1
|
Bektas H, Dasdag S. Radiofrequency radiation and Alzheimer's disease: harmful and therapeutic implications. Int J Radiat Biol 2025; 101:559-571. [PMID: 40131785 DOI: 10.1080/09553002.2025.2481854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/27/2025]
Abstract
PURPOSE Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory loss and cognitive decline. The relationship between AD and radiofrequency (RF) radiation emitted by wireless devices remains under investigation. The aim of this review is to comprehensively explore the effects of RF radiation on AD by evaluating existing literature. This review used Web of Science, Scopus, and PubMed to find relevant studies on AD and RF radiation. This review evaluates a total of 81 studies, including animal models, human studies, and in vitro experiments, with results summarized in tables for clarity. CONCLUSION Some studies suggest RF aggravates AD by increasing oxidative stress, impairing blood-brain barrier integrity, and promoting amyloid-beta deposition. Conversely, other studies indicate RF may have protective benefits, such as enhancing brain mitochondrial functions and reducing amyloid-beta levels. Understanding the RF-AD relationship, including parameters like frequency and exposure time, is crucial for therapeutic strategies. The studies reviewed highlight RF radiation's dual effects on AD, underscoring the need for a detailed approach. Further studies are required to clarify these effects and inform preventive and therapeutic measures.
Collapse
Affiliation(s)
- Hava Bektas
- Department of Biophysics, Medical School of Van Yuzuncu Yil University, Van, Turkey
| | - Suleyman Dasdag
- Department of Biophysics, Medical School of Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
2
|
Zhang Y, Li Q, Wang C, Zhu L, Wang F, Jiao W, Zhuang X, Xie F, Du L, Jin Y. Cinnarizine dissolving microneedles against microwave-induced brain injury. Biomed Pharmacother 2022; 155:113779. [DOI: 10.1016/j.biopha.2022.113779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022] Open
|
3
|
Echchgadda I, Cantu JC, Tolstykh GP, Butterworth JW, Payne JA, Ibey BL. Changes in the excitability of primary hippocampal neurons following exposure to 3.0 GHz radiofrequency electromagnetic fields. Sci Rep 2022; 12:3506. [PMID: 35241689 PMCID: PMC8894459 DOI: 10.1038/s41598-022-06914-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 02/04/2022] [Indexed: 12/23/2022] Open
Abstract
Exposures to radiofrequency electromagnetic fields (RF-EMFs, 100 kHz to 6 GHz) have been associated with both positive and negative effects on cognitive behavior. To elucidate the mechanism of RF-EMF interaction, a few studies have examined its impact on neuronal activity and synaptic plasticity. However, there is still a need for additional basic research that further our understanding of the underlying mechanisms of RF-EMFs on the neuronal system. The present study investigated changes in neuronal activity and synaptic transmission following a 60-min exposure to 3.0 GHz RF-EMF at a low dose (specific absorption rate (SAR) < 1 W/kg). We showed that RF-EMF exposure decreased the amplitude of action potential (AP), depolarized neuronal resting membrane potential (MP), and increased neuronal excitability and synaptic transmission in cultured primary hippocampal neurons (PHNs). The results show that RF-EMF exposure can alter neuronal activity and highlight that more investigations should be performed to fully explore the RF-EMF effects and mechanisms.
Collapse
Affiliation(s)
- Ibtissam Echchgadda
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA.
