1
|
Lin S, Wang L, Jia Y, Sun Y, Qiao P, Quan Y, Liu J, Hu H, Yang B, Zhou H. Lipin-1 deficiency deteriorates defect of fatty acid β-oxidation and lipid-related kidney damage in diabetic kidney disease. Transl Res 2024; 266:1-15. [PMID: 37433392 DOI: 10.1016/j.trsl.2023.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
Diabetic lipo-toxicity is a fundamental pathophysiologic mechanism in DM and is now increasingly recognized a key determinant of DKD. Targeting lipid metabolic disorders is an important therapeutic strategy for the treatment of DM and its complications, including DKD. This study aimed to explore the molecular mechanism of lipid metabolic regulation in kidney, especially renal PTECs, and elucidate the role of lipid metabolic related molecule lipin-1 in diabetic lipid-related kidney damage. In this study, lipin-1-deficient db/db mouse model and STZ/HFD-induced T2DM mouse model were used to determine the effect of lipin-1 on DKD development. Then RPTCs and LPIN1 knockdown or overexpressed HK-2 cells induced by PA were used to investigate the mechanism. We found that the expression of lipin-1 increased early and then decreased in kidney during the progression of DKD. Glucose and lipid metabolic disorders and renal insufficiency were found in these 2 types of diabetic mouse models. Interestingly, lipin-1 deficiency might be a pathogenic driver of DKD-to-CKD transition, which could further accelerate the imbalance of renal lipid homeostasis, the dysfunction of mitochondrial and energy metabolism in PTECs. Mechanistically, lipin-1 deficiency resulted in aggravated PTECs injury to tubulointerstitial fibrosis in DKD by downregulating FAO via inhibiting PGC-1α/PPARα mediated Cpt1α/HNF4α signaling and upregulating SREBPs to promote fat synthesis. This study provided new insights into the role of lipin-1 as a regulator for maintaining lipid homeostasis in the kidney, especially PTECs, and its deficiency led to the progression of DKD.
Collapse
Affiliation(s)
- Simei Lin
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Liang Wang
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yingli Jia
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ying Sun
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Panshuang Qiao
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yazhu Quan
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jihan Liu
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Huihui Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Fujian, China
| | - Baoxue Yang
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China
| | - Hong Zhou
- Department of Pharmacology, State Key Laboratory of Natural and Biomimetic Drugs, School of Basic Medical Sciences, Peking University, Beijing, China; Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing, China.
| |
Collapse
|
2
|
Zhou Z, Ye TJ, Bonavita G, Daniels M, Kainrad N, Jogasuria A, You M. Adipose-Specific Lipin-1 Overexpression Renders Hepatic Ferroptosis and Exacerbates Alcoholic Steatohepatitis in Mice. Hepatol Commun 2019; 3:656-669. [PMID: 31061954 PMCID: PMC6492478 DOI: 10.1002/hep4.1333] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 02/20/2019] [Indexed: 02/06/2023] Open
Abstract
Lipin-1 is a Mg2+-dependent phosphatidic acid phosphohydrolase involved in the generation of diacylglycerol during synthesis of phospholipids and triglycerides. Ethanol-mediated inhibitory effects on adipose-specific lipin-1 expression were associated with experimental steatohepatitis in rodents. In the present study, using an adipose-specific lipin-1 overexpression transgenic (Lpin1-Tg) mouse model, we tested a hypothesis that adipose-specific lipin-1 overexpression in mice might dampen ethanol-induced liver damage. Experimental alcoholic steatohepatitis was induced by pair-feeding ethanol to Lpin1-Tg and wild-type (WT) mice using the chronic-plus-binge ethanol feeding protocol. Unexpectedly, following the chronic-plus-binge ethanol challenge, Lpin1-Tg mice exhibited much more pronounced steatosis, exacerbated inflammation, augmented elevation of serum liver enzymes, hepatobiliary damage, and fibrogenic responses compared with the WT mice. Mechanistically, overexpression of adipose lipin-1 in mice facilitated the onset of hepatic ferroptosis, which is an iron-dependent form of cell death, and subsequently induced ferroptotic liver damage in mice under ethanol exposure. Concurrently, adipose lipin-1 overexpression induced defective adiponectin signaling pathways in ethanol-fed mice. Conclusion: We identified ferroptosis as a mechanism in mediating the detrimental effects of adipose-specific lipin-1 overexpression in mice under chronic-plus-binge ethanol exposure. Our present study sheds light on potential therapeutic approaches for the prevention and treatment of human alcoholic steatohepatitis.
