1
|
Post-learning micro- and macro-structural neuroplasticity changes with time and sleep. Biochem Pharmacol 2020; 191:114369. [PMID: 33338474 DOI: 10.1016/j.bcp.2020.114369] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 12/18/2022]
Abstract
Neuroplasticity refers to the fact that our brain can partially modify both structure and function to adequately respond to novel environmental stimulations. Neuroplasticity mechanisms are not only operating during the acquisition of novel information (i.e., online) but also during the offline periods that take place after the end of the actual learning episode. Structural brain changes as a consequence of learning have been consistently demonstrated on the long term using non-invasive neuroimaging methods, but short-term changes remained more elusive. Fortunately, the swift development of advanced MR methods over the last decade now allows tracking fine-grained cerebral changes on short timescales beyond gross volumetric modifications stretching over several days or weeks. Besides a mere effect of time, post-learning sleep mechanisms have been shown to play an important role in memory consolidation and promote long-lasting changes in neural networks. Sleep was shown to contribute to structural modifications over weeks of prolonged training, but studies evidencing more rapid post-training sleep structural effects linked to memory consolidation are still scarce in human. On the other hand, animal studies convincingly show how sleep might modulate synaptic microstructure. We aim here at reviewing the literature establishing a link between different types of training/learning and the resulting structural changes, with an emphasis on the role of post-training sleep and time in tuning these modifications. Open questions are raised such as the role of post-learning sleep in macrostructural changes, the links between different MR structural measurement-related modifications and the underlying microstructural brain processes, and bidirectional influences between structural and functional brain changes.
Collapse
|
2
|
Hao L, Pang K, Pang H, Zhang J, Zhang Z, He H, Zhou R, Shi Z, Han C. Knockdown of P3H4 inhibits proliferation and invasion of bladder cancer. Aging (Albany NY) 2020; 12:2156-2168. [PMID: 32018225 PMCID: PMC7041761 DOI: 10.18632/aging.102732] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 01/02/2020] [Indexed: 01/20/2023]
Abstract
The prolyl 3-hydroxylase family member 4 (P3H4) (alias SC65) is implicated in a variety of physiological and pathological processes. However, little is known about the role of P3H4 in tumors. This study aimed to investigate the role of P3H4 in bladder cancer (BC) and the regulatory mechanisms that influence its expression. P3H4 was highly expressed in BC tissues. Knockdown of P3H4 inhibited BC cell proliferation, cell cycle, migration and invasion in vitro, and inhibited BC growth in vivo. We also found that ETV4 bound directly to the promoter region of P3H4 and activated its transcription. Furthermore, overexpression of ETV4 rescued the inhibition of proliferation and invasion induced by PH4 silencing. ETV4 was significantly overexpressed in the BC tissues. In conclusion, P3H4 functioned an oncogene role in BC progression, and ETV4 bound directly to the P3H4 promoter region to regulate its transcription.
Collapse
Affiliation(s)
- Lin Hao
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.,The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Kun Pang
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.,The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Hui Pang
- Central Laboratory, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Junjie Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Zhiguo Zhang
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.,The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| | - Houguang He
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.,College of Science and Technology, Jiangsu Normal University, Xuzhou 221009, Jiangsu, China
| | - Rongsheng Zhou
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Zhenduo Shi
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China
| | - Conghui Han
- Department of Urology, Xuzhou Central Hospital, Xuzhou 221009, Jiangsu, China.,The Third Affiliated Hospital of Soochow University, Changzhou 213000, Jiangsu, China
| |
Collapse
|
3
|
Role of allograft inflammatory factor-1 in pathogenesis of diseases. Immunol Lett 2019; 218:1-4. [PMID: 31830499 DOI: 10.1016/j.imlet.2019.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/27/2019] [Accepted: 12/09/2019] [Indexed: 02/06/2023]
Abstract
Allograft inflammatory factor-1 (AIF-1) is a 17 kDa calcium-binding protein produced by monocytes, macrophages, and lymphocytes; its synthesis is induced by INF-γ. The AIF-1 gene is located in the major histocompatibility complex (MHC) class III region on chromosome 6p21.3, surrounded by surface glycoprotein genes and complement cascade protein genes as well as TNF-α, TNF-β, and NF-κB genes. Increased expression of AIF-1 was observed in several diseases, including endometriosis, breast cancer, atherosclerosis, rheumatoid arthritis, and fibrosis. In this review, we summarise the role of AIF-1 in allograft rejection and the pathogenesis of diseases.
