1
|
Xu P, Wang B, Wang Z, Jin R, Ahmad M, Shang Y, Hu M, Chen F, Khalil MF, Huang W, Wang Y. Effects of electromagnetic radiation from offshore wind power on the physiology and behavior of two marine fishes. MARINE POLLUTION BULLETIN 2025; 213:117633. [PMID: 39921984 DOI: 10.1016/j.marpolbul.2025.117633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
With the widespread promotion of wind power, its potential ecological impacts on marine ecosystems have raised concerns, among which electromagnetic radiation is one of the significant impacts. It is well known that the effects of electromagnetic fields on different marine organisms vary greatly, but little is known about their effects on commercially important fish species. We studied the toxicity differences between the large yellow croaker (Larimichthys crocea) and the black sea bream (Acanthopagrus schlegelii) when exposed to magnetic field strengths of 0mT, 0.5mT, 1.0mT, 1.5mT and 2.0mT. We found that under the 1.5mT and 2.0mT, the swimming velocity of L. crocea and A. schlegelii was reduced and the antioxidant enzymes in the body had a protective function on the body. Under the 2.0mT, the stress response of A. schlegelii was higher and the immune systems of both fish species were activated. The electromagnetic intensity below 2.0mT was more sensitive to L. crocea and A. schlegelii. However, electromagnetic radiation seems to have no significant effect on the nutrient absorption capacity of the organisms. After several days of recovery, all affected markers showed signs of reversibility. In summary, the experiment could provide valuable data for developing early warning systems and preventive measures to mitigate potential threats to marine life from offshore wind farms.
Collapse
Affiliation(s)
- Peng Xu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Bole Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Zhenghao Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Renkang Jin
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Manzoor Ahmad
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Yueyong Shang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Menghong Hu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Fangping Chen
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Muhammad Faisal Khalil
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Youji Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Berry M, Austad B, Höjesjö J. Streamlining boldness measurement in fish: A practical approach to field studies. Behav Processes 2025; 226:105162. [PMID: 39914615 DOI: 10.1016/j.beproc.2025.105162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/31/2025] [Accepted: 02/01/2025] [Indexed: 03/18/2025]
Abstract
Personality is an area of increasing interest in fish ecology because of its potential to affect important ecological processes. Assessing personality traits, such as boldness, usually involves a combination of tests and repeated trials in controlled laboratory environments. However, distress from transportation, handling and extended time in artificial laboratory settings may affect behaviour, increase stress and disrupt natural processes such as feeding. As such, there is a need for a simplified way to assess boldness within a field setting. Here, using a juvenile salmonid as a model, we describe a modified open field test that can easily be applied close to natural habitats. A startle response following sudden exposure to light in a novel environment was used as a measure of boldness in brown trout in two case studies. We showed that boldness was significantly correlated to size with smaller individuals being bolder than larger individuals. In a secondary study, we assessed whether the method could be used to investigate differences in boldness relating to migration timing of sea trout and found that early migrants were bolder than late migrants. We hope this method offers an easy approach to measuring boldness on site and could be particularly useful in situations where transport is unfeasible.
Collapse
Affiliation(s)
- Madeleine Berry
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 413 90, Sweden.
| | - Benedikte Austad
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 413 90, Sweden
| | - Johan Höjesjö
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg 413 90, Sweden
| |
Collapse
|
3
|
Kleiber A, Roy J, Brunet V, Baranek E, Le-Calvez JM, Kerneis T, Batard A, Calvez S, Pineau L, Milla S, Guesdon V, Calandreau L, Colson V. Feeding predictability as a cognitive enrichment protects brain function and physiological status in rainbow trout: a multidisciplinary approach to assess fish welfare. Animal 2024; 18:101081. [PMID: 38335569 DOI: 10.1016/j.animal.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/08/2024] [Accepted: 01/12/2024] [Indexed: 02/12/2024] Open
Abstract
Cognitive enrichment is a promising but understudied type of environmental enrichment that aims to stimulate the cognitive abilities of animals by providing them with more opportunities to interact with (namely, to predict events than can occur) and to control their environment. In a previous study, we highlighted that farmed rainbow trout can predict daily feedings after two weeks of conditioning, the highest conditioned response being elicited by the combination of both temporal and signalled predictability. In the present study, we tested the feeding predictability that elicited the highest conditioned response in rainbow trout (both temporal and signalled by bubbles, BUBBLE + TIME treatment) as a cognitive enrichment strategy to improve their welfare. We thus analysed the long-term effects of this feeding predictability condition as compared with an unpredictable feeding condition (RANDOM treatment) on the welfare of rainbow trout, including the markers in the modulation of brain function, through a multidisciplinary approach. To reveal the brain regulatory pathways and networks involved in the long-term effects of feeding predictability, we measured gene markers of cerebral activity and plasticity, neurotransmitter pathways and physiological status of fish (oxidative stress, inflammatory status, cell type and stress status). After almost three months under these predictability conditions of feeding, we found clear evidence of improved welfare in fish from BUBBLE + TIME treatment. Feeding predictability allowed for a food anticipatory activity and resulted in fewer aggressive behaviours, burst of accelerations, and jumps before mealtime. BUBBLE + TIME fish were also less active between meals, which is in line with the observed decreased expression of transcripts related to the dopaminergic system. BUBBLE + TIME fish tented to present fewer eroded dorsal fin and infections to the pathogen Flavobacterium psychrophilum. Decreased expression of most of the studied mRNA involved in oxidative stress and immune responses confirm these tendencies else suggesting a strong role of feeding predictability on fish health status and that RANDOM fish may have undergone chronic stress. Fish emotional reactivity while isolated in a novel-tank as measured by fear behaviour and plasma cortisol levels were similar between the two treatments, as well as fish weight and size. To conclude, signalled combined with temporal predictability of feeding appears to be a promising approach of cognitive enrichment to protect brain function via the physiological status of farmed rainbow trout in the long term.
Collapse
Affiliation(s)
- A Kleiber
- JUNIA, Comportement Animal et Systèmes d'Elevage, F-59000 Lille, France; INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France; INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France.
| | - J Roy
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | - V Brunet
- INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France
| | - E Baranek
- INRAE, Université de Pau et des Pays de l'Adour, E2S UPPA, UMR1419 Nutrition Metabolism and Aquaculture, Aquapôle, F-64310 Saint-Pée-sur-Nivelle, France
| | | | | | - A Batard
- INRAE, PEIMA, 29450 Sizun, France
| | - S Calvez
- Oniris, INRAE, BIOEPAR, 44300 Nantes, France
| | - L Pineau
- Oniris, INRAE, BIOEPAR, 44300 Nantes, France
| | - S Milla
- Université de Lorraine, INRAE, UR AFPA, 54505 Vandoeuvre-lès-Nancy, France
| | - V Guesdon
- JUNIA, Comportement Animal et Systèmes d'Elevage, F-59000 Lille, France
| | - L Calandreau
- INRAE, CNRS, IFCE, Université de Tours, Centre Val de Loire UMR Physiologie de la Reproduction et des Comportements, 37380 Nouzilly, France
| | - V Colson
- INRAE, LPGP, Campus de Beaulieu, 35042 Rennes, France
| |
Collapse
|
4
|
Saiz N, Herrera-Castillo L, de Pedro N, Delgado MJ, Arvidsson SD, Marugal-López MÁ, Isorna E. Assessing Chronodisruption Distress in Goldfish: The Importance of Multimodal Approaches. Animals (Basel) 2023; 13:2481. [PMID: 37570290 PMCID: PMC10417125 DOI: 10.3390/ani13152481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Chronodisruption caused by factors such as light at night and mistimed meals has been linked to numerous physiological alterations in vertebrates and may be an anxiogenic factor affecting welfare. This study aims to investigate whether chronodisruption causes measurable changes in the anxiety responses of goldfish under two conditions: randomly scheduled feeding (RF) and continuous light (LL). Anxiety-like behavior was assessed in the open field with object approach and black/white preference tests, which had been validated using diazepam. An increased thigmotaxis response and decreased object exploration under both chronodisruption protocols indicated anxiety states. Furthermore, locomotor activity was increased in LL fish. The black/white preference test discriminated anxiolysis induced by diazepam but was unable to detect anxiety caused by chronodisruption. Plasma cortisol increased in both RF and LL fish throughout the experiment, confirming that both conditions caused stress. The LL fish also showed an apparently desensitized hypothalamus-pituitary-interrenal HPI axis, with a decrease in pomc and crf expression. Individual analysis found no correlation between anxiety-like behavior and stress axis activation nor between scototaxis and thigmotaxis responses. However, individual differences in sensitivity to each test were detected. Altogether, these results highlight circadian disruption as a stressor for fish and endorse a multiple variable approach for reliably assessing animal discomfort.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Esther Isorna
- Department of Genetics, Physiology and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, 28040 Madrid, Spain; (N.S.); (L.H.-C.); (N.d.P.); (M.J.D.); (S.D.A.); (M.Á.M.-L.)