| | - Jody C Cantu
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Gleb P Tolstykh
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Joseph W Butterworth
- General Dynamics Information Technology, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Jason A Payne
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| | - Bennett L Ibey
- Air Force Research Laboratory, 711Th Human Performance Wing, Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, 4141 Petroleum Road, San Antonio, TX, 78234, USA
| |
Collapse
|
4
|
Zhang Y, Li Q, Hu J, Wang C, Wan D, Li Q, Jiang Q, Du L, Jin Y. Nasal Delivery of Cinnarizine Thermo- and Ion-Sensitive In Situ Hydrogels for Treatment of Microwave-Induced Brain Injury. Gels 2022; 8:gels8020108. [PMID: 35200489 PMCID: PMC8872061 DOI: 10.3390/gels8020108] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 11/21/2022] Open
Abstract
(1) Background: When the body is exposed to microwave radiation, the brain is more susceptible to damage than other organs. However, few effective drugs are available for the treatment of microwave-induced brain injury (MIBI) because most drugs are difficult to cross the blood–brain barrier (BBB) to reach the brain. (2) Methods: Nasal cinnarizine inclusion complexes with thermo-and ion-sensitive hydrogels (cinnarizine ISGs) were prepared to treat MIBI and the characteristics of the inclusion complexes and their thermo-and ion-sensitive hydrogels were evaluated. (3) Results: Due to high viscosity, cinnarizine ISGs can achieve long-term retention in the nasal cavity to achieve a sustained release effect. Compared with the model, the intranasal thermo-and ion-sensitive cinnarizine ISGs significantly improved the microwave-induced spatial memory and spontaneous exploration behavior with Morris water maze and open field tests. Cinnarizine ISGs inhibited the expression of calcineurin and calpain 1 in the brain, which may be related to the inhibition of calcium overload by cinnarizine. (4) Conclusion: Intranasal thermo- and ion-sensitive cinnarizine ISGs are a promising brain-targeted pharmaceutical preparation against MIBI.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qian Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Jinglu Hu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| | - Chunqing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Delian Wan
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
| | - Qingwei Jiang
- Key Laboratory of Natural Medicine of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, China
- Correspondence: (Q.J.); (L.D.)
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; (Y.Z.); (Q.L.); (C.W.); (D.W.); (Q.L.)
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
- Correspondence: (Q.J.); (L.D.)
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; (J.H.); (Y.J.)
- School of Pharmacy, Henan University, Kaifeng 475004, China
| |
Collapse
|
5
|
Kim HS, Paik MJ, Seo C, Choi HD, Pack JK, Kim N, Ahn YH. Influences of exposure to 915-MHz radiofrequency identification signals on serotonin metabolites in rats: a pilot study. Int J Radiat Biol 2020; 97:282-287. [PMID: 33135949 DOI: 10.1080/09553002.2021.1844336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE The influences of radiofrequency electromagnetic exposure on animal health, particularly on serotonin metabolism, are not well-elucidated. In this in vivo study, we studied the influences of exposure to radiofrequency identification (RFID) signals on serotonin metabolism. MATERIALS AND METHODS Twenty-two male Sprague-Dawley rats were assigned to sham (n = 10) and RFID-exposed (n = 12) groups. Rats in the RFID-exposed group were exposed to RFID signals at an average whole-body specific absorption rate of 2 W/kg for 8 h/day, 5 days/week for 2 weeks. Before and after RFID exposure, 24-h urine was collected from each rat. Urinary tryptophan, 5-hydroxytryptophan, serotonin, 5-hydroxyindoleacetic acid, and 5-methoxyindole-3-acetic acid concentrations were examined using gas chromatography-mass spectrometry, and changes in the patterns of values were compared between the two groups. RESULTS Urinary levels of serotonin decreased by 20% (p = .041, Student's t-test) and 40% (p = .024, Student's t-test) in both the sham and RFID-exposed groups, respectively. The level of 5-methoxyindole-3-acetic acid decreased by 30% in the RFID-exposed group (p = .039, Student's t-test). CONCLUSION Our results indicate that exposure to RFID signals at a specific absorption rate of 2 W/kg is sufficient to alter serotonin metabolism in rats regardless of whether the exposure level is considered biohazardous.