Collapse
Affiliation(s)
- Zhou Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy Northeast Ohio Medical University Rootstown OH
| | - Ting Jie Ye
- Department of Pharmaceutical Sciences, College of Pharmacy Northeast Ohio Medical University Rootstown OH.,Department of Biology, School of Basic Medical Science Shanghai University of Traditional Chinese Medicine Shanghai China
| | - Gregory Bonavita
- Department of Pharmaceutical Sciences, College of Pharmacy Northeast Ohio Medical University Rootstown OH
| | - Michael Daniels
- Department of Pharmaceutical Sciences, College of Pharmacy Northeast Ohio Medical University Rootstown OH
| | - Noah Kainrad
- Department of Pharmaceutical Sciences, College of Pharmacy Northeast Ohio Medical University Rootstown OH
| | - Alvin Jogasuria
- Department of Pharmaceutical Sciences, College of Pharmacy Northeast Ohio Medical University Rootstown OH
| | - Min You
- Department of Pharmaceutical Sciences, College of Pharmacy Northeast Ohio Medical University Rootstown OH
| |
Collapse
|
3
|
López M, Tena-Sempere M. Estradiol effects on hypothalamic AMPK and BAT thermogenesis: A gateway for obesity treatment? Pharmacol Ther 2017; 178:109-122. [PMID: 28351720 DOI: 10.1016/j.pharmthera.2017.03.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 03/21/2017] [Indexed: 12/24/2022]
Abstract
In addition to their prominent roles in the control of reproduction, estrogens are important modulators of energy balance, as evident in conditions of deficiency of estrogens, which are characterized by increased feeding and decreased energy expenditure, leading to obesity. AMP-activated protein kinase (AMPK) is a ubiquitous cellular energy gauge that is activated under conditions of low energy, increasing energy production and reducing energy wasting. Centrally, the AMPK pathway is a canonical route regulating energy homeostasis, by integrating peripheral signals, such as hormones and metabolites, with neuronal networks. As a result of those actions, hypothalamic AMPK modulates feeding, as well as brown adipose tissue (BAT) thermogenesis and browning of white adipose tissue (WAT). Here, we will review the central actions of estrogens on energy balance, with particular focus on hypothalamic AMPK. The relevance of this interaction is noteworthy, because some agents with known actions on metabolic homeostasis, such as nicotine, metformin, liraglutide, olanzapine and also natural molecules, such as resveratrol and flavonoids, exert their actions by modulating AMPK. This evidence highlights the possibility that hypothalamic AMPK might be a potential target for the treatment of obesity.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos II, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
4
|
González-García I, Tena-Sempere M, López M. Estradiol Regulation of Brown Adipose Tissue Thermogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:315-335. [PMID: 29224101 DOI: 10.1007/978-3-319-70178-3_15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Physiologically, estrogens carry out a myriad of functions, the most essential being the regulation of the reproductive axis. Currently, it is also dogmatic that estrogens play an important role modulating energy balance and metabolism. In this sense, it is well known that low estrogens levels, occurring due to ovarian insufficiency, in conditions such as menopause or ovariectomy (OVX), are associated with increased food intake and decreased energy expenditure, leading to weight gain and obesity at long term. Concerning energy expenditure, the main effect of estradiol (E2) is on brown adipose tissue (BAT) thermogenesis. Thus, acting through a peripheral or a central action, E2 activates brown fat activity and increases body temperature, which is negatively associated with body weight. Centrally, the hypothalamic AMP-activated protein kinase (AMPK) mediates the E2 action on BAT thermogenesis. In this chapter, we will summarize E2 regulation of BAT thermogenesis and how this can influence energy balance and metabolism in general.