| |
Collapse
|
5
|
de Oliveira Guilherme H, Perez Ribeiro PA, Prado VGL, Bahiense RN, Gamarano PG, de Oliveira CG, de Almeida Freitas D, Costa LS. Feeding behaviour, locomotion rhythms and blood biochemistry of the neotropical red-tail catfish (Phractocephalus hemioliopterus). JOURNAL OF FISH BIOLOGY 2023; 102:803-815. [PMID: 36648082 DOI: 10.1111/jfb.15317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
The study evaluated the feeding behaviour of Phractocephalus hemioliopterus through the animals' ability to adapt to the self-feeding system, their preferred feeding times and locomotor activity, as well as the blood biochemistry of juveniles fed in a light/dark cycle. The study was carried out through two experiments, the first of which contained two phases. In experiment 1 - phase I, 24 juveniles (35.28 ± 0.62 g) were distributed in eight 48 l tanks. The tanks were equipped with a self-feeding system and the experiment consisted of evaluating whether the animals were able to adapt to the self-feeding system, as well as evaluating the preferred feeding times and locomotor activity of these animals. A feeding challenge to the animals was introduced in phase II, based on the results of phase I. The results of the first phase evidenced a nocturnal feeding preference. Thus, the feeding challenge consisted of measuring whether the animal would feed during the day and how long it would take to adapt. When the animals consumed 100% of the amount of feed provided daily, phase II was ended. In experiment 2, 24 juveniles of P. hemioliopterus (182.00 ± 14.03 g) were distributed in eight 96 l tanks. This experiment consisted of two treatments with four repetitions, one with exclusive feeding during the middle of the light cycle and another with exclusive feeding in the middle of the dark cycle. At the end, blood samples were collected from the animals for blood biochemistry evaluations. In experiment 1 - phase I, the results showed that the fish adapted very well to the self-feeding system and had a strictly nocturnal feeding behaviour and locomotor rhythm. When they were submitted to the feeding challenge in phase II, the feed intake was stabilized from the 17th day onwards, proportionally to the nocturnal consumption observed in the first phase, thus demonstrating feeding plasticity. In experiment 2, the feeding times influenced the animals' biochemical parameters. Animals fed during the night had higher values of cholesterol and triglycerides than animals fed during the day. It is concluded that P. hemioliopterus has fast adaptability to a self-feeding system, with strictly nocturnal feeding and locomotor behaviours. However, it has feeding plasticity, adapting its behaviour according to food availability. Blood biochemical parameters are influenced by the light/dark feeding cycle.
Collapse
Affiliation(s)
- Helder de Oliveira Guilherme
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Paula Adriane Perez Ribeiro
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Verônica Guimarães Landa Prado
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Raphael Nogueira Bahiense
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Pedro Gomes Gamarano
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Camila Gomes de Oliveira
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Débora de Almeida Freitas
- Departamento de Zootecnia, Universidade Federal de Minas Gerais, Escola de Veterinária, Laboratório de Aquacultura, Belo Horizonte, Minas Gerais, Brazil
| | - Leandro Santos Costa
- Departamento de Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
6
|
Xu H, Shi C, Ye Y, Song C, Mu C, Wang C. Time-Restricted Feeding Could Not Reduce Rainbow Trout Lipid Deposition Induced by Artificial Night Light. Metabolites 2022; 12:metabo12100904. [PMID: 36295806 PMCID: PMC9606968 DOI: 10.3390/metabo12100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/18/2022] [Accepted: 09/22/2022] [Indexed: 11/19/2022] Open
Abstract
Artificial night light (ALAN) could lead to circadian rhythm disorders and disrupt normal lipid metabolism, while time-restricted feeding (TRF) could maintain metabolic homeostasis. In mammals, TRF has been demonstrated to have extraordinary effects on the metabolic regulation caused by circadian rhythm disorders, but studies in lower vertebrates such as fish are still scarce. In this study, the impacts of ALAN on the body composition and lipid metabolism of juvenile rainbow trout were investigated by continuous light (LL) exposure as well as whether TRF could alleviate the negative effects of LL. The results showed that LL upregulated the expression of lipid synthesis (fas and srebp-1c) genes and suppressed the expression of lipid lipolysis (pparβ, cpt-1a, and lpl) genes in the liver, finally promoting lipid accumulation in juvenile rainbow trout. However, LL downregulated the expression of genes (Δ6-fad, Δ9-fad, elovl2, and elovl5) related to long-chain polyunsaturated fatty acid (LC-PUFA) synthesis, resulting in a significant decrease in the proportion of LC-PUFA in the dorsal muscle. In serum, LL led to a decrease in glucose (Glu) levels and an increase in triglyceride (TG) and high-density lipoprotein cholesterol (H-DLC) levels. On the other hand, TRF (mid-dark stage feeding (D)) and mid-light stage feeding (L)) upregulated the expression of both the lipid synthesis (srebp-1c and pparγ), lipolysis (pparα, pparβ, and cpt-1a), and lipid transport (cd36/fat and fatp-1) genes, finally increasing the whole-body lipid, liver protein, and lipid content. Meanwhile, TRF (D and L groups) increased the proportion of polyunsaturated fatty acid (PUFA) and LC-PUFA in serum. In contrast, random feeding (R group) increased the serum Glu levels and decreased TG, total cholesterol (T-CHO), and H-DLC levels, suggesting stress and poor nutritional status. In conclusion, ALAN led to lipid accumulation and a significant decrease in muscle LC-PUFA proportion, and TRF failed to rescue these negative effects.
Collapse
Affiliation(s)
- Hanying Xu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Marine Economic Research Center, Dong Hai Strategic Research Institute, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
| | - Ce Shi
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Marine Economic Research Center, Dong Hai Strategic Research Institute, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
- Correspondence: (C.S.); (C.W.)
| | - Yangfang Ye
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
| | - Changkao Mu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
| | - Chunlin Wang
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, Ningbo University, 818 Fenghua Road, Ningbo 315211, China
- Collaborative Innovation Center for Zhejiang Marine High-Efficiency and Healthy Aquaculture, 818 Fenghua Road, Ningbo 315211, China
- Correspondence: (C.S.); (C.W.)
| |
Collapse
|
7
|
Positive effects of bubbles as a feeding predictor on behaviour of farmed rainbow trout. Sci Rep 2022; 12:11368. [PMID: 35790759 PMCID: PMC9256598 DOI: 10.1038/s41598-022-15302-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 06/22/2022] [Indexed: 11/11/2022] Open
Abstract
Occupational enrichment emerges as a promising strategy for improving the welfare of farmed animals. This form of enrichment aims to stimulate cognitive abilities of animals by providing them with more opportunities to interact with and control their environment. Predictability of salient daily events, and in particular predictability of feeding, is currently one of the most studied occupational enrichment strategies and can take several forms. In fish, while temporal predictability of feeding has been widely investigated, signalled predictability (based on a signal, such as light or sound) has received little attention. Depending on the type of predictability used and the ecology of the species, the effects on fish welfare often differ. The present study aimed to determine which feeding predictability would be most appropriate for rainbow trout, the main continental farmed fish in Europe, and what the consequences might be for their welfare. We tested four feeding predictability conditions: temporal (based on time of day), signalled (based on bubble diffusion), temporal + signalled (based on time and bubble diffusion), and unpredictable (random feeding times). Behavioural and zootechnical outcomes recorded were swimming activity, aggressive behaviours, burst of accelerations, and jumps, emotional reactivity, and growth. Our results showed that rainbow trout can predict daily feedings relying on time and/or bubbles as predictors as early as two weeks of conditioning, as evidenced by their increased swimming activity before feeding or during feed omission tests, which allowed to reinforce their conditioned response. Temporal predictability alone resulted in an increase in pre-feeding aggressive behaviours, burst of accelerations, and jumps, suggesting that the use of time as the sole predictor of feedings in husbandry practices may be detrimental to fish welfare. Signalled predictability with bubbles alone resulted in fewer pre-feeding agonistic behaviours, burst of accelerations, and jumps than in the temporal predictability condition. The combination of temporal and signalled predictability elicited the highest conditioned response and the level of pre-feeding aggression behaviours, burst of accelerations and jumps tended to be lower than for temporal predictability alone. Interestingly, fish swimming activity during bubble diffusion also revealed that bubbles were highly attractive regardless of the condition. Rainbow trout growth and emotional reactivity were not affected by the predictability condition. We conclude, therefore, that the use of bubbles as a feeding predictor could represent an interesting approach to improve rainbow trout welfare in farms, by acting as both an occupational and physical enrichment.
Collapse
|
8
|
Flores-García L, Camargo-Castellanos JC, Pascual-Jímenez C, Almazán-Rueda P, Monroy-López JF, Albertos-Alpuche PJ, Martínez-Yáñez R. Welfare Indicators in Tilapia: An Epidemiological Approach. Front Vet Sci 2022; 9:882567. [PMID: 35832331 PMCID: PMC9271997 DOI: 10.3389/fvets.2022.882567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 05/10/2022] [Indexed: 11/29/2022] Open
Abstract
Interest and concern about rearing methods and their impact on animal welfare have increased. Production evaluation is population-based, and animal welfare analysis should be similar. In fish, the most common welfare indicators are gill state, fin damage, and body condition. The objective of this study was to evaluate the feeding rate effect on the welfare indicators of Oreochromis niloticus using an epidemiological approach. Five growth stages (from 1.2 to 360 g) were studied using four feeding rates as treatments: underfeeding (80%), recommended feeding (100%), and two levels of overfeeding (120% and 140%). The evaluated welfare indicators include the presence of lesions in different body areas and fins, the decrease in body condition index, and their impact on biomass production. Incidence and relative risk were determined for each indicator. Statistically significant associations were found in the indicators of mortality, weight, body condition (K), and presence of evident damage in the caudal and anal fin in all stages. The results showed that the feed rate directly affects the welfare indicators and production. Mortality, weight reduction, K reduction, and caudal and anal fin damage incidence showed to be relevant indicators in all O. niloticus growing stages. As a result of this study, the epidemiological approach seems to be a valuable tool for production. A risk traffic light method is a proposal that could have great potential, with the suggested limits for WI's concerning the individuals present in the culture pond, allowing progressive evaluation and decision-making to correct risky situations.