Collapse
|
4
|
The up and down of sleep: From molecules to electrophysiology. Neurobiol Learn Mem 2019; 160:3-10. [DOI: 10.1016/j.nlm.2018.03.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/04/2018] [Accepted: 03/11/2018] [Indexed: 12/21/2022]
|
5
|
Zimmerman SM, Besio R, Heard-Lipsmeyer ME, Dimori M, Castagnola P, Swain FL, Gaddy D, Diekman AB, Morello R. Expression characterization and functional implication of the collagen-modifying Leprecan proteins in mouse gonadal tissue and mature sperm. AIMS GENETICS 2018; 5:24-40. [PMID: 30417103 PMCID: PMC6221197 DOI: 10.3934/genet.2018.1.24] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Leprecan protein family which includes the prolyl 3-hydroxylase enzymes (P3H1, P3H2, and P3H3), the closely related cartilage-associated protein (CRTAP), and SC65 (Synaptonemal complex 65, aka P3H4, LEPREL4), is involved in the post-translational modification of fibrillar collagens. Mutations in CRTAP, P3H1 and P3H2 cause human genetic diseases. We recently showed that SC65 forms a stable complex in the endoplasmic reticulum with P3H3 and lysyl hydroxylase 1 and that loss of this complex leads to defective collagen lysyl hydroxylation and causes low bone mass and skin fragility. Interestingly, SC65 was initially described as a synaptonemal complex-associated protein, suggesting a potential additional role in germline cells. In the present study, we describe the expression of SC65, CRTAP and other Leprecan proteins in postnatal mouse reproductive organs. We detect SC65 expression in peritubular cells of testis up to 4 weeks of age but not in cells within seminiferous tubules, while its expression is maintained in ovarian follicles until adulthood. Similar to bone and skin, SC65 and P3H3 are also tightly co-expressed in testis and ovary. Moreover, we show that CRTAP, a protein normally involved in collagen prolyl 3-hydroxylation, is highly expressed in follicles and stroma of the ovary and in testes interstitial cells at 4 weeks of age, germline cells and mature sperm. Importantly, CrtapKO mice have a mild but significant increase in morphologically abnormal mature sperm (17% increase compared to WT). These data suggest a role for the Leprecans in the post-translational modification of collagens expressed in the stroma of the reproductive organs. While we could not confirm that SC65 is part of the synaptonemal complex, the expression of CRTAP in the seminiferous tubules and in mature sperm suggest a role in the testis germ cell lineage and sperm morphogenesis.
Collapse
Affiliation(s)
- Sarah M Zimmerman
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Roberta Besio
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Melissa E Heard-Lipsmeyer
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Milena Dimori
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | | | - Frances L Swain
- Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Dana Gaddy
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Alan B Diekman
- Department of Biochemistry, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Roy Morello
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Department of Orthopaedic Surgery, Center for Orthopaedic Research, University of Arkansas for Medical Sciences, Little Rock, AR, USA.,Division of Genetics, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| |
Collapse
|
6
|
Gerashchenko D, Pasumarthi RK, Kilduff TS. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep. Sleep 2017; 40:3866746. [PMID: 28605546 DOI: 10.1093/sleep/zsx098] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Study Objectives Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. Methods We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Results Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. Conclusions These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication.