Collapse
Affiliation(s)
- Hye Sun Kim
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Chan Seo
- College of Pharmacy, Sunchon National University, Suncheon, Republic of Korea
| | - Hyung Do Choi
- Radio Technology Research Department, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea
| | - Jeong-Ki Pack
- Department of Radio Sciences and Engineering, College of Engineering, Chungnam National University, Daejeon, Republic of Korea
| | - Nam Kim
- School of Electrical and Computer Engineering, Chungbuk National University, Cheongju, Republic of Korea
| | - Young Hwan Ahn
- Department of Neurosurgery, Ajou University School of Medicine, Suwon, Republic of Korea.,Neuroscience Graduate Program, Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea
| |
Collapse
|
6
|
Asl JF, Goudarzi M, Shoghi H. The radio-protective effect of rosmarinic acid against mobile phone and Wi-Fi radiation-induced oxidative stress in the brains of rats. Pharmacol Rep 2020; 72:857-866. [PMID: 32128712 DOI: 10.1007/s43440-020-00063-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 12/24/2019] [Accepted: 02/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Rosmarinus officinalis L. is an aromatic perennial herb from which rosmarinic acid (RA) can be extracted. This research was conducted to assess the effectiveness of RA against radio frequency (RF) radiation-induced oxidative stress due to 915 MHz (mobile phone) and 2450 MHz (Wi-Fi) frequencies in rats. METHODS The animals were separated into six groups, including group 1 receiving normal saline (NS), group 2 (NS/Wi-Fi) and group 4 (NS/mobile), which received NS plus 60 min/day of exposure to the electromagnetic radiation (EMR) for 1 month, group 3 (RA/Wi-Fi) and group 5 (RA/mobile) received RA (20 mg/kg/day, po) plus 60 min/day of EMR, and group 6 (RA) received only RA. RESULTS There was a significant elevation of protein carbonylation (PC), nitric oxide (NO) and malondialdehyde (MDA) and significant reduction in glutathione (GSH), glutathione peroxidase (GPx), total antioxidant capacity (TAC), superoxide dismutase (SOD) and catalase (CAT) in the RF radiation-exposed rats' brain compared to the control group. RA reduced the levels of NO, PC and MDA and it also elevated the TAC, GPx, SOD, CAT and GSH levels in the rats' brains in the RA/Wi-Fi and RA/mobile groups compared to the NS/Wi-Fi and NS/mobile groups, respectively. CONCLUSION It can be concluded that RA can be considered a useful candidate for protecting brain tissues against RF radiation-induced oxidative stress at 915 and 2450 MHz frequencies through ameliorative effects on the antioxidant enzyme activities and oxidative stress indices.
Collapse
Affiliation(s)
- Jafar Fatahi Asl
- Department of Radiologic Technology, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mehdi Goudarzi
- Medicinal Plant Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamed Shoghi
- Department of Medical Physics, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
7
|
Maurya R, Singh N, Jindal T, Pathak VK, Dutta MK. Machine learning-based identification of radiofrequency electromagnetic radiation (RF-EMR) effect on brain morphology: a preliminary study. Med Biol Eng Comput 2020; 58:1751-1765. [PMID: 32483764 DOI: 10.1007/s11517-020-02198-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/22/2020] [Indexed: 11/28/2022]
Abstract
The brain of a human and other organisms is affected by the electromagnetic field (EMF) radiations, emanating from the cell phones and mobile towers. Prolonged exposure to EMF radiations may cause neurological changes in the brain, which in turn may bring chemical as well as morphological changes in the brain. Conventionally, the identification of EMF radiation effect on the brain is performed using cellular-level analysis. In the present work, an automatic image processing-based approach is used where geometric features extracted from the segmented brain region has been analyzed for identifying the effect of EMF radiation on the morphology of a brain, using drosophila as a specimen. Genetic algorithm-based evolutionary feature selection algorithm has been used to select an optimal set of geometrical features, which, when fed to the machine learning classifiers, result in their optimal performance. The best classification accuracy has been obtained with the neural network with an optimally selected subset of geometrical features. A statistical test has also been performed to prove that the increase in the performance of classifier post-feature selection is statistically significant. This machine learning-based study indicates that there exists discrimination between the microscopic brain images of the EMF-exposed drosophila and non-exposed drosophila. Graphical abstract Proposed Methodology for identification of radiofrequency electromagnetic radiation (RF-EMR) effect on the morphology of brain of Drosophila.