Collapse
Affiliation(s)
- Luis Flores-García
- Biosciences Doctoral Program, Universidad de Guanajuato, Irapuato, Mexico
| | | | - Cristina Pascual-Jímenez
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México, Hunucmá, Mexico
| | | | - Jorge Francisco Monroy-López
- Departamento de Medicina Preventiva y Salud Pública, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rosario Martínez-Yáñez
- Aquaculture Laboratory, Universidad de Guanajuato, Irapuato, Mexico
- *Correspondence: Rosario Martínez-Yáñez
| |
Collapse
|
9
|
Interaction between the Effects of Sustained Swimming Activity and Dietary Macronutrient Proportions on the Redox Status of Gilthead Sea Bream Juveniles (Sparus aurata L.). Antioxidants (Basel) 2022; 11:antiox11020319. [PMID: 35204202 PMCID: PMC8868478 DOI: 10.3390/antiox11020319] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
The combination of physical exercise and a balanced diet presents substantial health benefits and could improve fish production. However, the redox balance can be affected by training regimen, dietary macronutrient ratio and their interaction. In this study, we conjointly evaluated the effects of physical activity (by voluntary swimming (VS) or sustained swimming as exercise (Ex)) and diet composition (by high-protein (HP) or high-lipid (HE) commercial diets) after 6 weeks on oxidative stress status in liver, white muscle and red muscle of gilthead sea bream juveniles. The HE diet increased the biochemical redox markers’ thiobarbituric acid reactive substances (TBARS), advanced oxidation protein products (AOPP) and reduced thiols (-SH) in the different tissues. Exercise increased AOPP and -SH levels in liver but reduced TBARS levels in white muscle. Regarding the expression of oxidative stress, chaperones and apoptosis-related genes, the VSHE group showed the highest values and the VSHP the lowest, whereas the application of sustained swimming partially equalized those differences. Diet composition modulated the enzyme activity, prioritizing the superoxide dismutase and catalase in the HE-fed groups and the glutathione-related enzymes in the HP groups. Exercise also altered enzyme activity, but in a tissue-dependent manner. Overall, the redox balance in gilthead sea bream juveniles can be affected by diet composition and sustained swimming. However, the response will partly depend on the interaction between these factors and the tissue studied. Therefore, the combination of an adequate diet and sustained exercise could be used in fish production to improve the physiological redox status.
Collapse
|
10
|
Malik S. Effect of time-restricted feeding on 24-h rhythm in phototactic behavior of zebrafish. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2019.1669941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Shikha Malik
- Chronobiology and Animal Behavior Laboratory, School of Studies in Life Science, Pandit Ravishankar Shukla University, Raipur, Chhattisgarh, India
| |
Collapse
|
11
|
Saiz N, Gómez-Boronat M, De Pedro N, Delgado MJ, Isorna E. The Lack of Light-Dark and Feeding-Fasting Cycles Alters Temporal Events in the Goldfish ( Carassius auratus) Stress Axis. Animals (Basel) 2021; 11:ani11030669. [PMID: 33802373 PMCID: PMC7998219 DOI: 10.3390/ani11030669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/12/2022] Open
Abstract
Vertebrates possess circadian clocks, driven by transcriptional-translational loops of clock genes, to orchestrate anticipatory physiological adaptations to cyclic environmental changes. This work aims to investigate how the absence of a light-dark cycle and a feeding schedule impacts the oscillators in the hypothalamus-pituitary-interrenal axis of goldfish. Fish were maintained under 12L:12D feeding at ZT 2; 12L:12D feeding at random times; and constant darkness feeding at ZT 2. After 30 days, fish were sampled to measure daily variations in plasma cortisol and clock gene expression in the hypothalamus-pituitary-interrenal (HPI) axis. Clock gene rhythms in the HPI were synchronic in the presence of a light-dark cycle but were lost in its absence, while in randomly fed fish, only the interrenal clock was disrupted. The highest cortisol levels were found in the randomly fed group, suggesting that uncertainty of food availability could be as stressful as the absence of a light-dark cycle. Cortisol daily rhythms seem to depend on central clocks, as a disruption in the adrenal clock did not impede rhythmic cortisol release, although it could sensitize the tissue to stress.
Collapse
|
12
|
Effect of Feed Delivery Rate and Pellet Size on Rearing Performance, Feed Wastage and Economic Profitability in Gilthead Seabream (Sparus Aurata) Ongrowing. WATER 2020. [DOI: 10.3390/w12040954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Gilthead seabream (Sparus aurata) displays a particular eating behaviour that involves considerable oral manipulation and feed waste. We assess the influence of feed delivery rate and pellet size on seabream growth and size variability, feed wastage and economic profitability for a full production cycle. Batches of seabream were fed twice a day according to three different treatments (T1, T2, T3). T1 and T2 fish were fed with the same regime of pellet sizes: 2 mm pellets until the fish reached 0.1 kg, and 4 mm pellets from then on; the feeding rate in T1 was twice that of T2 (20 and 10 g min−1, respectively). T3 fish were fed with pellets of 2 mm until they reached 0.07 kg, with pellets of 4 mm until the fish reached 0.22 kg, and with 6 mm pellets from then on, with a feeding rate of 10 g min−1. T2 showed increased growth, low variability in fish size during the ongrowing and at harvest, less feed wastage both related to the delivery and the chewing behaviour, lower feed costs and improved profitability. Seabream wasted more feed during the second meal. Controlling the feeding process is essential to reduce wastage and increase profitability, which can be achieved by process monitoring and suitable feed pellet management.
Collapse
|
13
|
Bardera G, Owen MA, Façanha FN, Sloman KA, Alexander ME. The influence of sex on feeding behaviour in Pacific white shrimp (Litopenaeus vannamei). Appl Anim Behav Sci 2020. [DOI: 10.1016/j.applanim.2020.104946] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Qin C, Sun J, Wang J, Han Y, Yang H, Shi Q, Lv Y, Hu P. Discovery of differentially expressed genes in the intestines of Pelteobagrus vachellii within a light/dark cycle. Chronobiol Int 2019; 37:339-352. [PMID: 31809585 DOI: 10.1080/07420528.2019.1690498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In aquaculture, it is necessary to determine of the diurnal biological variations in the intestines to determine an appropriate feeding schedule. The present study aimed to examine the transcriptomes of the Pelteobagrus vachellii intestines at four time points (0 h, 6 h, 12 h, and 18 h) within a light/dark cycle. In comparison with the zeitgeber time 0 (ZT0) transcriptomes, we identified 37,842 unigenes with significant differential expression, including 6,638; 9,626; and 7,938 that genes upregulated, and 3,507; 4,703; and 5,412 genes that were down regulated at 4, 12, and 24 h respectively. The differentially expressed unigenes were subjected to enrichment analysis, which indicated the involvement of the major digestive pathways, including digestion of protein, lipid and carbohydrate, catabolic process (protein, carbohydrate and lipid), and circadian rhythm. We selected 73 key differentially expressed genes (DEGs) from among these pathways and identified DEGs that showed increased expression at night, including those encoding trypsin-3, chymotrypsinogen 2, amino acid transporter, maltase-glucoamylase, facilitated glucose transporter, lipase, phospholipase, fatty acid-binding protein, fatty acid synthase, long-chain fatty acid transport protein, and apolipoprotein. Moreover, DEGs involved of circadian rhythm were identified, including brain-muscle-Arnt-like 1 (BMAL1), cryptochrome-1, circadian locomoter output cycles protein kaput (CLOCK) and period circadian protein homolog 1-3. Finally, the expression levels of 12 unigenes were analyzed using quantitative real-time PCR, which were in accordance with RNA-sequencing analysis. In general, the expression of genes related to the digestion of proteins, lipids, and carbohydrates showed upregulated expression at night; however, the peak time of expression of transporters for different nutrition molecules showed more diversification within the light/dark cycle.
Collapse
Affiliation(s)
- Chuanjie Qin
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | | | - Jun Wang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | | | - He Yang
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | - Qingchao Shi
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | - Yunyun Lv
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| | - Peng Hu
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang, PR China.,College of Life Science, Neijiang Normal University, Neijiang, PR China
| |
Collapse
|
15
|
Sánchez-Vázquez FJ, López-Olmeda JF, Vera LM, Migaud H, López-Patiño MA, Míguez JM. Environmental Cycles, Melatonin, and Circadian Control of Stress Response in Fish. Front Endocrinol (Lausanne) 2019; 10:279. [PMID: 31244768 PMCID: PMC6579845 DOI: 10.3389/fendo.2019.00279] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 04/16/2019] [Indexed: 01/10/2023] Open
Abstract
Fish have evolved a biological clock to cope with environmental cycles, so they display circadian rhythms in most physiological functions including stress response. Photoperiodic information is transduced by the pineal organ into a rhythmic secretion of melatonin, which is released into the blood circulation with high concentrations at night and low during the day. The melatonin rhythmic profile is under the control of circadian clocks in most fish (except salmonids), and it is considered as an important output of the circadian system, thus modulating most daily behavioral and physiological rhythms. Lighting conditions (intensity and spectrum) change in the underwater environment and affect fish embryo and larvae development: constant light/darkness or red lights can lead to increased malformations and mortality, whereas blue light usually results in best hatching rates and growth performance in marine fish. Many factors display daily rhythms along the hypothalamus-pituitary-interrenal (HPI) axis that controls stress response in fish, including corticotropin-releasing hormone (Crh) and its binding protein (Crhbp), proopiomelanocortin A and B (Pomca and Pomcb), and plasma cortisol, glucose, and lactate. Many of these circadian rhythms are under the control of endogenous molecular clocks, which consist of self-sustained transcriptional-translational feedback loops involving the cyclic expression of circadian clock genes (clock, bmal, per, and cry) which persists under constant light or darkness. Exposing fish to a stressor can result in altered rhythms of most stress indicators, such as cortisol, glucose, and lactate among others, as well as daily rhythms of most behavioral and physiological functions. In addition, crh and pomca expression profiles can be affected by other factors such as light spectrum, which strongly influence the expression profile of growth-related (igf1a, igf2a) genes. Additionally, the daily cycle of water temperature (warmer at day and cooler at night) is another factor that has to be considered. The response to any acute stressor is not only species dependent, but also depends on the time of the day when the stress occurs: nocturnal species show higher responses when stressed during day time, whereas diurnal fish respond stronger at night. Melatonin administration in fish has sedative effects with a reduction in locomotor activity and cortisol levels, as well as reduced liver glycogen and dopaminergic and serotonergic activities within the hypothalamus. In this paper, we are reviewing the role of environmental cycles and biological clocks on the entrainment of daily rhythms in the HPI axis and stress responses in fish.
