1
|
Bouisset N, Laakso I. Induced electric fields in MRI settings and electric vestibular stimulations: same vestibular effects? Exp Brain Res 2024; 242:2493-2507. [PMID: 39261353 DOI: 10.1007/s00221-024-06910-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/10/2024] [Indexed: 09/13/2024]
Abstract
In Magnetic Resonance Imaging scanner environments, the continuous Lorentz Force is a potent vestibular stimulation. It is nowadays so well known that it is now identified as Magnetic vestibular stimulation (MVS). Alongside MVS, some authors argue that through induced electric fields, electromagnetic induction could also trigger the vestibular system. Indeed, for decades, vestibular-specific electric stimulations (EVS) have been known to precisely impact all vestibular pathways. Here, we go through the literature, looking at potential time varying magnetic field induced vestibular outcomes in MRI settings and comparing them with EVS-known outcomes. To date, although theoretically induction could trigger vestibular responses the behavioral evidence remains poor. Finally, more vestibular-specific work is needed.
Collapse
Affiliation(s)
- Nicolas Bouisset
- Human Threshold Research Group, Lawson Health Research Institute, London, ON, Canada.
- Department of Medical Biophysics, Western University, London, ON, Canada.
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| |
Collapse
|
2
|
Bouisset N, Nissi J, Laakso I, Reynolds RF, Legros A. Is activation of the vestibular system by electromagnetic induction a possibility in an MRI context? Bioelectromagnetics 2024; 45:171-183. [PMID: 38348647 DOI: 10.1002/bem.22497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/21/2023] [Accepted: 12/16/2023] [Indexed: 04/17/2024]
Abstract
In recent years, an increasing number of studies have discussed the mechanisms of vestibular activation in strong magnetic field settings such as occur in a magnetic resonance imaging scanner environment. Amid the different hypotheses, the Lorentz force explanation currently stands out as the most plausible mechanism, as evidenced by activation of the vestibulo-ocular reflex. Other hypotheses have largely been discarded. Nonetheless, both human data and computational modeling suggest that electromagnetic induction could be a valid mechanism which may coexist alongside the Lorentz force. To further investigate the induction hypothesis, we provide, herein, a first of its kind dosimetric analysis to estimate the induced electric fields at the vestibular system and compare them with what galvanic vestibular stimulation would generate. We found that electric fields strengths from induction match galvanic vestibular stimulation strengths generating vestibular responses. This review examines the evidence in support of electromagnetic induction of vestibular responses, and whether movement-induced time-varying magnetic fields should be further considered and investigated.
Collapse
Affiliation(s)
- Nicolas Bouisset
- Human Threshold Research Group, Lawson Health Research Institute, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
| | - Janita Nissi
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Ilkka Laakso
- Department of Electrical Engineering and Automation, Aalto University, Espoo, Finland
| | - Raymond F Reynolds
- School of Sport, Exercise & Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Alexandre Legros
- Human Threshold Research Group, Lawson Health Research Institute, London, Ontario, Canada
- School of Kinesiology, Western University, London, Ontario, Canada
- EuroMov Digital Health in Motion, Univ Montpellier, IMT Mines Ales, Montpellier, France
- Departments of Medical Biophysics and Medical Imaging Western University, London, Ontario, Canada
- Eurostim, Montpellier, France
| |
Collapse
|
3
|
Tang LS, Qiu CZ, Zhang HY, Ren DL. Effects of 0.4 T, 3.0 T and 9.4 T static magnetic fields on development, behaviour and immune response in zebrafish (Danio rerio). Neuroimage 2023; 282:120398. [PMID: 37778420 DOI: 10.1016/j.neuroimage.2023.120398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/23/2023] [Accepted: 09/28/2023] [Indexed: 10/03/2023] Open
Abstract
Magnetic Resonance Imaging (MRI) is widely applied in medical diagnosis due to its excellent non-invasiveness. With the increasing intensity of static magnetic field (SMF), the safety assessment of MRI has been ongoing. In this study, zebrafish larvae were exposed to SMFs of 0.4, 3.0, and 9.4 T for 2 h (h), and we found that there was no significant difference in the number of spontaneous tail swings, heart rate, and body length of zebrafish larvae in the treatment groups. The expression of development-related genes shha, pygo1, mylz3 and runx2b in the three SMF groups was almost not significantly different from the control group. Behavior tests unveiled a notable reduction in both the average speed and duration of high-speed movements in zebrafish larvae across all three SMF groups. In addition, the 0.4 and 3.0 T SMFs increased the migration of neutrophils in caudal fin injury, and the expression of pro-inflammatory cytokines was also increased. To explore the mechanism of SMFs on zebrafish immune function, this study utilized aanat2-/- mutant fish to demonstrate the effect of melatonin (MT) involvement in SMFs on zebrafish immune function. This study provides experimental data for understanding the effects of SMFs on organisms, and also provides a new insight for exploring the relationship between magnetic fields and immune function.