Collapse
Affiliation(s)
- Ritesh Maurya
- Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, New Campus, Lucknow, 226031, India
| | - Neha Singh
- Amity Institute for Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | - Tanu Jindal
- Amity Institute for Environmental Toxicology, Safety and Management, Amity University, Noida, India
| | | | - Malay Kishore Dutta
- Centre for Advanced Studies, Dr. A.P.J. Abdul Kalam Technical University, New Campus, Lucknow, 226031, India.
| |
Collapse
|
8
|
Zhang L, Pang L, Zhu S, Ma J, Li R, Liu Y, Zhu L, Zhuang X, Zhi W, Yu X, Du L, Zuo H, Jin Y. Intranasal tetrandrine temperature-sensitive in situ hydrogels for the treatment of microwave-induced brain injury. Int J Pharm 2020; 583:119384. [PMID: 32371003 DOI: 10.1016/j.ijpharm.2020.119384] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/13/2020] [Accepted: 04/27/2020] [Indexed: 12/13/2022]
Abstract
The brain is the most sensitive organ to microwave radiation. However, few effective drugs are available for the treatment of microwave-induced brain injury due to the poor drug permeation into the brain. Here, intranasal tetrandrine (TET) temperature-sensitive in situ hydrogels (ISGs) were prepared with poloxamers 407 and 188. Its characteristics were evaluated, including rheological properties, drug release in vitro, and mucosal irritation. The pharmacodynamics and brain-targeting effects were also studied. The highly viscous ISGs remained in the nasal cavity for a long time with the sustained release of TET and no obvious ciliary toxicity. Intranasal temperature-sensitive TET ISGs markedly improved the spatial memory and spontaneous exploratory behavior induced by microwave with the Morris water maze (MWM) and the open field test (OFT) compared to the model. The ISGs alleviated the microwave-induced brain damage and inhibited the certain mRNA expressions of calcium channels in the brain. Intranasal temperature-sensitive TET ISGs was rapidly absorbed with a shorter Tmax (4.8 h) compared to that of oral TET (8.4 h). The brain targeting index of intranasal temperature-sensitive TET ISGs was as 2.26 times as that of the oral TET. Intranasal temperature-sensitive TET ISGs are a promising brain-targeted medication for the treatment of microwave-induced brain injury.
Collapse
Affiliation(s)
- Lihua Zhang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lulu Pang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Siqing Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China
| | - Jinqiu Ma
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Ruiteng Li
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yijing Liu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lin Zhu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaomei Zhuang
- Beijing Institute of Toxicology and Pharmacology, No. 27, Taiping Road, Beijing 100850, China
| | - Weijia Zhi
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiang Yu
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China
| | - Lina Du
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Anhui Medical University, Hefei 230032, China.
| | - Hongyan Zuo
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Anhui Medical University, Hefei 230032, China; Shenyang Pharmaceutical University, No.103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|
9
|
Sharma S, Shukla S. Effect of electromagnetic radiation on redox status, acetylcholine esterase activity and cellular damage contributing to the diminution of the brain working memory in rats. J Chem Neuroanat 2020; 106:101784. [PMID: 32205214 DOI: 10.1016/j.jchemneu.2020.101784] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/15/2020] [Accepted: 03/17/2020] [Indexed: 01/18/2023]
Abstract
Behavioral impairments are the most pragmatic outcome of long-term mobile uses but the underlying causes are still poorly understood. Therefore, the Aim of the present study to determine the possible mechanism of mobile induced behavioral alterations by observing redox status, cholinesterase activity, cellular, genotoxic damage and cognitive alterations in rat hippocampus. This study was carried out on 24 male Wistar rats, randomly divided into four groups (n = 6 in each group): group I consisted of sham-exposed (control) rats, group II-IV consisted of rats exposed to microwave radiation (900 MHz) at different time duration 1 h, 2 h, and 4 h respectively for 90 days. After 90 days of exposure, rats were assessing learning ability by using T-Maze. A significantly increased level of malondialdehyde (MDA) with concomitantly depleted levels of superoxide dismutase (SOD), catalase (CAT) and redox enzymes (GSH, GPX, GR, GST, G-6PDH) indicated an exposure of mobile emitted EMR induced oxidative stress by the depleted redox status of brain cells. The depletion in the acetylcholinesterase (AChE) level reveals altered neurotransmission in brain cells. Resultant cellular degeneration was also observed in the radiation-exposed hippocampus. Conclusively, the present study revealed that microwave radiation induces oxidative stress, depleted redox status, and causes DNA damage with the subsequent reduction in working memory in a time-dependent manner. This study provides insight over the associative reciprocity between redox status, cellular degeneration and reduced cholinergic activity, which presumably leads to the behavioral alterations following mobile emitted electromagnetic radiation.