Collapse
Affiliation(s)
| | | | - Luisa Maria Vera
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Herve Migaud
- Institute of Aquaculture, University of Stirling, Stirling, United Kingdom
| | - Marcos Antonio López-Patiño
- Laboratory Animal Physiology, Department Biology and Health Science, Faculty of Biology and Centro Singular de Investigación Mariña-ECIMAT, University of Vigo, Vigo, Spain
| | - Jesús M. Míguez
- Laboratory Animal Physiology, Department Biology and Health Science, Faculty of Biology and Centro Singular de Investigación Mariña-ECIMAT, University of Vigo, Vigo, Spain
| |
Collapse
|
16
|
Schrama D, Cerqueira M, Raposo CS, Rosa da Costa AM, Wulff T, Gonçalves A, Camacho C, Colen R, Fonseca F, Rodrigues PM. Dietary Creatine Supplementation in Gilthead Seabream ( Sparus aurata): Comparative Proteomics Analysis on Fish Allergens, Muscle Quality, and Liver. Front Physiol 2018; 9:1844. [PMID: 30622481 PMCID: PMC6308192 DOI: 10.3389/fphys.2018.01844] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
The quality of fish flesh depends on the skeletal muscle's energetic state and delaying energy depletion through diets supplementation could contribute to the preservation of muscle's quality traits and modulation of fish allergens. Food allergies represent a serious public health problem worldwide with fish being one of the top eight more allergenic foods. Parvalbumins, have been identified as the main fish allergen. In this study, we attempted to produce a low allergenic farmed fish with improved muscle quality in controlled artificial conditions by supplementing a commercial fish diet with different creatine percentages. The supplementation of fish diets with specific nutrients, aimed at reducing the expression of parvalbumin, can be considered of higher interest and beneficial in terms of food safety and human health. The effects of these supplemented diets on fish growth, physiological stress, fish muscle status, and parvalbumin modulation were investigated. Data from zootechnical parameters were used to evaluate fish growth, food conversion ratios and hepatosomatic index. Physiological stress responses were assessed by measuring cortisol releases and muscle quality analyzed by rigor mortis and pH. Parvalbumin, creatine, and glycogen concentrations in muscle were also determined. Comparative proteomics was used to look into changes in muscle and liver tissues at protein level. Our results suggest that the supplementation of commercial fish diets with creatine does not affect farmed fish productivity parameters, or either muscle quality. Additionally, the effect of higher concentrations of creatine supplementation revealed a minor influence in fish physiological welfare. Differences at the proteome level were detected among fish fed with different diets. Differential muscle proteins expression was identified as tropomyosins, beta enolase, and creatine kinase among others, whether in liver several proteins involved in the immune system, cellular processes, stress, and inflammation response were modulated. Regarding parvalbumin modulation, the tested creatine percentages added to the commercial diet had also no effect in the expression of this protein. The use of proteomics tools showed to be sensitive to infer about changes of the underlying molecular mechanisms regarding fish responses to external stimulus, providing a holistic and unbiased view on fish allergens and muscle quality.
Collapse
Affiliation(s)
- Denise Schrama
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Marco Cerqueira
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | | | - Ana M. Rosa da Costa
- Centro de Investigação de Química do Algarve, Universidade do Algarve, Faro, Portugal
| | - Tune Wulff
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark
| | - Amparo Gonçalves
- Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, Lisbon, Portugal
| | - Carolina Camacho
- Divisão de Aquacultura e Valorização, Instituto Português do Mar e da Atmosfera, Lisbon, Portugal
| | - Rita Colen
- Centro de Ciências do Mar, Universidade do Algarve, Faro, Portugal
| | - Flávio Fonseca
- Instituto Federal de Educação, Ciência e Tecnologia do Amazonas, Manaus, Brazil
| | | |
Collapse
|
17
|
Sánchez-Muros MJ, Sánchez B, Barroso FG, Toniolo M, Trenzado CE, Sanz Rus A. Effects of rearing conditions on behavioural responses, social kinetics and physiological parameters in gilthead sea bream Sparus aurata. Appl Anim Behav Sci 2017. [DOI: 10.1016/j.applanim.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Cruz BP, Brongar LF, Popiolek P, Gonçalvez BSB, Figueiredo MA, Amaral IPG, Da Rosa VS, Nery LEM, Marins LF. Clock genes expression and locomotor activity are altered along the light-dark cycle in transgenic zebrafish overexpressing growth hormone. Transgenic Res 2017; 26:739-752. [PMID: 28795260 DOI: 10.1007/s11248-017-0039-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2016] [Accepted: 08/02/2017] [Indexed: 12/16/2022]
Abstract
In the present work it was demonstrated that transgenic Danio rerio overexpressing growth hormone (GH-transgenic) present either altered gene expression at a determined time point, or different expression pattern along the LD cycle, when compared with non-transgenic (NT) animals, in the positive and negative loops of the circadian system. Gene expression of clock paralogs was reduced in GH fish at the beginning of the dark phase, leading to diminished expression amplitude along the LD cycle. Furthermore, although no differences were observed between NT and GH animals for bmal1a and cry2b expression at each time point, only GH fish presented amplitude along the LD cycle. Also, the locomotor activity behavior was evaluated for both groups. GH-transgenic animals presented higher locomotor activity along the whole LD cycle when compared with NT animals. These data suggest that alterations in the gene expression patterns along the LD cycle of the positive and negative loops of the circadian system, could lead to altered locomotor activity behavior in GH-transgenic fish, and GH overexpression could be responsible for these alterations, either affecting the pathways involved in the expression of genes from the circadian system or altering the metabolism.
Collapse
Affiliation(s)
- B P Cruz
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - L F Brongar
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - P Popiolek
- Centro de Ciências Computacionais (C3), Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - B S B Gonçalvez
- Instituto Federal Sudeste de Minas Gerais, Campus Barbacena, Barbacena, Brazil
| | - M A Figueiredo
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| | - I P G Amaral
- Centro de Biotecnologia, Universidade Federal da Paraíba, Campus I, João Pessoa, Brazil
| | - V S Da Rosa
- Centro de Ciências Computacionais (C3), Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - L E M Nery
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil.
| | - L F Marins
- Laboratório de Biologia Molecular, Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande (FURG), Av. Itália, Km 8, Rio Grande, RS, 96201-900, Brazil
| |
Collapse
|
19
|
Stevens CH, Croft DP, Paull GC, Tyler CR. Stress and welfare in ornamental fishes: what can be learned from aquaculture? JOURNAL OF FISH BIOLOGY 2017; 91:409-428. [PMID: 28691234 DOI: 10.1111/jfb.13377] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
The ornamental fish trade is estimated to handle up to 1·5 billion fishes. Transportation and handling of fishes imposes a range of stressors that can result in mortality at rates of up to 73%. These rates vary hugely, however, and can be as low as 2%, because they are generally estimated rather than based on experimental work. Given the numbers of ornamental fishes traded, any of the estimated mortality rates potentially incur significant financial losses and serious welfare issues. Industry bodies, such as the Ornamental Aquatic Trade Association (OATA), have established standards and codes of best practice for handling fishes, but little scientific research has been conducted to understand the links between stress, health and welfare in ornamental species. In aquaculture, many of the same stressors occur as those in the ornamental trade, including poor water quality, handling, transportation, confinement, poor social and physical environment and disease and in this sector directed research and some resulting interventions have resulted in improved welfare standards. This review considers the concept of welfare in fishes and evaluates reported rates of mortality in the ornamental trade. It assesses how the stress response can be quantified and used as a welfare indicator in fishes. It then analyses whether lessons from aquaculture can be usefully applied to the ornamental fish industry to improve welfare. Finally, this analysis is used to suggest how future research might be directed to help improve welfare in the ornamental trade.