Collapse
Affiliation(s)
- Long-Sheng Tang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China; School of Statistics and Applied Mathematics, Anhui University of Finance & Economics, Bengbu Anhui 233030, China
| | - Cheng-Zeng Qiu
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Hao-Yi Zhang
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China
| | - Da-Long Ren
- College of Animal Science and Technology, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei 230036, China.
| |
Collapse
|
4
|
Exposure to static magnetic field facilitates selective attention and neuroplasticity in rats. Brain Res Bull 2022; 189:111-120. [PMID: 35987295 DOI: 10.1016/j.brainresbull.2022.08.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 08/06/2022] [Accepted: 08/14/2022] [Indexed: 11/21/2022]
Abstract
Static magnetic fields (SMF) have neuroprotective and behavioral effects in rats, however, little is known about the effects of SMF on cognition, motor function and the underlying neurochemical mechanisms. In this study, we focused on the effects of short-term (5~10d) and long-term (13~38d) SMF exposure on selective attention and motor coordination of rats, as well as associated alterations in expression level of neuroplasticity-related structural proteins and cryptochrome (CRY1) protein in the cortex, striatum and ventral midbrain. The results showed that 6 d SMF exposure significantly enhanced selective attention without affecting locomotor activity in open field. All SMF exposures non-significantly enhanced motor coordination (Rotarod test). Neurochemical analysis demonstrated that 5d SMF exposure increased the expression of cortical and striatal CRY1 and synapsin-1 (SYN1), striatal total synapsins (SYN), and synaptophysin (SYP), growth associated protein-43 (GAP43) and post-synaptic density protein-95 (PSD95) in the ventral midbrain. Exposure to SMF for 14d increased PSD95 level in the ventral midbrain while longer SMF exposure elevated the levels of PSD95 in the cortex, SYN and SYN1 in all the examined brain areas. The increased expression of cortical and striatal CRY1and SYN1 correlated with the short-lasting effect of SMF on improving selective attention. Collectively, SMF's effect on selective attention attenuated following longer exposure to SMF whereas its effects on neuroplasticity-related structural biomarkers were time- and brain area-dependent, with some protein levels increasing with longer time exposure. These findings suggest a potential use of SMF for treatment of neurological diseases in which selective attention or neuroplasticity is impaired.
Collapse
|
5
|
Tkáč I, Benneyworth MA, Nichols-Meade T, Steuer EL, Larson SN, Metzger GJ, Uğurbil K. Long-term behavioral effects observed in mice chronically exposed to static ultra-high magnetic fields. Magn Reson Med 2021; 86:1544-1559. [PMID: 33821502 DOI: 10.1002/mrm.28799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/11/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE The primary goal of this study was to investigate whether chronic exposures to ultra-high B0 fields can induce long-term cognitive, behavioral, or biological changes in C57BL/6 mice. METHODS C57BL/6 mice were chronically exposed to 10.5-T or 16.4-T magnetic fields (3-h exposures, two exposure sessions per week, 4 or 8 weeks of exposure). In vivo single-voxel 1 H magnetic resonance spectroscopy was used to investigate possible neurochemical changes in the hippocampus. In addition, a battery of behavioral tests, including the Morris water-maze, balance-beam, rotarod, and fear-conditioning tests, were used to examine long-term changes induced by B0 exposures. RESULTS Hippocampal neurochemical profile, cognitive, and basic motor functions were not impaired by chronic magnetic field exposures. However, the balance-beam-walking test and the Morris water-maze testing revealed B0 -induced changes in motor coordination and balance. The tight-circling locomotor behavior during Morris water-maze tests was found as the most sensitive factor indexing B0 -induced changes. Long-term behavioral changes were observed days or even weeks subsequent to the last B0 exposure at 16.4 T but not at 10.5 T. Fast motion of mice in and out of the 16.4-T magnet was not sufficient to induce such changes. CONCLUSION Observed results suggest that the chronic exposure to a magnetic field as high as 16.4 T may result in long-term impairment of the vestibular system in mice. Although observation of mice may not directly translate to humans, nevertheless, they indicate that studies focused on human safety at very high magnetic fields are necessary.