Collapse
Affiliation(s)
- Samta Sharma
- Reproductive Biology and Toxicology Laboratory, UNESCO Satellite center of Trace Element Research & School of Studies in Zoology, Jiwaji University, Gwalior, M.P., India.
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Laboratory, UNESCO Satellite center of Trace Element Research & School of Studies in Zoology, Jiwaji University, Gwalior, M.P., India
| |
Collapse
|
10
|
Singh A, Singh N, Jindal T, Rosado-Muñoz A, Dutta MK. A novel pilot study of automatic identification of EMF radiation effect on brain using computer vision and machine learning. Biomed Signal Process Control 2020. [DOI: 10.1016/j.bspc.2019.101821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Sienkiewicz Z, van Rongen E. Can Low-Level Exposure to Radiofrequency Fields Effect Cognitive Behaviour in Laboratory Animals? A Systematic Review of the Literature Related to Spatial Learning and Place Memory. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:E1607. [PMID: 31071933 PMCID: PMC6539921 DOI: 10.3390/ijerph16091607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/29/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
This review considers whether exposure to low-level radiofrequency (RF) fields, mostly associated with mobile phone technology, can influence cognitive behaviour of laboratory animals. Studies were nominated for inclusion using an a priori defined protocol with preselected criteria, and studies were excluded from analysis if they did not include sufficient details about the exposure, dosimetry or experimental protocol, or if they lacked a sham-exposed group. Overall, 62 studies were identified that have investigated the effects of RF fields on spatial memory and place learning and have been published since 1993. Of these, 17 studies were excluded, 20 studies reported no significant field-related effects, 21 studies reported significant impairments or deficits, and four studies reported beneficial consequences. The data do not suggest whether these outcomes are related to specific differences in exposure or testing conditions, or simply represent chance. However, some studies have suggested possible molecular mechanisms for the observed effects, but none of these has been substantiated through independent replication. Further behavioural studies could prove useful to resolve this situation, and it is suggested that these studies should use a consistent animal model with standardized exposure and testing protocols, and with detailed dosimetry provided by heterogeneous, anatomically-realistic animal models.
Collapse
Affiliation(s)
- Zenon Sienkiewicz
- Public Health England, Centre for Radiation, Chemical and Environmental Hazards, Chilton, Oxfordshire OX11 0RQ, UK.
| | - Eric van Rongen
- Health Council of the Netherlands, P.O. Box 16052, 2500 BB The Hague, The Netherlands.