Collapse
Affiliation(s)
- Ismael González-García
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain. .,Department of Cell Biology, Physiology and Immunology, University of Córdoba, Córdoba, Spain. .,Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, Córdoba, Spain. .,FiDiPro Program, Department of Physiology, University of Turku, Turku, Finland.
| | - Miguel López
- Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria (IDIS), Santiago de Compostela, Spain. .,CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
5
|
Abstract
Ovarian steroids, such as estradiol (E2), control a vastness of physiological processes, such as puberty, reproduction, growth, development and metabolic rate. In fact, physiological, pathological, pharmacological or genetically-induced estrogen deficiency causes increased appetite and reduced energy expenditure, promoting weight gain and ultimately leading to obesity. Remarkably, estrogen replacement reverts those effects. Interestingly, although a wealth of evidence has shown that E2 can directly modulate peripheral tissues to exert their metabolic actions, novel data gathered in recent years have shown that those effects are mainly central and occur in the hypothalamus. Here, we will review what is known about the actions of E2 on energy homeostasis, with particular focus on brown adipose tissue (BAT) thermogenesis.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, Faculty of Medicine & CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Spain; Department of Cell Biology, Physiology and Immunology, University of Córdoba, Spain; Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
6
|
Jiao XL, Jing JJ, Qiao LY, Liu JH, Li LA, Zhang J, Jia XL, Liu WZ. Ontogenetic Expression of Lpin2 and Lpin3 Genes and Their Associations with Traits in Two Breeds of Chinese Fat-tailed Sheep. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2016; 29:333-42. [PMID: 26950863 PMCID: PMC4811783 DOI: 10.5713/ajas.15.0467] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 07/17/2015] [Accepted: 09/10/2015] [Indexed: 12/14/2022]
Abstract
Lipins play dual function in lipid metabolism by serving as phosphatidate phosphatase and transcriptional co-regulators of gene expression. Mammalian lipin proteins consist of lipin1, lipin2, and lipin3 and are encoded by their respective genes Lpin1, Lpin2, and Lpin3. To date, most studies are concerned with Lpin1, only a few have addressed Lpin2 and Lpin3. Ontogenetic expression of Lpin2 and Lpin3 and their associations with traits would help to explore their molecular and physiological functions in sheep. In this study, 48 animals with an equal number of males and females each for both breeds of fat-tailed sheep such as Guangling Large Tailed (GLT) and Small Tailed Han (STH) were chosen to evaluate the ontogenetic expression of Lpin2 and Lpin3 from eight different tissues and months of age by quantitative real-time polymerase chain reaction (PCR). Associations between gene expression and slaughter and tail traits were also analyzed. The results showed that Lpin2 mRNA was highly expressed in perirenal and tail fats, and was also substantially expressed in liver, kidney, reproductive organs (testis and ovary), with the lowest levels in small intestine and femoral biceps. Lpin3 mRNA was prominently expressed in liver and small intestine, and was also expressed at high levels in kidney, perirenal and tail fats as well as reproductive organs (testis and ovary), with the lowest level in femoral biceps. Global expression of Lpin2 and Lpin3 in GLT both were significantly higher than those in STH. Spatiotemporal expression showed that the highest levels of Lpin2 expression occurred at 10 months of age in two breeds of sheep, with the lowest expression at 2 months of age in STH and at 8 months of age in GLT. The greatest levels of Lpin3 expression occurred at 4 months of age in STH and at 10 months of age in GLT, with the lowest expression at 12 months of age in STH and at 8 months of age in GLT. Breed and age significantly influenced the tissue expression patterns of Lpin2 and Lpin3, respectively, and sex significantly influenced the spatiotemporal expression patterns of Lpin3. Meanwhile, Lpin2 and Lpin3 mRNA expression both showed significant correlations with slaughter and tail traits, and the associations appear to be related with the ontogenetic expression as well as the potential functions of lipin2 and lipin3 in sheep.
Collapse
Affiliation(s)
- Xiao-Li Jiao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China ; College of Animal Science and Veterinary medicine, Tianjin Agricultural University, Tianjin 300-384, China
| | - Jiong-Jie Jing
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Li-Ying Qiao
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Jian-Hua Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Liu-An Li
- College of Animal Science and Veterinary medicine, Tianjin Agricultural University, Tianjin 300-384, China
| | - Jing Zhang
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Xia-Li Jia
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| | - Wen-Zhong Liu
- College of Animal Science and Technology, Shanxi Agricultural University, Taigu 030-801, China
| |
Collapse
|
7
|
López M, Tena-Sempere M. Estrogens and the control of energy homeostasis: a brain perspective. Trends Endocrinol Metab 2015; 26:411-21. [PMID: 26126705 DOI: 10.1016/j.tem.2015.06.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 01/09/2023]
Abstract
Despite their prominent roles in the control of reproduction, estrogens pervade many other bodily functions. Key metabolic pathways display marked sexual differences, and estrogens are potent modulators of energy balance, as evidenced in extreme conditions of estrogen deficiency characterized by hyperphagia and decreased energy expenditure, and leading to obesity. Compelling evidence has recently demonstrated that, in addition to their peripheral effects, the actions of estrogens on energy homeostasis are exerted at central levels, to regulate almost every key aspect of metabolic homeostasis, from feeding to energy expenditure, to glucose and lipid metabolism. We review herein the state-of-the-art of the role of estrogens in the regulation of energy balance, with a focus on their central effects and modes of action.