Collapse
Affiliation(s)
- Ivan Tkáč
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Michael A Benneyworth
- Mouse Behavioral Core, Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tessa Nichols-Meade
- Mouse Behavioral Core, Department of Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA
| | - Elizabeth L Steuer
- N Bud Grossman Center for Memory Research & Care, Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sarah N Larson
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
6
|
Static magnetic field induces abnormality of glucose metabolism in rats' brain and results in anxiety-like behavior. J Chem Neuroanat 2021; 113:101923. [PMID: 33549700 DOI: 10.1016/j.jchemneu.2021.101923] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 11/22/2022]
Abstract
In this study, fifty-four male Wistar rats were randomly divided into four groups according to the static magnetic field (SMF) intensity, namely, control, low-intensity, moderate-intensity, and high-intensity groups. The rats' whole body was exposed to a superconducting magnet exposure source. The exposure SMF intensity for the low-intensity, moderate-intensity, and high-intensity groups was 50 m T, 100 m T, and 200 m T, respectively, and the exposure time was 1 h/day for consecutive 15 days. After different exposure times, glucose metabolism in rats' brain was evaluated by micro-positron emission tomography (micro-PET), and the expression of hexokinase 1(HK1) and 6-phosphate fructokinase-1(PFK1) was detected by western blot. The exploration and locomotion abilities of the rats were evaluated by conducting open field test (OFT). Furthermore, pathological changes of rats' brain were observed under a microscope by using hematoxylin-eosin staining. PET results showed that moderate-intensity SMFs could cause fluctuant changes in glucose metabolism in rats' brain and the abnormalities were SMF intensity dependent. The expression of the two rate-limiting enzymes HK1 and PFK1 in glucose metabolism in brain significantly decreased after SMF exposure. The OFT showed that the total distance, surrounding distance, activity time, and climbing and standing times significantly decreased after SMF exposure. The main pathological changes in the brain were pyknosis, edema of neurons, and slight widening of the perivascular space, which occurred after 15 times of exposure. This study indicated that SMF exposure could lead to abnormal glucose metabolism in the brain and might result in anxiety-like behaviors.
Collapse
|
7
|
Ward BK, Roberts DC, Della Santina CC, Carey JP, Zee DS. Vestibular stimulation by magnetic fields. Ann N Y Acad Sci 2015; 1343:69-79. [PMID: 25735662 DOI: 10.1111/nyas.12702] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Individuals working next to strong static magnetic fields occasionally report disorientation and vertigo. With the increasing strength of magnetic fields used for magnetic resonance imaging studies, these reports have become more common. It was recently learned that humans, mice, and zebrafish all demonstrate behaviors consistent with constant peripheral vestibular stimulation while inside a strong, static magnetic field. The proposed mechanism for this effect involves a Lorentz force resulting from the interaction of a strong static magnetic field with naturally occurring ionic currents flowing through the inner ear endolymph into vestibular hair cells. The resulting force within the endolymph is strong enough to displace the lateral semicircular canal cupula, inducing vertigo and the horizontal nystagmus seen in normal mice and in humans. This review explores the evidence for interactions of magnetic fields with the vestibular system.
Collapse
Affiliation(s)
- Bryan K Ward
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | | | | | | | |
Collapse
|
8
|
Yu S, Shang P. A review of bioeffects of static magnetic field on rodent models. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2014; 114:14-24. [DOI: 10.1016/j.pbiomolbio.2013.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 10/30/2013] [Accepted: 11/05/2013] [Indexed: 01/11/2023]
|
9
|
Kiss B, Gyires K, Kellermayer M, László JF. Lateral gradients significantly enhance static magnetic field-induced inhibition of pain responses in mice--a double blind experimental study. Bioelectromagnetics 2013; 34:385-96. [PMID: 23737187 DOI: 10.1002/bem.21781] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 01/04/2013] [Indexed: 11/10/2022]
Abstract
Recent research demonstrated that exposure of mice to both inhomogeneous (3-477 mT) and homogeneous (145 mT) static magnetic fields (SMF) generated an analgesic effect toward visceral pain elicited by the intraperitoneal injection of 0.6% acetic acid. In the present work, we investigated behavioral responses such as writhing, entry avoidance, and site preference with the help of a specially designed cage that partially protruded into either the homogeneous (ho) or inhomogeneous (inh) SMF. Aversive effects, cognitive recognition of analgesia, and social behavior governed mice in their free locomotion between SMF and sham sides. The inhibition of pain response (I) for the 0-5, 6-20, and 21-30 min periods following the challenge was calculated by the formula I = 100 (1 - x/y) in %, where x and y represent the number of writhings in the SMF and sham sides, respectively. In accordance with previous measurements, an analgesic effect was induced in exposed mice (Iho = 64%, P < 0.0002 and Iinh = 62%, P < 0.002). No significant difference was found in the site preference (SMFho, inh vs. sham) indicating that SMF is neither aversive nor favorable. Comparison of writhings observed in the sham versus SMF side of the cage revealed that SMF exposure resulted in significantly fewer writhings than sham (Iho = 64%, P < 0.004 and Iinh = 81%, P < 0.03). Deeper statistical analysis clarified that the lateral SMF gradient between SMF and sham sides could be responsible for most of the analgesic effect (Iho = 91%, P < 0.02 and Iinh = 54%, P < 0.02).