| |
Collapse
|
12
|
Sage C, Hardell L. Fatal collision? Are wireless headsets a risk in treating patients? Electromagn Biol Med 2018; 37:95-99. [DOI: 10.1080/15368378.2017.1422261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | - Lennart Hardell
- Department of Oncology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
13
|
Microwave radiation leading to shrinkage of dendritic spines in hippocampal neurons mediated by SNK-SPAR pathway. Brain Res 2018; 1679:134-143. [DOI: 10.1016/j.brainres.2017.11.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 10/21/2017] [Accepted: 11/20/2017] [Indexed: 12/25/2022]
|
14
|
Othman H, Ammari M, Sakly M, Abdelmelek H. Effects of repeated restraint stress and WiFi signal exposure on behavior and oxidative stress in rats. Metab Brain Dis 2017; 32:1459-1469. [PMID: 28451780 DOI: 10.1007/s11011-017-0016-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/17/2017] [Indexed: 12/14/2022]
Abstract
Today, due to technology development and aversive events of daily life, Human exposure to both radiofrequency and stress is unavoidable. This study investigated the co-exposure to repeated restraint stress and WiFi signal on cognitive function and oxidative stress in brain of male rats. Animals were divided into four groups: Control, WiFi-exposed, restrained and both WiFi-exposed and restrained groups. Each of WiFi exposure and restraint stress occurred 2 h (h)/day during 20 days. Subsequently, various tests were carried out for each group, such as anxiety in elevated plus maze, spatial learning abilities in the water maze, cerebral oxidative stress response and cholinesterase activity in brain and serum. Results showed that WiFi exposure and restraint stress, alone and especially if combined, induced an anxiety-like behavior without impairing spatial learning and memory abilities in rats. At cerebral level, we found an oxidative stress response triggered by WiFi and restraint, per se and especially when combined as well as WiFi-induced increase in acetylcholinesterase activity. Our results reveal that there is an impact of WiFi signal and restraint stress on the brain and cognitive processes especially in elevated plus maze task. In contrast, there are no synergistic effects between WiFi signal and restraint stress on the brain.
Collapse
Affiliation(s)
- Haifa Othman
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Mohamed Ammari
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia.
- Higher Institute of Applied Biological Sciences of Tunis, University of Tunis El Manar, 9, Rue Zouhair Essafi, 1006, Tunis, Tunisia.
| | - Mohsen Sakly
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| | - Hafedh Abdelmelek
- Faculty of Sciences of Bizerte, Laboratory of Integrative Physiology, University of Carthage, 7021, Jarzouna, Tunisia
| |
Collapse
|
15
|
Tan S, Wang H, Xu X, Zhao L, Zhang J, Dong J, Yao B, Wang H, Zhou H, Gao Y, Peng R. Study on dose-dependent, frequency-dependent, and accumulative effects of 1.5 GHz and 2.856 GHz microwave on cognitive functions in Wistar rats. Sci Rep 2017; 7:10781. [PMID: 28883530 PMCID: PMC5589914 DOI: 10.1038/s41598-017-11420-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/24/2017] [Indexed: 12/18/2022] Open
Abstract
Many studies have revealed the cognitive decline induced by microwave radiation. However, the systematic study on dose-dependent, frequency-dependent and accumulative effects of microwave exposure at different frequencies was lacking. Here, we studied the relationship between the effects and the power and frequency of microwave and analyzed the accumulative effects of two different frequency microwaves with the same average power density. After microwave radiation, declines in spatial learning and memory and fluctuations of brain electric activities were found in the 10 mW/cm2 single frequency exposure groups and accumulative exposure groups. Meanwhile, morphological evidences in hippocampus also supported the cognitive dysfunction. Moreover, the decrease of Nissl contents in neurons indicated protein-based metabolic disorders in neurons. By detecting the key functional proteins of cholinergic transmitter metabolism, cytokines, energy metabolism and oxidative stress in the hippocampus, we found that microwave could lead to multiple metabolic disorders. Our results showed that microwave-induced cognitive decline was largely determined by its power rather than frequency. Injury effects were also found in accumulative exposure groups. We particularly concerned about the safety dose, injury effects and accumulative effects of microwaves, which might be very valuable in the future.
Collapse
Affiliation(s)
- Shengzhi Tan
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China.