Collapse
Affiliation(s)
| | - Ravi K Pasumarthi
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| | - Thomas S Kilduff
- Center for Neuroscience, Biosciences Division, SRI International, Menlo Park, CA
| |
Collapse
|
7
|
Allada R, Cirelli C, Sehgal A. Molecular Mechanisms of Sleep Homeostasis in Flies and Mammals. Cold Spring Harb Perspect Biol 2017; 9:a027730. [PMID: 28432135 PMCID: PMC5538413 DOI: 10.1101/cshperspect.a027730] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Sleep is homeostatically regulated with sleep pressure accumulating with the increasing duration of prior wakefulness. Yet, a clear understanding of the molecular components of the homeostat, as well as the molecular and cellular processes they sense and control to regulate sleep intensity and duration, remain a mystery. Here, we will discuss the cellular and molecular basis of sleep homeostasis, first focusing on the best homeostatic sleep marker in vertebrates, slow wave activity; second, moving to the molecular genetic analysis of sleep homeostasis in the fruit fly Drosophila; and, finally, discussing more systemic aspects of sleep homeostasis.
Collapse
Affiliation(s)
- Ravi Allada
- Department of Neurobiology, Northwestern University, Evanston, Ilinois 60208
| | - Chiara Cirelli
- Department of Psychiatry, University of Wisconsin-Madison, Madison, Wisconsin 53719
| | - Amita Sehgal
- Department of Neuroscience, Perelman School of Medicine at University of Pennsylvania, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
8
|
Astrocytic Regulation of Sleep Processes. CURRENT SLEEP MEDICINE REPORTS 2015. [DOI: 10.1007/s40675-014-0005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Ravassard P, Hamieh AM, Joseph MA, Fraize N, Libourel PA, Lebarillier L, Arthaud S, Meissirel C, Touret M, Malleret G, Salin PA. REM Sleep-Dependent Bidirectional Regulation of Hippocampal-Based Emotional Memory and LTP. Cereb Cortex 2015; 26:1488-1500. [DOI: 10.1093/cercor/bhu310] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Role of cardiorespiratory synchronization and sleep physiology: effects on membrane potential in the restorative functions of sleep. Sleep Med 2014; 15:279-88. [DOI: 10.1016/j.sleep.2013.10.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/18/2013] [Accepted: 10/19/2013] [Indexed: 01/26/2023]
|
11
|
Grønli J, Soulé J, Bramham CR. Sleep and protein synthesis-dependent synaptic plasticity: impacts of sleep loss and stress. Front Behav Neurosci 2014; 7:224. [PMID: 24478645 PMCID: PMC3896837 DOI: 10.3389/fnbeh.2013.00224] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 12/23/2013] [Indexed: 01/08/2023] Open
Abstract
Sleep has been ascribed a critical role in cognitive functioning. Several lines of evidence implicate sleep in the consolidation of synaptic plasticity and long-term memory. Stress disrupts sleep while impairing synaptic plasticity and cognitive performance. Here, we discuss evidence linking sleep to mechanisms of protein synthesis-dependent synaptic plasticity and synaptic scaling. We then consider how disruption of sleep by acute and chronic stress may impair these mechanisms and degrade sleep function.
Collapse
Affiliation(s)
- Janne Grønli
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway ; Norwegian Competence Center for Sleep Disorders, Haukeland University Hospital Bergen, Norway
| | - Jonathan Soulé
- Department of Biological and Medical Psychology, University of Bergen Bergen, Norway
| | - Clive R Bramham
- Department of Biomedicine and KG Jebsen Centre for Research on Neuropsychiatric Disorders, University of Bergen Bergen, Norway
| |
Collapse
|
12
|
Liu J, Wei W, Kuang H, Zhao F, Tsien JZ. Changes in heart rate variability are associated with expression of short-term and long-term contextual and cued fear memories. PLoS One 2013; 8:e63590. [PMID: 23667644 PMCID: PMC3646801 DOI: 10.1371/journal.pone.0063590] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 04/04/2013] [Indexed: 11/22/2022] Open
Abstract
Heart physiology is a highly useful indicator for measuring not only physical states, but also emotional changes in animals. Yet changes of heart rate variability during fear conditioning have not been systematically studied in mice. Here, we investigated changes in heart rate and heart rate variability in both short-term and long-term contextual and cued fear conditioning. We found that while fear conditioning could increase heart rate, the most significant change was the reduction in heart rate variability which could be further divided into two distinct stages: a highly rhythmic phase (stage-I) and a more variable phase (stage-II). We showed that the time duration of the stage-I rhythmic phase were sensitive enough to reflect the transition from short-term to long-term fear memories. Moreover, it could also detect fear extinction effect during the repeated tone recall. These results suggest that heart rate variability is a valuable physiological indicator for sensitively measuring the consolidation and expression of fear memories in mice.