Collapse
Affiliation(s)
- Miguel López
- Department of Physiology, Faculty of Medicine and CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, 15782 Santiago de Compostela, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain.
| | - Manuel Tena-Sempere
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Cordoba, Spain; Department of Cell Biology, Physiology, and Immunology, University of Córdoba, Instituto Maimónides de Investigación Biomédica (IMIBIC)/Hospital Reina Sofía, 14004 Córdoba, Spain; FiDiPro Program, Department of Physiology, University of Turku, Kiinamyllynkatu 10, FIN-20520 Turku, Finland.
| |
Collapse
|
8
|
Houlahan KE, Prokopec SD, Sun RX, Moffat ID, Lindén J, Lensu S, Okey AB, Pohjanvirta R, Boutros PC. Transcriptional profiling of rat white adipose tissue response to 2,3,7,8-tetrachlorodibenzo-ρ-dioxin. Toxicol Appl Pharmacol 2015; 288:223-31. [PMID: 26232522 DOI: 10.1016/j.taap.2015.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/18/2015] [Accepted: 07/21/2015] [Indexed: 12/21/2022]
Abstract
Polychlorinated dibenzodioxins are environmental contaminants commonly produced as a by-product of industrial processes. The most potent of these, 2,3,7,8-tetrachlorodibenzo-ρ-dioxin (TCDD), is highly lipophilic, leading to bioaccumulation. White adipose tissue (WAT) is a major site for energy storage, and is one of the organs in which TCDD accumulates. In laboratory animals, exposure to TCDD causes numerous metabolic abnormalities, including a wasting syndrome. We therefore investigated the molecular effects of TCDD exposure on WAT by profiling the transcriptomic response of WAT to 100μg/kg of TCDD at 1 or 4days in TCDD-sensitive Long-Evans (Turku/AB; L-E) rats. A comparative analysis was conducted simultaneously in identically treated TCDD-resistant Han/Wistar (Kuopio; H/W) rats one day after exposure to the same dose. We sought to identify transcriptomic changes coinciding with the onset of toxicity, while gaining additional insight into later responses. More transcriptional responses to TCDD were observed at 4days than at 1day post-exposure, suggesting WAT shows mostly secondary responses. Two classic AHR-regulated genes, Cyp1a1 and Nqo1, were significantly induced by TCDD in both strains, while several genes involved in the immune response, including Ms4a7 and F13a1 were altered in L-E rats alone. We compared genes affected by TCDD in rat WAT and human adipose cells, and observed little overlap. Interestingly, very few genes involved in lipid metabolism exhibited altered expression levels despite the pronounced lipid mobilization from peripheral fat pads by TCDD in L-E rats. Of these genes, the lipolysis-associated Lpin1 was induced slightly over 2-fold in L-E rat WAT on day 4.
Collapse
Affiliation(s)
- Kathleen E Houlahan
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Stephenie D Prokopec
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Ren X Sun
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada
| | - Ivy D Moffat
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Jere Lindén
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Sanna Lensu
- Department of Biology of Physical Activity, University of Jyväskylä, Jyväskylä, Finland; Department of Environmental Health, National Institute for Health and Welfare, Kuopio, Finland
| | - Allan B Okey
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
| | - Raimo Pohjanvirta
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland.
| | - Paul C Boutros
- Informatics and Bio-Computing Program, Ontario Institute for Cancer Research, Toronto, Canada; Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada.