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Ji Dong
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Haoyu Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Hongmei Zhou
- Division of Radiation Protection and Health Physics, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, P. R. China.
| |
Collapse
|
16
|
Wang H, Tan S, Xu X, Zhao L, Zhang J, Yao B, Gao Y, Zhou H, Peng R. Long term impairment of cognitive functions and alterations of NMDAR subunits after continuous microwave exposure. Physiol Behav 2017; 181:1-9. [PMID: 28866028 DOI: 10.1016/j.physbeh.2017.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/10/2017] [Accepted: 08/25/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE The long term effects of continuous microwave exposure cannot be ignored for the simulation of the real environment and increasing concerns about the negative cognitive effects of microwave exposure. METHODS In this study, 220 male Wistar rats were exposed by a 2.856GHz radiation source with the average power density of 0, 2.5, 5 and 10mW/cm2 for 6min/day, 5days/week and up to 6weeks. The MWM task, the EEG analysis, the hippocampus structure observation and the western blot were applied until the 12months after microwave exposure to detect the spatial learning and memory abilities, the cortical electrical activity, changes of hippocampal structure and the NMDAR subunits expressions. RESULTS Results found that the rats in the 10mW/cm2 group showed the decline of spatial learning and memory abilities and EEG disorders (the decrease of EEG frequencies, and increase of EEG amplitudes and delta wave powers). Moreover, changes of basic structure and ultrastructure of hippocampus also found in the 10 and 5mW/cm2 groups. The decrease of NR 2A, 2B and p-NR2B might contribute to the impairment of cognitive functions. CONCLUSIONS Our findings suggested that the continuous microwave exposure could cause the dose-dependent long term impairment of spatial learning and memory, the abnormalities of EEG and the hippocampal structure injuries. The decrease of NMDAR key subunits and phosphorylation of NR 2B might contribute to the cognitive impairment.
Collapse
Affiliation(s)
- Hui Wang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Shengzhi Tan
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Xinping Xu
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Li Zhao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Jing Zhang
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Binwei Yao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Yabing Gao
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Hongmei Zhou
- Division of Radiation Protection and Health Physics, Beijing Institute of Radiation Medicine, Beijing, PR China
| | - Ruiyun Peng
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, PR China.
| |
Collapse
|
17
|
Gökçek-Saraç Ç, Er H, Kencebay Manas C, Kantar Gok D, Özen Ş, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int J Radiat Biol 2017; 93:980-989. [DOI: 10.1080/09553002.2017.1337279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Çiğdem Gökçek-Saraç
- Faculty of Engineering, Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey
| | - Hakan Er
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Ceren Kencebay Manas
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Deniz Kantar Gok
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| | - Şükrü Özen
- Faculty of Engineering, Department of Electrical and Electronics Engineering, Akdeniz University, Antalya, Turkey
| | - Narin Derin
- Faculty of Medicine, Department of Biophysics, Akdeniz University, Antalya, Turkey
| |
Collapse
|
18
|
Zhang X, Huang WJ, Chen WW. Microwaves and Alzheimer's disease. Exp Ther Med 2016; 12:1969-1972. [PMID: 27698682 PMCID: PMC5038365 DOI: 10.3892/etm.2016.3567] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 07/25/2016] [Indexed: 01/12/2023] Open
Abstract
Alzheimer's diseases (AD) is the most common type of dementia and a neurodegenerative disease that occurs when the nerve cells in the brain die. The cause and treatment of AD remain unknown. However, AD is a disease that affects the brain, an organ that controls behavior. Accordingly, anything that can interact with the brain may affect this organ positively or negatively, thereby protecting or encouraging AD. In this regard, modern life encompasses microwaves for all issues including industrial, communications, medical and domestic tenders, and among all applications, the cell phone wave, which directly exposes the brain, continues to be the most used. Evidence suggests that microwaves may produce various biological effects on the central nervous system (CNS) and many arguments relay the possibility that microwaves may be involved in the pathophysiology of CNS disease, including AD. By contrast, previous studies have reported some beneficial cognitive effects and that microwaves may protect against cognitive impairment in AD. However, although many of the beneficial effects of microwaves are derived from animal models, but can easily be extrapolated to humans, whether microwaves cause AD is an important issue that is to be addressed in the current review.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wen-Juan Huang