Collapse
Affiliation(s)
- Jun Liu
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Wei Wei
- Key Laboratory of Brain Functional Genomics (Ministry of Education), Institute of Brain Functional Genomics, East China Normal University, Shanghai, China
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Hui Kuang
- Banna Biomedical Research Institute, Xishuangbanna, Yunnan, China
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Fang Zhao
- Banna Biomedical Research Institute, Xishuangbanna, Yunnan, China
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail: (FZ); (JZT)
| | - Joe Z. Tsien
- Banna Biomedical Research Institute, Xishuangbanna, Yunnan, China
- Brain and Behavior Discovery Institute and Department of Neurology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail: (FZ); (JZT)
| |
Collapse
|
13
|
Bueno-Junior LS, Lopes-Aguiar C, Ruggiero RN, Romcy-Pereira RN, Leite JP. Muscarinic and nicotinic modulation of thalamo-prefrontal cortex synaptic plasticity [corrected] in vivo. PLoS One 2012; 7:e47484. [PMID: 23118873 PMCID: PMC3484139 DOI: 10.1371/journal.pone.0047484] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Accepted: 09/11/2012] [Indexed: 02/06/2023] Open
Abstract
The mediodorsal nucleus of the thalamus (MD) is a rich source of afferents to the medial prefrontal cortex (mPFC). Dysfunctions in the thalamo-prefrontal connections can impair networks implicated in working memory, some of which are affected in Alzheimer disease and schizophrenia. Considering the importance of the cholinergic system to cortical functioning, our study aimed to investigate the effects of global cholinergic activation of the brain on MD-mPFC synaptic plasticity by measuring the dynamics of long-term potentiation (LTP) and depression (LTD) in vivo. Therefore, rats received intraventricular injections either of the muscarinic agonist pilocarpine (PILO; 40 nmol/µL), the nicotinic agonist nicotine (NIC; 320 nmol/µL), or vehicle. The injections were administered prior to either thalamic high-frequency (HFS) or low-frequency stimulation (LFS). Test pulses were applied to MD for 30 min during baseline and 240 min after HFS or LFS, while field postsynaptic potentials were recorded in the mPFC. The transient oscillatory effects of PILO and NIC were monitored through recording of thalamic and cortical local field potentials. Our results show that HFS did not affect mPFC responses in vehicle-injected rats, but induced a delayed-onset LTP with distinct effects when applied following PILO or NIC. Conversely, LFS induced a stable LTD in control subjects, but was unable to induce LTD when applied after PILO or NIC. Taken together, our findings show distinct modulatory effects of each cholinergic brain activation on MD-mPFC plasticity following HFS and LFS. The LTP-inducing action and long-lasting suppression of cortical LTD induced by PILO and NIC might implicate differential modulation of thalamo-prefrontal functions under low and high input drive.