Collapse
Affiliation(s)
- C H Stevens
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, U.K
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, U.K
| | - D P Croft
- Centre for Research in Animal Behaviour, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, U.K
| | - G C Paull
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, U.K
| | - C R Tyler
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QG, U.K
| |
Collapse
|
20
|
Lazado CC, Pedersen PB, Nguyen HQ, Lund I. Rhythmicity and plasticity of digestive physiology in a euryhaline teleost fish, permit (Trachinotus falcatus). Comp Biochem Physiol A Mol Integr Physiol 2017; 212:107-116. [PMID: 28760555 DOI: 10.1016/j.cbpa.2017.07.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/17/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022]
Abstract
Digestive physiology is considered to be under circadian control, but there is little evidence in teleost fish. The present study explored the rhythmicity and plasticity to feeding schedules of enzymatic digestion in a candidate aquaculture fish, the permit (Trachinotus falcatus). The first experiment identified the rhythms of digestive factors throughout the light-dark (LD) cycle. Gastric luminal pH and pepsin activity showed significant daily variation albeit not rhythmic. These dynamic changes were likewise observed in several digestive enzymes, in which the activities of intestinal protease, chymotrypsin and lipase exhibited significant daily rhythms. In the second experiment, the existence of feed anticipatory activity in the digestive factors was investigated by subjecting the fish to either periodic or random feeding. Anticipatory gastric acidification prior to feeding was identified in periodically fed fish. However, pepsin activity did not exhibit such anticipation but a substantial postprandial increase was observed. Intestinal protease, leucine aminopeptidase and lipase anticipated periodic mealtime with elevated enzymatic activities. Plasma melatonin and cortisol demonstrated robust daily rhythms but feeding time manipulations revealed no significant impact. Plasma ghrelin level remained constant during the LD cycle and appeared to be unaffected by differing feeding regimes as well. Taken together, the digestive factors of permit were highly dynamic during the LD cycle. Periodic feeding entrained digestive physiology and mediated anticipatory gastric acidification and intestinal enzymatic activities. This knowledge will be essential in developing feeding protocols and husbandry-related welfare strategies that will further advance this candidate finfish as an aquaculture species.
Collapse
Affiliation(s)
- Carlo C Lazado
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark; Nofima, The Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway.
| | - Per Bovbjerg Pedersen
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| | - Huy Quang Nguyen
- Research Institute for Aquaculture No.1 (RIA1), Ministry of Agriculture and Rural Development, Dinh Bang - Tu Son - Bac Ninh, Viet Nam
| | - Ivar Lund
- Technical University of Denmark, DTU Aqua, Section for Aquaculture, The North Sea Research Centre, DK-9850 Hirtshals, Denmark
| |
Collapse
|
21
|
De la Roca E, Sánchez B, López JM, Herves MA, Canalejo A, Herrera M. Daily activity rhythms and the stress-related response in the wedge sole (Dicologoglossa cuneata Moreau, 1881). Physiol Behav 2017; 173:272-278. [PMID: 28238779 DOI: 10.1016/j.physbeh.2017.02.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 01/26/2017] [Accepted: 02/22/2017] [Indexed: 11/29/2022]
Abstract
To gain further insights on the wedge sole (Dicologoglossa cuneata Moreau, 1881) physiology and behavior, we evaluated its daily feeding and locomotor activity rhythms and compared three different feeding strategies: self-feeding (SF), diurnal feeding schedule (DS) and nocturnal feeding schedule (NS). 450 fish divided into three groups (three replicates each), were kept during 65days. SF had free access to self-feeders whereas DS and NS were fed four times a day. Physiological stress parameters as plasma cortisol, glucose, lactate, proteins and triglycerides were determined. Under the SF setting, the 91% of feeding demands occurred during the dark phase. Furthermore, locomotor activity was also higher during the scotophase (64% of the total activity). Significantly higher values for specific growth rate (SGR) and feed efficiency rate (FER) were observed in NS (0.49 and 0.48%day-1, respectively); whereas SF consumed much less food than the rest and presented a high mortality rate (46%). Plasma cortisol levels were dramatically increased in SF and DS compared to NS (21.8±6.1, 65.8±30.3 and 0.3±0.1ngmL-1, respectively). In summary, the wedge sole appears as a species with nocturnal locomotor and feeding behaviors and NS as the most appropriate feeding strategy. These new findings appear as key information for both the preservation of natural stocks of this species and its rearing.
Collapse
Affiliation(s)
- E De la Roca
- Department of Integrated Sciences, Faculty of Experimental Sciences, CEI-MAR, University of Huelva, Avda. Fuerzas Armadas s/n, 21071 Huelva, Spain; IFAPA Centro Agua del Pino, Ctra. Cartaya, Punta Umbría, 21459 Cartaya, Spain.
| | - B Sánchez
- Laboratorio de Recursos Pesqueros, Ctra. Cartaya, Punta Umbría, 21459 Cartaya, Spain
| | - J M López
- Laboratorio de Recursos Pesqueros, Ctra. Cartaya, Punta Umbría, 21459 Cartaya, Spain
| | - M A Herves
- IFAPA Centro Agua del Pino, Ctra. Cartaya, Punta Umbría, 21459 Cartaya, Spain
| | - A Canalejo
- Department of Integrated Sciences, Faculty of Experimental Sciences, CEI-MAR, University of Huelva, Avda. Fuerzas Armadas s/n, 21071 Huelva, Spain
| | - M Herrera
- IFAPA Centro Agua del Pino, Ctra. Cartaya, Punta Umbría, 21459 Cartaya, Spain
| |
Collapse
|
22
|
López-Olmeda JF. Nonphotic entrainment in fish. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:133-143. [PMID: 27642096 DOI: 10.1016/j.cbpa.2016.09.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 09/09/2016] [Accepted: 09/13/2016] [Indexed: 12/27/2022]
Abstract
Organisms that live on the Earth are subjected to environmental variables that display cyclic variations, such as light, temperature and tides. Since these cyclic changes in the environment are constant and predictable, they have affected biological evolution through selecting the occurrence of biological rhythms in the physiology of all living organisms, from prokaryotes to mammals. Biological clocks confer organisms an adaptive advantage as they can synchronize their behavioral and physiological processes to occur at a given moment of time when effectiveness and success would be greater and/or the cost and risk for organisms would be lower. Among environmental synchronizers, light has been mostly widely studied to date. However, other environmental signals play an important role in biological rhythms, especially in aquatic animals like fish. This review focuses on current knowledge about the role of nonphotic synchronizers (temperature, food and tidal cycles) on biological rhythms in fish, and on the entrainment of the fish circadian system to these synchronizers.
Collapse
Affiliation(s)
- Jose F López-Olmeda
- Department of Animal Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, 30100 Murcia, Spain.
| |
Collapse
|
23
|
|
24
|
|
25
|
Fortes-Silva R, Oliveira I, Vieira V, Winkaler E, Guerra-Santos B, Cerqueira R. Daily rhythms of locomotor activity and the influence of a light and dark cycle on gut microbiota species in tambaqui (Colossoma macropomum). BIOL RHYTHM RES 2015. [DOI: 10.1080/09291016.2015.1094972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
26
|
Felip O, Blasco J, Ibarz A, Martín-Pérez M, Fernández-Borràs J. Diets labelled with 13C-starch and 15N-protein reveal daily rhythms of nutrient use in gilthead sea bream (Sparus aurata). Comp Biochem Physiol A Mol Integr Physiol 2015; 179:95-103. [DOI: 10.1016/j.cbpa.2014.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/12/2014] [Accepted: 09/17/2014] [Indexed: 11/16/2022]
|
27
|
Silva PIM, Martins CIM, Höglund E, Gjøen HM, Øverli Ø. Feeding motivation as a personality trait in Nile tilapia (Oreochromis niloticus): role of serotonergic neurotransmission. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:1547-1557. [PMID: 24858238 DOI: 10.1007/s10695-014-9947-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 05/08/2014] [Indexed: 06/03/2023]
Abstract
Consistent individual variation in behaviour and physiology (i.e. animal personality or coping style) has emerged as a central topic in many biological disciplines. Yet, underlying mechanisms of crucial personality traits like feeding behaviour in novel environments remain unclear. Comparative studies, however, reveal a strong degree of evolutionary conservation of neural mechanisms controlling such behaviours throughout the vertebrate lineage. Previous studies have indicated duration of stress-induced anorexia as a consistent individual characteristic in teleost fishes. This study aims to determine to what degree brain 5-hydroxytryptamine (5-HT, serotonin) activity pertains to this aspect of animal personality, as a correlate to feed anticipatory behaviour and recovery of feed intake after transfer to a novel environment. Crucial to the definition of animal personality, a strong degree of individual consistency in different measures of feeding behaviour (feeding latency and feeding score), was demonstrated. Furthermore, low serotonergic activity in the hypothalamus was highly correlated with a personality characterized by high feeding motivation, with feeding motivation represented as an overall measure incorporating several behavioural parameters in a Principle Component Analyses (PCA). This study thus confirms individual variation in brain 5-HT neurotransmission as a correlate to complex behavioural syndromes related to feeding motivation.