Collapse
Affiliation(s)
- Balázs Kiss
- Department of Biophysics and Radiation Biology, Semmelweis University and MTA-SE Molecular Biophysics Research Group, Budapest, Hungary.
| | | | | | | |
Collapse
|
10
|
Lee CH, Chen HM, Yeh LK, Hong MY, Huang GS. Dosage-dependent induction of behavioral decline in Caenorhabditis elegans by long-term treatment of static magnetic fields. JOURNAL OF RADIATION RESEARCH 2012; 53:24-32. [PMID: 22302042 DOI: 10.1269/jrr.11057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The aim of this work was to explore the molecular mechanisms associated with possible health hazards induced by static magnetic fields (SMFs). Nematodes were grown under SMFs at field strengths from 0 to 200 mT, and the speed of body movement was measured. The effects of exposure to static magnetic fields were observed to be significant in the higher field strength and longer treatment. To explore the possible molecular mechanisms responsible for these effects, semi-quantitative real-time RT-PCR was performed using primers specific to 120 randomly selected genes. Twenty-six differentially expressed genes among apoptosis-, oxidative stress-, and cancer-related genes were identified, indicating that a global molecular response to SMF treatment occurred. The induction of apoptosis was verified by the increase of fluorescence in a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, by the caspase-3 activity assay, and by immunostaining using an antibody against the ced-3 gene product. Mutations in genes involved in major apoptotic pathways, that is, ced-3, ced-4, and ced-9, abolished this SMF-induced behavioral decline; this is consistent with the hypothesis that the apoptosis pathways are involved in the SMF-induced mobility decline. Here we show that long-term and low-dosage exposure to SMF is capable of inducing an apoptosis-mediated behavioral decline in nematodes.
Collapse
Affiliation(s)
- Chia-Hui Lee
- Department of Material Science and Engineering, National Chiao Tung University, Taiwan, ROC
| | | | | | | | | |
Collapse
|
11
|
Houpt TA, Houpt CE. Circular swimming in mice after exposure to a high magnetic field. Physiol Behav 2010; 100:284-90. [PMID: 20206191 DOI: 10.1016/j.physbeh.2010.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 02/17/2010] [Accepted: 02/23/2010] [Indexed: 11/18/2022]
Abstract
There is increasing evidence that exposure to high magnetic fields of 4T and above perturbs the vestibular system of rodents and humans. Performance in a swim test is a sensitive test of vestibular function. In order to determine the effect of magnet field exposure on swimming in mice, mice were exposed for 30 min within a 14.1T superconducting magnet and then tested at different times after exposure in a 2-min swim test. As previously observed in open field tests, mice swam in tight counter-clockwise circles when tested immediately after magnet exposure. The counter-clockwise orientation persisted throughout the 2-min swim test. The tendency to circle was transient, because no significant circling was observed when mice were tested at 3 min or later after magnet exposure. However, mice did show a decrease in total distance swum when tested between 3 and 40 min after magnet exposure. The decrease in swimming distance was accompanied by a pronounced postural change involving a counter-clockwise twist of the pelvis and hindlimbs that was particularly severe in the first 15s of the swim test. Finally, no persistent difference from sham-exposed mice was seen in the swimming of magnet-exposed mice when tested 60 min, 24h, or 96 h after magnet exposure. This suggests that there is no long-lasting effect of magnet exposure on the ability of mice to orient or swim. The transient deficits in swimming and posture seen shortly after magnet exposure are consistent with an acute perturbation of the vestibular system by the high magnetic field.
Collapse
Affiliation(s)
- Thomas A Houpt
- Department of Biological Science, Program in Neuroscience, King Life Sciences Building, 319 Stadium Drive, The Florida State University, Tallahassee, Florida 32306-4295, USA
| | | |
Collapse
|