Collapse
Affiliation(s)
- Lezio Soares Bueno-Junior
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cleiton Lopes-Aguiar
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rafael Naime Ruggiero
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rodrigo Neves Romcy-Pereira
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
- Brain Institute, Federal University of Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
- * E-mail:
| | - João Pereira Leite
- Department of Neuroscience and Behavioral Sciences, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
14
|
Lopes-Aguiar C, Bueno-Junior LS, Ruggiero RN, Romcy-Pereira RN, Leite JP. NMDA receptor blockade impairs the muscarinic conversion of sub-threshold transient depression into long-lasting LTD in the hippocampus-prefrontal cortex pathway in vivo: correlation with γ oscillations. Neuropharmacology 2012; 65:143-55. [PMID: 23022398 DOI: 10.1016/j.neuropharm.2012.09.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 07/19/2012] [Accepted: 09/16/2012] [Indexed: 01/22/2023]
Abstract
Cholinergic fibers from the brainstem and basal forebrain innervate the medial prefrontal cortex (mPFC) modulating neuronal activity and synaptic plasticity responses to hippocampal inputs. Here, we investigated the muscarinic and glutamatergic modulation of long-term depression (LTD) in the intact projections from CA1 to mPFC in vivo. Cortical-evoked responses were recorded in urethane-anesthetized rats for 30 min during baseline and 4 h following LTD. In order to test the potentiating effects of pilocarpine (PILO), independent groups of rats received either a microinjection of PILO (40 nmol; i.c.v.) or vehicle, immediately before or 20 min after a sub-threshold LTD protocol (600 pulses, 1 Hz; LFS600). Other groups received either an infusion of the selective NMDA receptor antagonist (AP7; 10 nmol; intra-mPFC) or vehicle, 10 min prior to PILO preceding LFS600, or prior to a supra-threshold LTD protocol (900 pulses, 1 Hz; LFS900). Our results show that PILO converts a transient cortical depression induced by LFS600 into a robust LTD, stable for at least 4 h. When applied after LFS600, PILO does not change either mPFC basal neurotransmission or late LTD. Our data also indicate that NMDA receptor pre-activation is essential to the muscarinic enhancement of mPFC synaptic depression, since AP7 microinjection into the mPFC blocked the conversion of transient depression into long-lasting LTD produced by PILO. In addition, AP7 effectively blocked the long-lasting LTD induced by LFS900. Therefore, our findings suggest that the glutamatergic co-activation of prefrontal neurons is important for the effects of PILO on mPFC synaptic depression, which could play an important role in the control of executive and emotional functions.
Collapse
Affiliation(s)
- Cleiton Lopes-Aguiar
- Department of Neuroscience and Behavioral Science, Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
15
|
Abstract
While there is ample agreement that the cognitive role of sleep is explained by sleep-dependent synaptic changes, consensus is yet to be established as to the nature of these changes. Some researchers believe that sleep promotes global synaptic downscaling, leading to a non-Hebbian reset of synaptic weights that is putatively necessary for the acquisition of new memories during ensuing waking. Other investigators propose that sleep also triggers experience-dependent, Hebbian synaptic upscaling able to consolidate recently acquired memories. Here, I review the molecular and physiological evidence supporting these views, with an emphasis on the calcium signaling pathway. I argue that the available data are consistent with sleep promoting experience-dependent synaptic embossing, understood as the simultaneous non-Hebbian downscaling and Hebbian upscaling of separate but complementary sets of synapses, heterogeneously activated at the time of memory encoding and therefore differentially affected by sleep.
Collapse
Affiliation(s)
- Sidarta Ribeiro
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Rio Grande do Norte, Brazil.