Collapse
Affiliation(s)
- Patricia I M Silva
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, P.O. Box 5003, 1432, Aas, Norway,
| | | | | | | | | |
Collapse
|
28
|
Vera LM, Montoya A, Pujante IM, Pérez-Sánchez J, Calduch-Giner JA, Mancera JM, Moliner J, Sánchez-Vázquez FJ. Acute stress response in gilthead sea bream (Sparus aurata L.) is time-of-day dependent: Physiological and oxidative stress indicators. Chronobiol Int 2014; 31:1051-61. [PMID: 25102424 DOI: 10.3109/07420528.2014.945646] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since fish show daily rhythms in most physiological functions, it should not be surprising that stressors may have different effects depending on the timing of exposure. In this study, we investigated the influence of time of day on the stress responses, at both physiological and cellular levels, in gilthead sea bream (Sparus aurata L.) submitted to air exposure for 30 s and then returned to their tank. One hour after air exposure, blood, hypothalamus and liver samples were taken. Six fish per experimental group (control and stressed) were sampled every 4 h during a 24-h cycle. Fish were fed in the middle of the light cycle (ML) and locomotor activity rhythms were recorded using infrared photocells to determine their daily activity pattern of behaviour, which showed a peak around feeding time in all fish. In the control group, cortisol levels did not show daily rhythmicity, whereas in the stressed fish, a daily rhythm of plasma cortisol was observed, being the average values higher than in the control group, with increased differences during the dark phase. Blood glucose showed daily rhythmicity in the control group but not in the stressed one which also showed higher values at all sampling points. In the hypothalamus of control fish, a daily rhythm of corticotropin-releasing hormone (crh) gene expression was observed, with the acrophase at the beginning of the light phase. However, in the stressed fish, this rhythm was abolished. The expression of crh-binding protein (crhbp) showed a peak at the end of the dark phase in the control group, whereas in the stressed sea bream, this peak was found at ML. Regarding hepatic gene expression of oxidative stress biomarkers: (i) cytochrome c oxidase 4 showed daily rhythmicity in both control and stressed fish, with the acrophases located around ML, (ii) peroxiredoxin (prdx) 3 and 5 (prdx5) only presented daily rhythmicity of expression in the stressed fish, with the acrophase located at the beginning of the light cycle and (iii) uncoupling protein 1 showed significant differences between sampling points only in the control group, with significantly higher expression at the beginning of the dark phase. Taken together, these results indicate that stress response in gilthead sea bream is time-dependent as cortisol level rose higher at night, and that different rhythmic mechanisms interplay in the control of neuroendocrine and cellular stress responses.
Collapse
Affiliation(s)
- Luisa María Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia , Murcia , Spain
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Vindas MA, Johansen IB, Vela-Avitua S, Nørstrud KS, Aalgaard M, Braastad BO, Höglund E, Øverli Ø. Frustrative reward omission increases aggressive behaviour of inferior fighters. Proc Biol Sci 2014; 281:20140300. [PMID: 24759861 DOI: 10.1098/rspb.2014.0300] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Animals use aggressive behaviour to gain access to resources, and individuals adjust their behaviour relative to resource value and own resource holding potential (RHP). Normally, smaller individuals have inferior fighting abilities compared with larger conspecifics. Affective and cognitive processes can alter contest dynamics, but the interaction between such effects and that of differing RHPs has not been adjudged. We investigated effects of omission of expected reward (OER) on competing individuals with contrasting RHPs. Small and large rainbow trout (Oncorhynchus mykiss) were conditioned to associate a light with reward. Thereafter, the reward was omitted for half of the fish prior to a contest between individuals possessing a 36-40% difference in RHP. Small control individuals displayed submissive behaviour and virtually no aggression. By contrast, small OER individuals were more aggressive, and two out of 11 became socially dominant. Increased aggression in small OER individuals was accompanied by increased serotonin levels in the dorsomedial pallium (proposed amygdala homologue), but no changes in limbic dopamine neurochemistry were observed in OER-exposed individuals. The behavioural and physiological response to OER in fish indicates that frustration is an evolutionarily conserved affective state. Moreover, our results indicate that aggressive motivation to reward unpredictability affects low RHP individuals strongest.
Collapse
Affiliation(s)
- Marco A Vindas
- Department of Animal and Aquacultural Sciences, Norwegian University of Life Sciences, , PO Box 5003, Ås 1432, Norway, Department of Biosciences, University of Oslo, , PO Box 1041, Blindern, Oslo 0316, Norway, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, , Palackého tř. 1/3, Brno 61242 , Czech Republic, Department of Marine Ecology and Aquaculture, Danish Institute for Fisheries Research, North Sea Centre, , PO Box 101, Hirtshals 9850, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Klaren PH, van Dalen SC, Atsma W, Spanings FT, Hendriks J, Flik G. Voluntary timing of food intake increases weight gain and reduces basal plasma cortisol levels in common carp (Cyprinus carpio L.). Physiol Behav 2013; 122:120-8. [DOI: 10.1016/j.physbeh.2013.08.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 06/10/2013] [Accepted: 08/29/2013] [Indexed: 11/28/2022]
|
31
|
Oliveira CCV, Aparício R, Blanco-Vives B, Chereguini O, Martín I, Javier Sánchez-Vazquez F. Endocrine (plasma cortisol and glucose) and behavioral (locomotor and self-feeding activity) circadian rhythms in Senegalese sole (Solea senegalensis Kaup 1858) exposed to light/dark cycles or constant light. FISH PHYSIOLOGY AND BIOCHEMISTRY 2013; 39:479-487. [PMID: 22983662 DOI: 10.1007/s10695-012-9713-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/31/2012] [Indexed: 06/01/2023]
Abstract
The existence of daily rhythms under light/dark (LD) cycles in plasma cortisol, blood glucose and locomotor and self-feeding activities, as well as their persistence (circadian nature) under constant light (LL), was investigated in Senegalese sole (Solea senegalensis). For the cortisol and glucose rhythms study, 48 soles were equally distributed in 8 tanks and exposed to a 12:12 LD cycle and natural water temperature (experiment 1). After an acclimation period, blood was sampled every 3 h until a 24-h cycle was completed. Blood glucose levels were measured immediately after sampling, while plasma cortisol was measured later by ELISA. In experiment 2, the fish were exposed to LL for 11 days, and after this period, the same sampling procedure was repeated. For the study of locomotor and self-feeding rhythms (experiment 3), two groups of sole were used: one exposed to LD and the other to LL. Each group was distributed within 3 tanks equipped with infrared photocells for the record of locomotor activity, and self-feeders for feeding behavior characterization. The results revealed a marked oscillation in cortisol concentrations during the daily cycle under LD, with a peak (35.65 ± 3.14 ng/ml) in the afternoon (15:00 h) and very low levels during the night (5.30 ± 1.09 ng/ml). This cortisol rhythm persisted under LL conditions, with lower values (mean cortisol concentration = 7.12 ± 1.11 ng/ml) and with the peak shifted by 3 h. Both rhythms were confirmed by COSINOR analysis (p < 0.05). The synchronizing role of temperature and feeding schedule, in addition to light, is also discussed. Diel rhythms of glucose were not evident in LD or LL. As to locomotor and self-feeding activity, a very marked rhythm was observed under LD, with higher activity observed during the night, with acrophases located at 2:14 and 3:37 h, respectively. The statistical significance of daily rhythms was confirmed by COSINOR analysis. Under LL, both feeding and locomotor rhythms persisted, with an endogenous period (τ) around 22.5 h. In short, our findings described for the first time the existence of circadian cortisol and behavioral circadian rhythms in flat fish. Such results revealed the importance of taking into account the time of day when assessing stress responses and evaluating physiological indicators of stress in fish.
Collapse
Affiliation(s)
- Catarina C V Oliveira
- CCMAR-CIMAR L.A., Centre of Marine Sciences, University of Algarve, Campus de Gambelas, 8005-139 Faro, Portugal
| | | | | | | | | | | |
Collapse
|
32
|
Vera LM, Negrini P, Zagatti C, Frigato E, Sánchez-Vázquez FJ, Bertolucci C. Light and feeding entrainment of the molecular circadian clock in a marine teleost (Sparus aurata). Chronobiol Int 2013; 30:649-61. [DOI: 10.3109/07420528.2013.775143] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
33
|
Vera LM, Montoya A, Sánchez-Vázquez FJ. Effectiveness of the anaesthetic MS-222 in gilthead seabream, Sparus aurata: effect of feeding time and day-night variations in plasma MS-222 concentration and GST activity. Physiol Behav 2013; 110-111:51-7. [PMID: 23291569 DOI: 10.1016/j.physbeh.2012.12.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 10/30/2012] [Accepted: 12/21/2012] [Indexed: 11/28/2022]
Abstract
Feeding time is a potent zeitgeber capable of synchronising behavioural and physiological daily rhythms in fish. However, the effect of feeding time on the daily rhythm of drugs toxicity and/or effectiveness remains unexplored to date. In this paper we investigated the day/night variations in the effectiveness of an anaesthetic commonly used in fish (Tricaine, MS-222) in a teleost of great chronobiological and aquaculture interest (gilthead seabream). To this end, fish were kept under LD 12:12 and fed at mid-light (ML), mid-darkness (MD) or random times (RD). The time needed to induce anaesthesia (reduction of locomotor activity) during MS-222 exposure (65 mg/L) as well as the recovery period were investigated at ML and MD in the three experimental groups using specialised video tracking software. In addition, daily rhythms of GST activity in the liver (as an indicator of detoxification processes) and plasma MS-222 concentration (related to uptake) were determined. The results revealed that MS-222 effectiveness in the ML group was higher during the day than at night (significant reduction of activity after 3 min vs. 5 min) whereas in the MD group, the daily variation of MS-222 effectiveness was inverted (significant reduction of activity after 7 min at ML vs. 2 min at MD), suggesting that feeding time can shift the day-night variations in the effectiveness of MS-222. Hepatic GST also seemed to be affected by feeding time: in fish fed at MD or RD this enzyme activity showed significant differences during the day, and the highest levels were found at different times of the day in each group. Plasma MS-222 concentrations were higher at ML (142.4±12.8 ng/ml) than at MD (96.3±10.9 ng/ml) (t-Student, p<0.05). These results suggest that the daily variation in MS-222 concentration following exposure might be involved, among other factors, in the existence of day-night variations in the effectiveness of this anaesthetic. Furthermore, manipulation of the feeding schedule can be used to modify the daily variations in MS-222 effectiveness, which has basic as well applied implications for optimising anaesthesia protocols in fish aquaculture.