| |
Collapse
|
9
|
Bertin FR, Pader KS, Lescun TB, Sojka-Kritchevsky JE. Short-term effect of ovariectomy on measures of insulin sensitivity and response to dexamethasone administration in horses. Am J Vet Res 2014; 74:1506-13. [PMID: 24274888 DOI: 10.2460/ajvr.74.12.1506] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To evaluate the effect of ovariectomy on insulin sensitivity in horses and determine whether the effects of suppression of the hypothalamo-pituitary-adrenal axis differ before and after ovariectomy. ANIMALS 6 healthy mares. PROCEDURES The horses underwent an IV glucose tolerance test (IVGTT), an insulin sensitivity test, and a dexamethasone suppression test before and 5 weeks after ovariectomy. Body weight, serum cortisol and plasma ACTH concentrations, serum insulin-to-blood glucose concentration ratios, and changes in blood glucose concentration with time after injection of glucose or insulin were compared before and after ovariectomy. RESULTS The dexamethasone injection resulted in a decrease in serum cortisol concentration before and after ovariectomy. In all horses, baseline plasma ACTH concentrations were within the reference range before and after ovariectomy. For each mare, results of an IVGTT before and after ovariectomy were considered normal. No significant differences in basal blood glucose concentration or time to reach baseline glucose concentration after an IVGTT were observed. Basal serum insulin concentration and serum insulin-to-blood glucose concentration ratios were not significantly different before or after ovariectomy, nor was the mean time to attain a 50% decrease in blood glucose concentration after insulin injection. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that ovariectomy does not appear to modify dexamethasone response in horses and that it does not modify short-term measures of insulin sensitivity. Findings suggested that horses undergoing ovariectomy are not at higher risk of developing equine metabolic syndrome or hypothalamo-pituitary-adrenal axis dysfunction and associated morbidity.
Collapse
Affiliation(s)
- François R Bertin
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Purdue University, West Lafayette, IN 47907
| | | | | | | |
Collapse
|
10
|
Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endocr Rev 2013; 34:309-38. [PMID: 23460719 PMCID: PMC3660717 DOI: 10.1210/er.2012-1055] [Citation(s) in RCA: 897] [Impact Index Per Article: 74.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Estrogens play a fundamental role in the physiology of the reproductive, cardiovascular, skeletal, and central nervous systems. In this report, we review the literature in both rodents and humans on the role of estrogens and their receptors in the control of energy homeostasis and glucose metabolism in health and metabolic diseases. Estrogen actions in hypothalamic nuclei differentially control food intake, energy expenditure, and white adipose tissue distribution. Estrogen actions in skeletal muscle, liver, adipose tissue, and immune cells are involved in insulin sensitivity as well as prevention of lipid accumulation and inflammation. Estrogen actions in pancreatic islet β-cells also regulate insulin secretion, nutrient homeostasis, and survival. Estrogen deficiency promotes metabolic dysfunction predisposing to obesity, the metabolic syndrome, and type 2 diabetes. We also discuss the effect of selective estrogen receptor modulators on metabolic disorders.
Collapse
Affiliation(s)
- Franck Mauvais-Jarvis
- Department of Medicine, Division of Endocrinology, Metabolism, and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | |
Collapse
|
11
|
Bociąga-Jasik M, Polus A, Góralska J, Czech U, Gruca A, Śliwa A, Garlicki A, Mach T, Dembińska-Kieć A. Metabolic effects of the HIV protease inhibitor--saquinavir in differentiating human preadipocytes. Pharmacol Rep 2013; 65:937-950. [PMID: 24145088 DOI: 10.1016/s1734-1140(13)71075-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 03/12/2013] [Indexed: 11/30/2022]
Abstract
BACKGROUND The iatrogenic, HIV-related lipodystrophy is associated with development of the significant metabolic and cardiovascular complications. The underlying mechanisms of antiretroviral (ARV) drugs are not completely explored. METHODS The aim of the study was to characterize effects of the protease inhibitor (PI)--saquinavir (SQV) on metabolic functions, and gene expression during differentiation in cells (Chub-S7) culture. RESULTS SQV in concentrations observed during antiretroviral therapy (ART) significantly decreased mitochondrial membrane potential (MMP), oxygen consumption and ATP generation. The effects were greater in already differentiated cells. This was accompanied by characteristic changes in the expression of the genes involved in endoplasmic reticulum (ER) stress, and differentiation (lipid droplet formation) process such as: WNT10a, C/EBPa, AFT4, CIDEC, ADIPOQ, LPIN1. CONCLUSIONS The results indicate that SQV affects not only metabolic (mitochondrial) activity of adipocytes, but affects the expression of genes related to differentiation and to a lesser extent to cell apoptosis.
Collapse
Affiliation(s)
- Monika Bociąga-Jasik
- Chair of Gastroenterology, Hepatology and Infectious Diseases, Department of Infectious Diseases, Jagiellonian University, Collegium Medicum, Sniadeckich 5, PL 31-501 Kraków, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|