| |
Collapse
|
16
|
|
17
|
Gómez Ravetti M, Rosso OA, Berretta R, Moscato P. Uncovering molecular biomarkers that correlate cognitive decline with the changes of hippocampus' gene expression profiles in Alzheimer's disease. PLoS One 2010; 5:e10153. [PMID: 20405009 PMCID: PMC2854141 DOI: 10.1371/journal.pone.0010153] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/22/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by a neurodegenerative progression that alters cognition. On a phenotypical level, cognition is evaluated by means of the MiniMental State Examination (MMSE) and the post-mortem examination of Neurofibrillary Tangle count (NFT) helps to confirm an AD diagnostic. The MMSE evaluates different aspects of cognition including orientation, short-term memory (retention and recall), attention and language. As there is a normal cognitive decline with aging, and death is the final state on which NFT can be counted, the identification of brain gene expression biomarkers from these phenotypical measures has been elusive. METHODOLOGY/PRINCIPAL FINDINGS We have reanalysed a microarray dataset contributed in 2004 by Blalock et al. of 31 samples corresponding to hippocampus gene expression from 22 AD subjects of varying degree of severity and 9 controls. Instead of only relying on correlations of gene expression with the associated MMSE and NFT measures, and by using modern bioinformatics methods based on information theory and combinatorial optimization, we uncovered a 1,372-probe gene expression signature that presents a high-consensus with established markers of progression in AD. The signature reveals alterations in calcium, insulin, phosphatidylinositol and wnt-signalling. Among the most correlated gene probes with AD severity we found those linked to synaptic function, neurofilament bundle assembly and neuronal plasticity. CONCLUSIONS/SIGNIFICANCE A transcription factors analysis of 1,372-probe signature reveals significant associations with the EGR/KROX family of proteins, MAZ, and E2F1. The gene homologous of EGR1, zif268, Egr-1 or Zenk, together with other members of the EGR family, are consolidating a key role in the neuronal plasticity in the brain. These results indicate a degree of commonality between putative genes involved in AD and prion-induced neurodegenerative processes that warrants further investigation.
Collapse
Affiliation(s)
- Martín Gómez Ravetti
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
| | - Osvaldo A. Rosso
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires, Argentina
| | - Regina Berretta
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
| | - Pablo Moscato
- Centre for Bioinformatics, Biomarker Discovery and Information-Based Medicine, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, Information Based Medicine Program, John Hunter Hospital, New Lambton Heights, New South Wales, Australia
- Australian Research Council Centre of Excellence in Bioinformatics, Callaghan, New South Wales, Australia
| |
Collapse
|
18
|
Stack EC, Desarnaud F, Siwek DF, Datta S. A novel role for calcium/calmodulin kinase II within the brainstem pedunculopontine tegmentum for the regulation of wakefulness and rapid eye movement sleep. J Neurochem 2009; 112:271-81. [PMID: 19860859 DOI: 10.1111/j.1471-4159.2009.06452.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Considerable evidence suggests that the brainstem pedunculopontine tegmentum (PPT) neurons are critically involved in the regulation of rapid eye movement (REM) sleep and wakefulness (W); however, the molecular mechanisms operating within the PPT to regulate these two behavioral states remain relatively unknown. Here we demonstrate that the levels of calcium/calmodulin kinase II (CaMKII) and phosphorylated CaMKII expression in the PPT decreased and increased with 'low W with high REM sleep' and 'high W/low REM sleep' periods, respectively. These state-specific expression changes were not observed in the cortex, or in the immediately adjacent medial pontine reticular formation. Next, we demonstrate that CaMKII activity in the PPT is negatively and positively correlated with the 'low W with high REM sleep' and 'high W/low REM sleep' periods, respectively. These differences in correlations were not seen in the medial pontine reticular formation CaMKII activity. Finally, we demonstrate that with increased PPT CaMKII activity observed during high W/low REM sleep, there were marked shifts in the expression of genes that are involved in components of various signal transduction pathways. Collectively, these results for the first time suggest that the increased CaMKII activity within PPT neurons is associated with increased W at the expense of REM sleep, and this process is accomplished through the activation of a specific gene expression profile.
Collapse
Affiliation(s)
- Edward C Stack
- Laboratory of Sleep and Cognitive Neurosciences, Boston University School of Medicine, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
19
|
Pontrello CG, Ethell IM. Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines. THE OPEN NEUROSCIENCE JOURNAL 2009; 3:67-86. [PMID: 20463852 PMCID: PMC2867483 DOI: 10.2174/1874082000903020067] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines.
Collapse
Affiliation(s)
- Crystal G. Pontrello
- Biomedical Sciences Division and Neuroscience program, University of California Riverside, USA
| | - Iryna M. Ethell
- Biomedical Sciences Division and Neuroscience program, University of California Riverside, USA
| |
Collapse
|