Collapse
Affiliation(s)
- L M Vera
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence Campus Mare Nostrum, University of Murcia, 30100, Spain.
| | | | | |
Collapse
|
34
|
Linking cortisol responsiveness and aggressive behaviour in gilthead seabream Sparus aurata: Indication of divergent coping styles. Appl Anim Behav Sci 2013. [DOI: 10.1016/j.applanim.2012.11.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Cañon Jones HA, Noble C, Damsgård B, Pearce GP. Investigating the influence of predictable and unpredictable feed delivery schedules upon the behaviour and welfare of Atlantic salmon parr (Salmo salar) using social network analysis and fin damage. Appl Anim Behav Sci 2012. [DOI: 10.1016/j.applanim.2012.01.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
36
|
Ellis T, Yildiz HY, López-Olmeda J, Spedicato MT, Tort L, Øverli Ø, Martins CIM. Cortisol and finfish welfare. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:163-188. [PMID: 22113503 DOI: 10.1007/s10695-011-9568-y] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/24/2011] [Indexed: 05/31/2023]
Abstract
Previous reviews of stress, and the stress hormone cortisol, in fish have focussed on physiology, due to interest in impacts on aquaculture production. Here, we discuss cortisol in relation to fish welfare. Cortisol is a readily measured component of the primary (neuroendocrine) stress response and is relevant to fish welfare as it affects physiological and brain functions and modifies behaviour. However, we argue that cortisol has little value if welfare is viewed purely from a functional (or behavioural) perspective-the cortisol response itself is a natural, adaptive response and is not predictive of coping as downstream impacts on function and behaviour are dose-, time- and context-dependent and not predictable. Nevertheless, we argue that welfare should be considered in terms of mental health and feelings, and that stress in relation to welfare should be viewed as psychological, rather than physiological. We contend that cortisol can be used (with caution) as a tractable indicator of how fish perceive (and feel about) their environment, psychological stress and feelings in fish. Cortisol responses are directly triggered by the brain and fish studies do indicate cortisol responses to psychological stressors, i.e., those with no direct physicochemical action. We discuss the practicalities of using cortisol to ask the fish themselves how they feel about husbandry practices and the culture environment. Single time point measurements of cortisol are of little value in assessing the stress level of fish as studies need to account for diurnal and seasonal variations, and environmental and genetic factors. Areas in need of greater clarity for the use of cortisol as an indicator of fish feelings are the separation of (physiological) stress from (psychological) distress, the separation of chronic stress from acclimation, and the interactions between feelings, cortisol, mood and behaviour.
Collapse
Affiliation(s)
- Tim Ellis
- Cefas Weymouth Laboratory, Weymouth, Dorset, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
Martins CIM, Galhardo L, Noble C, Damsgård B, Spedicato MT, Zupa W, Beauchaud M, Kulczykowska E, Massabuau JC, Carter T, Planellas SR, Kristiansen T. Behavioural indicators of welfare in farmed fish. FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:17-41. [PMID: 21796377 PMCID: PMC3276765 DOI: 10.1007/s10695-011-9518-8] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 05/20/2011] [Indexed: 05/18/2023]
Abstract
Behaviour represents a reaction to the environment as fish perceive it and is therefore a key element of fish welfare. This review summarises the main findings on how behavioural changes have been used to assess welfare in farmed fish, using both functional and feeling-based approaches. Changes in foraging behaviour, ventilatory activity, aggression, individual and group swimming behaviour, stereotypic and abnormal behaviour have been linked with acute and chronic stressors in aquaculture and can therefore be regarded as likely indicators of poor welfare. On the contrary, measurements of exploratory behaviour, feed anticipatory activity and reward-related operant behaviour are beginning to be considered as indicators of positive emotions and welfare in fish. Despite the lack of scientific agreement about the existence of sentience in fish, the possibility that they are capable of both positive and negative emotions may contribute to the development of new strategies (e.g. environmental enrichment) to promote good welfare. Numerous studies that use behavioural indicators of welfare show that behavioural changes can be interpreted as either good or poor welfare depending on the fish species. It is therefore essential to understand the species-specific biology before drawing any conclusions in relation to welfare. In addition, different individuals within the same species may exhibit divergent coping strategies towards stressors, and what is tolerated by some individuals may be detrimental to others. Therefore, the assessment of welfare in a few individuals may not represent the average welfare of a group and vice versa. This underlines the need to develop on-farm, operational behavioural welfare indicators that can be easily used to assess not only the individual welfare but also the welfare of the whole group (e.g. spatial distribution). With the ongoing development of video technology and image processing, the on-farm surveillance of behaviour may in the near future represent a low-cost, noninvasive tool to assess the welfare of farmed fish.
Collapse
Affiliation(s)
- Catarina I M Martins
- Centro de Ciências do Mar do Algarve (CCMAR), Universidade do Algarve, Campus de Gambelas, Faro, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
López-Olmeda JF, Noble C, Sánchez-Vázquez FJ. Does feeding time affect fish welfare? FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:143-152. [PMID: 21671025 DOI: 10.1007/s10695-011-9523-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Accepted: 06/03/2011] [Indexed: 05/30/2023]
Abstract
Increased aquaculture production has raised concerns about managing protocols to safeguard the welfare of farmed fish, as consumers demand responsible aquaculture practices to provide 'welfare friendly' products. Feeding is one of the largest production cost in a fish farm and can be one of the biggest stressors for fish. Under farming conditions, fish are challenged with artificial diets and feeding regimes, and inadequate feeding conditions cause stress, alteration of normal behavioural patterns, poor performance and eventually diseases and death, which are by no means acceptable neither economically nor ethically. This review aims to highlight the impact of feeding rhythms and feeding time upon physiological and behavioural welfare indicators, which show circadian rhythms as well. Therefore, all these variables should be considered when designing feeding strategies in farming conditions and assessing the welfare state of cultured fish.
Collapse
Affiliation(s)
- J F López-Olmeda
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia, Spain
| | | | | |
Collapse
|
39
|
Amaral IPG, Johnston IA. Circadian expression of clock and putative clock-controlled genes in skeletal muscle of the zebrafish. Am J Physiol Regul Integr Comp Physiol 2011; 302:R193-206. [PMID: 22031781 DOI: 10.1152/ajpregu.00367.2011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
To identify circadian patterns of gene expression in skeletal muscle, adult male zebrafish were acclimated for 2 wk to a 12:12-h light-dark photoperiod and then exposed to continuous darkness for 86 h with ad libitum feeding. The increase in gut food content associated with the subjective light period was much diminished by the third cycle, enabling feeding and circadian rhythms to be distinguished. Expression of zebrafish paralogs of mammalian transcriptional activators of the circadian mechanism (bmal1, clock1, and rora) followed a rhythmic pattern with a ∼24-h periodicity. Peak expression of rora paralogs occurred at the beginning of the subjective light period [Zeitgeber time (ZT)07 and ZT02 for roraa and rorab], whereas the highest expression of bmal1 and clock paralogs occurred 12 h later (ZT13-15 and ZT16 for bmal and clock paralogs). Expression of the transcriptional repressors cry1a, per1a/1b, per2, per3, nr1d2a/2b, and nr1d1 also followed a circadian pattern with peak expression at ZT0-02. Expression of the two paralogs of cry2 occurred in phase with clock1a/1b. Duplicated genes had a high correlation of expression except for paralogs of clock1, nr1d2, and per1, with cry1b showing no circadian pattern. The highest expression difference was 9.2-fold for the activator bmal1b and 51.7-fold for the repressor per1a. Out of 32 candidate clock-controlled genes, only myf6, igfbp3, igfbp5b, and hsf2 showed circadian expression patterns. Igfbp3, igfbp5b, and myf6 were expressed in phase with clock1a/1b and had an average of twofold change in expression from peak to trough, whereas hsf2 transcripts were expressed in phase with cry1a and had a 7.2-fold-change in expression. The changes in expression of clock and clock-controlled genes observed during continuous darkness were also observed at similar ZTs in fish exposed to a normal photoperiod in a separate control experiment. The role of circadian clocks in regulating muscle maintenance and growth are discussed.
Collapse
Affiliation(s)
- Ian P G Amaral
- Scottish Oceans Institute, School of Biology, University of St. Andrews, Fife, Scotland, United Kingdom.
| | | |
Collapse
|
40
|
Amaral IPG, Johnston IA. Insulin-like growth factor (IGF) signalling and genome-wide transcriptional regulation in fast muscle of zebrafish following a single-satiating meal. ACTA ACUST UNITED AC 2011; 214:2125-39. [PMID: 21653807 DOI: 10.1242/jeb.053298] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Male zebrafish (Danio rerio) were fasted for 7 days and fed to satiation over 3 h to investigate the transcriptional responses to a single meal. The intestinal content at satiety (6.3% body mass) decreased by 50% at 3 h and 95% at 9 h following food withdrawal. Phosphorylation of the insulin-like growth factor (IGF) signalling protein Akt peaked within 3 h of feeding and was highly correlated with gut fullness. Retained paralogues of IGF hormones genes were regulated with feeding, with igf1a showing a pronounced peak in expression after 3 h and igf2b after 6 h. Igf-I receptor transcripts were markedly elevated with fasting, and decreased to their lowest levels 45 min after feeding. igf1rb transcripts increased more quickly than igf1ra transcripts as the gut emptied. Paralogues of the insulin-like growth factor binding proteins (IGFBPs) were constitutively expressed, except for igfbp1a and igfbp1b transcripts, which were significantly elevated with fasting. Genome-wide transcriptional responses were analysed using the Agilent 44K oligonucleotide microarray and selected genes validated by qPCR. Fasting was associated with the upregulation of genes for the ubiquitin-proteasome degradation pathway, anti-proliferative and pro-apoptotic genes. Protein chaperones (unc45b, hspd1, hspa5, hsp90a.1, hsp90a.2) and chaperone interacting proteins (ahsa1 and stip1) were upregulated 3 h after feeding along with genes for the initiation of protein synthesis and mRNA processing. Transcripts for the enzyme ornithine decarboxylase 1 showed the largest increase with feeding (11.5-fold) and were positively correlated with gut fullness. This study demonstrates the fast nature of the transcriptional responses to a meal and provides evidence for differential regulation of retained paralogues of IGF signalling pathway genes.
