and delayed viral clearance in the spinal cords of males and females, whereas brief 15-min MS increased the rate of viral clearance in females. The 15-min and 180-min MS mice exhibited blunted corticosterone responses during infection, suggesting that reduced HPA sensitivity may have altered the immune response to infection. These findings demonstrate that early life events alter vulnerability to CNS infection later in life. Therefore, this model could be used to study gene-environment interactions that contribute to individual differences in susceptibility to infectious and autoimmune diseases of the CNS.
Collapse
Affiliation(s)
- M W Meagher
- Department of Psychology, College of Liberal Arts, Texas A&M University, College Station, TX, 77843-4235, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Elftman MD, Hunzeker JT, Mellinger JC, Bonneau RH, Norbury CC, Truckenmiller ME. Stress-induced glucocorticoids at the earliest stages of herpes simplex virus-1 infection suppress subsequent antiviral immunity, implicating impaired dendritic cell function. THE JOURNAL OF IMMUNOLOGY 2010; 184:1867-75. [PMID: 20089700 DOI: 10.4049/jimmunol.0902469] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The systemic elevation of psychological stress-induced glucocorticoids strongly suppresses CD8(+) T cell immune responses resulting in diminished antiviral immunity. However, the specific cellular targets of stress/glucocorticoids, the timing of exposure, the chronology of immunological events, and the underlying mechanisms of this impairment are incompletely understood. In this study, we address each of these questions in the context of a murine cutaneous HSV infection. We show that exposure to stress or corticosterone in only the earliest stages of an HSV-1 infection is sufficient to suppress, in a glucocorticoid receptor-dependent manner, the subsequent antiviral immune response after stress/corticosterone has been terminated. This suppression resulted in early onset and delayed resolution of herpetic lesions, reduced viral clearance at the site of infection and draining popliteal lymph nodes (PLNs), and impaired functions of HSV-specific CD8(+) T cells in PLNs, including granzyme B and IFN-gamma production and the ability to degranulate. In knockout mice lacking glucocorticoid receptors only in T cells, we show that these impaired CD8(+) T cell functions are not due to direct effects of stress/corticosterone on the T cells, but the ability of PLN-derived dendritic cells to prime HSV-1-specific CD8(+) T cells is functionally impaired. These findings highlight the susceptibility of critical early events in the generation of an antiviral immune response to neuroendocrine modulation and implicate dendritic cells as targets of stress/glucocorticoids in vivo. These findings also provide insight into the mechanisms by which the clinical use of glucocorticoids contributes to altered immune responses in patients with viral infections or tumors.
Collapse
Affiliation(s)
- Michael D Elftman
- Department of Microbiology and Immunology, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
9
|
Steelman AJ, Dean DD, Young CR, Smith R, Prentice TW, Meagher MW, Welsh CJR. Restraint stress modulates virus specific adaptive immunity during acute Theiler's virus infection. Brain Behav Immun 2009; 23:830-43. [PMID: 19348911 PMCID: PMC2710426 DOI: 10.1016/j.bbi.2009.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Revised: 03/21/2009] [Accepted: 03/22/2009] [Indexed: 10/20/2022] Open
Abstract
Multiple sclerosis (MS) is a devastating CNS disease of unknown origin. Multiple factors including genetic background, infection, and psychological stress affect the onset or progression of MS. Theiler's murine encephalomyelitis virus (TMEV) infection is an animal model of MS in which aberrant immunity leads to viral persistence and subsequently results in demyelination that resembles MS. Here, we examined how stress during acute TMEV infection altered virus-specific cell mediated responses. Using immunodominant viral peptides specific for either CD4(+) or CD8(+) T cells, we found that stress reduced IFN-gamma producing virus-specific CD4(+) and CD8(+) T cells in the spleen and CD8(+) T cells CNS. Cytokine production by cells isolated from the CNS or spleens following stimulation with virus or viral peptides, indicated that stress decreased both type 1 and type 2 responses. Glucocorticoids were implicated in the decreased T cell function as the effects of stress were partially reversed by concurrent RU486 administration but mimicked by dexamethasone. As T cells mediate viral clearance in this model, our data support the hypothesis that stress-induced immunosuppression may provide a mechanism for enhanced viral persistence within the CNS.
Collapse
Affiliation(s)
- Andrew J. Steelman
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Dana D. Dean
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Colin R. Young
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Roger Smith
- Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Thomas W. Prentice
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - Mary W. Meagher
- Dept of Psychology, College of Liberal Arts, Texas A&M University, College Station, Texas 77843 U.S.A
| | - C. Jane R. Welsh
- Dept of Veterinary Integrative Biosciences, College of Veterinary Medical & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A, Dept of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas 77843 U.S.A
| |
Collapse
|
10
|
Welsh CJ, Steelman AJ, Mi W, Young CR, Storts R, Welsh TH, Meagher MW. Neuroimmune interactions in a model of multiple sclerosis. Ann N Y Acad Sci 2009; 1153:209-19. [PMID: 19236344 PMCID: PMC2862309 DOI: 10.1111/j.1749-6632.2008.03984.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Psychological stress has been implicated in both the onset and exacerbation of multiple sclerosis (MS). Our research has focused on the role of stress at the onset of MS, using the mouse model Theiler's murine encephalomyelitis virus-induced demyelination. Theiler's virus is a natural pathogen of mice that causes a persistent infection of the central nervous system (CNS) and inflammatory immune-mediated demyelination that is very similar to MS. Our research has shown that restraint stress sufficiently increases corticosterone secretion to cause immunosuppression. Stressed mice develop decreased innate and adaptive immune responses, including decreased chemokine and cytokine responses, to virus, which leads to increased viral replication within the CNS. Higher levels of virus then cause increased later demyelinating disease. These findings may have important implications in our understanding of the interactions between stress and the development of autoimmune diseases induced by infectious agents.
Collapse
Affiliation(s)
- C Jane Welsh
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | | | | | | | | | |
Collapse
|