Collapse
Affiliation(s)
- Ian P G Amaral
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK.
| | | |
Collapse
|
41
|
McCarthy ID, Fuiman LA. Post-prandial changes in protein synthesis in red drum (Sciaenops ocellatus) larvae. ACTA ACUST UNITED AC 2011; 214:1821-8. [PMID: 21562168 DOI: 10.1242/jeb.052753] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein synthesis is one of the major energy-consuming processes in all living organisms. Post-prandial changes in protein synthesis have been studied in a range of animal taxa but have been little studied in fish larvae. Using the flooding-dose method, we measured post-prandial changes in whole-body rates of protein synthesis in regularly fed red drum Sciaenops ocellatus (Linnaeus) larvae for 24-28 h following their daily meal. Fractional rates of protein synthesis increased from a baseline (pre-feeding) rate of 16% day(-1) to a post-prandial peak of 48% day(-1) ca. 8 h after feeding before declining to 12% day(-1) after 24-28 h. The overall mean daily rate of protein synthesis was calculated as 27% day(-1). Although suggested as energetically impossible in larval poikilotherms, our results show that rates in excess of 30% day(-1) can be attained by larval fishes for a few hours but are not sustained. The average daily energetic cost of protein synthesis was estimated as 34% of daily total oxygen consumption, ranging from 19% immediately before feeding to 61% during the post-prandial peak in protein synthesis. This suggests that during the post-prandial peak, protein synthesis will require a large proportion of the hourly energy production, which, given the limited metabolic scope in fish larvae, may limit the energy that could otherwise be allocated to other energy-costly functions, such as foraging and escape responses.
Collapse
Affiliation(s)
- Ian D McCarthy
- School of Ocean Sciences, College of Natural Sciences, Bangor University, Menai Bridge, Anglesey, UK.
| | | |
Collapse
|
42
|
Johnston IA, Bower NI, Macqueen DJ. Growth and the regulation of myotomal muscle mass in teleost fish. ACTA ACUST UNITED AC 2011; 214:1617-28. [PMID: 21525308 DOI: 10.1242/jeb.038620] [Citation(s) in RCA: 262] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Teleost muscle first arises in early embryonic life and its development is driven by molecules present in the egg yolk and modulated by environmental stimuli including temperature and oxygen. Several populations of myogenic precursor cells reside in the embryonic somite and external cell layer and contribute to muscle fibres in embryo, larval, juvenile and adult stages. Many signalling proteins and transcription factors essential for these events are known. In all cases, myogenesis involves myoblast proliferation, migration, fusion and terminal differentiation. Maturation of the embryonic muscle is associated with motor innervation and the development of a scaffold of connective tissue and complex myotomal architecture needed to generate swimming behaviour. Adult muscle is a heterogeneous tissue composed of several cell types that interact to affect growth patterns. The development of capillary and lymphatic circulations and extramuscular organs--notably the gastrointestinal, endocrine, neuroendocrine and immune systems--serves to increase information exchange between tissues and with the external environment, adding to the complexity of growth regulation. Teleosts often exhibit an indeterminate growth pattern, with body size and muscle mass increasing until mortality or senescence occurs. The dramatic increase in myotomal muscle mass between embryo and adult requires the continuous production of muscle fibres until 40-50% of the maximum body length is reached. Sarcomeric proteins can be mobilised as a source of amino acids for energy metabolism by other tissues and for gonad generation, requiring the dynamic regulation of muscle mass throughout the life cycle. The metabolic and contractile phenotypes of muscle fibres also show significant plasticity with respect to environmental conditions, migration and spawning. Many genes regulating muscle growth are found as multiple copies as a result of paralogue retention following whole-genome duplication events in teleost lineages. The extent to which indeterminate growth, ectothermy and paralogue preservation have resulted in modifications of the genetic pathways regulating muscle growth in teleosts compared to mammals largely remains unknown. This review describes the use of compensatory growth models, transgenesis and tissue culture to explore the mechanisms of muscle growth in teleosts and provides some perspectives on future research directions.
Collapse
Affiliation(s)
- Ian A Johnston
- Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY168LB, UK.
| | | | | |
Collapse
|
43
|
Sánchez-Vázquez FJ, Terry MI, Felizardo VO, Vera LM. Daily Rhythms of Toxicity and Effectiveness of Anesthetics (MS222 and Eugenol) in Zebrafish (Danio Rerio). Chronobiol Int 2011; 28:109-17. [DOI: 10.3109/07420528.2010.538105] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Galhardo L, Vital J, Oliveira RF. The role of predictability in the stress response of a cichlid fish. Physiol Behav 2010; 102:367-72. [PMID: 21145905 DOI: 10.1016/j.physbeh.2010.11.035] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Revised: 11/24/2010] [Accepted: 11/30/2010] [Indexed: 11/26/2022]
Abstract
In recent years there has been an increasing interest in the cognitive abilities of fish with implications for animal welfare and management of rearing operations. Although it is known that psychological factors can modulate the stress response in mammals, this aspect has seldom been investigated within stress in fish. In this study we investigate whether the perception (appraisal) that fish make of significant environmental events modifies their behavioural and physiological response. For this purpose we have used a predictable vs. unpredictable paradigm for positive (feeding) and negative (confinement) events using the cichlid fish Oreochromis mossambicus as a model species. Results show that there is a differential effect of predictability for the feeding and confinement events. In the confinement experiment, predictability involved more attention to the visual cue and lower cortisol. The feeding event triggered higher levels of anticipatory behaviour and a tendency for higher cortisol in the predictable group. Therefore, predictable negative events reduce the cortisol response. Predictable positive events may elicit an anticipatory response, and when there is a significant delay between the visual cue and the actual occurrence of the event, it may also contain elements that can be interpreted as a stress response. These findings demonstrate that fish can appraise relevant aspects of the environment, with welfare implications for housing, husbandry and experimental procedures.
Collapse
Affiliation(s)
- Leonor Galhardo
- Unidade de Investigação em Eco-Etologia, Instituto Superior de Psicologia Aplicada, Rua Jardim do Tabaco, 34, 1149-041 Lisboa, Portugal.
| | | | | |
Collapse
|
45
|
Food- and light-entrainable oscillators control feeding and locomotor activity rhythms, respectively, in the Japanese catfish, Plotosus japonicus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 196:901-12. [DOI: 10.1007/s00359-010-0572-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 08/09/2010] [Accepted: 08/10/2010] [Indexed: 10/19/2022]
|
46
|
Montoya A, López-Olmeda JF, Garayzar ABS, Sánchez-Vázquez FJ. Synchronization of daily rhythms of locomotor activity and plasma glucose, cortisol and thyroid hormones to feeding in Gilthead seabream (Sparus aurata) under a light-dark cycle. Physiol Behav 2010; 101:101-7. [PMID: 20434474 DOI: 10.1016/j.physbeh.2010.04.019] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 04/16/2010] [Accepted: 04/21/2010] [Indexed: 11/29/2022]
Abstract
Food availability is far from constant but tends to be cyclic, and fish therefore show a variety of circadian rhythms which can be entrained to feeding time. The aim of this study was to investigate the synchronization to mealtimes of behavioral (locomotor activity), metabolic (glucose) and endocrine (cortisol and thyroid hormones) daily rhythms in gilthead seabream. To this end, fish were reared under a 12:12 LD cycle and fed 1% of their body weight once a day either at mid-light (ML) or at mid-dark (MD) of the LD cycle. Fish synchronized their locomotor activity to the phase in which food was delivered, ML and MD fish displaying 86+/-3% and 81+/-1% of their total daily activity during daytime and nighttime, respectively. Daily variations of blood glucose were strongly synchronized to feeding time in both experimental groups, peaking 8h after the meal. A postprandial cortisol peak was observed in both groups. In fish fed at MD the cortisol values were high during the 8h following feeding, whereas in fish fed at ML cortisol levels returned to basal values within 4h. In addition, MD fish showed a higher average daily cortisol value (24.75+/-2.65 ng/ml) than ML fish (10.30+/-2.18 ng/ml). Feeding time affected the magnitude of daily variations in the thyroid hormones. When the time of feeding was delayed by 12h, a shift of the same magnitude could be observed in the glucose daily rhythm and a dramatic change in the cortisol levels of the ML-fed group compared with results mentioned above. In summary, gilthead seabream synchronized their locomotor activity to the phase when food was provided and showed different degrees of synchronization of their behavioral, metabolic and endocrine rhythms to feeding time. Since these parameters are used to evaluate stress responses and welfare in seabream, their daily rhythm and synchronization to light and feeding time should be taken into account.
Collapse
Affiliation(s)
- A Montoya
- Department of Physiology, Faculty of Biology, University of Murcia, 30100 Murcia, Spain
| | | | | | | |
Collapse
|