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| | - Wei-Wei Chen
- Department of Neurology, Xuzhou Central Hospital, Xuzhou, Jiangsu 221009, P.R. China
| |
Collapse
|
19
|
Hashemi-Firouzi N, Akhavan M, Komaki A, Shahidi S. Effects of Acute Administration of Urtica dioica on the Novel Object-Recognition Task in Mice. ACTA ACUST UNITED AC 2015. [DOI: 10.17795/ajnpp-34150] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
20
|
Zhang Y, Li Z, Gao Y, Zhang C. Effects of fetal microwave radiation exposure on offspring behavior in mice. JOURNAL OF RADIATION RESEARCH 2015; 56:261-268. [PMID: 25359903 PMCID: PMC4380045 DOI: 10.1093/jrr/rru097] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 05/31/2023]
Abstract
The recent rapid development of electronic communication techniques is resulting in a marked increase in exposure of humans to electromagnetic fields (EMFs). This has raised public concerns about the health hazards of long-term environmental EMF exposure for fetuses and children. Some studies have suggested EMF exposure in children could induce nervous system disorders. However, gender-dependent effects of microwave radiation exposure on cognitive dysfunction have not previously been reported. Here we investigated whether in utero exposure to 9.417-GHz microwave throughout gestation (Days 3.5-18) affected behavior, using the open field test (OFT), elevated-plus maze (EPM), tail suspension test (TST), forced swimming test (FST) and Morris water maze (MWM). We found that mice showed less movement in the center of an open field (using the OFT) and in an open arm (using the EPM) after in utero exposure to 9.417-GHz radiation, which suggested that the mice had increased anxiety-related behavior. Mice demonstrated reduced immobility in TST and FST after in utero exposure to 9.417-GHz radiation, which suggested that the mice had decreased depression-related behavior. From the MWM test, we observed that male offspring demonstrated decreased learning and memory, while females were not affected in learning and memory, which suggested that microwaves had gender-dependent effects. In summary, we have provided the first experimental evidence of microwaves inducing gender-dependent effects.
Collapse
Affiliation(s)
- Yanchun Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of the PLA, Taiping Road 27, Haidian District, Beijing 100850, China
| | - Zhihui Li
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of the PLA, Taiping Road 27, Haidian District, Beijing 100850, China
| | - Yan Gao
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of the PLA, Taiping Road 27, Haidian District, Beijing 100850, China
| | - Chenggang Zhang
- Beijing Institute of Radiation Medicine, State Key Laboratory of Proteomics, Cognitive and Mental Health Research Center of the PLA, Taiping Road 27, Haidian District, Beijing 100850, China
| |
Collapse
|
21
|
Alterations of cognitive function and 5-HT system in rats after long term microwave exposure. Physiol Behav 2015; 140:236-46. [DOI: 10.1016/j.physbeh.2014.12.039] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 11/19/2014] [Accepted: 12/22/2014] [Indexed: 11/22/2022]
|
22
|
Wang F, Song YF, Yin J, Liu ZH, Mo XD, Wang DG, Gao LP, Jing YH. Spatial memory impairment is associated with hippocampal insulin signals in ovariectomized rats. PLoS One 2014; 9:e104450. [PMID: 25099767 PMCID: PMC4123983 DOI: 10.1371/journal.pone.0104450] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 07/09/2014] [Indexed: 01/17/2023] Open
Abstract
Estrogen influences memory formation and insulin sensitivity. Meanwhile, glucose utilization directly affects learning and memory, which are modulated by insulin signals. Therefore, this study investigated whether or not the effect of estrogen on memory is associated with the regulatory effect of this hormone on glucose metabolism. The relative expression of estrogen receptor β (ERβ) and glucose transporter type 4 (GLUT4) in the hippocampus of rats were evaluated by western blot. Insulin level was assessed by ELISA and quantitative RT-PCR, and spatial memory was tested by the Morris water maze. Glucose utilization in the hippocampus was measured by 2-NBDG uptake analysis. Results showed that ovariectomy impaired the spatial memory of rats. These impairments are similar as the female rats treated with the ERβ antagonist tamoxifen (TAM). Estrogen blockade by ovariectomy or TAM treatment obviously decreased glucose utilization. This phenomenon was accompanied by decreased insulin level and GLUT4 expression in the hippocampus. The female rats were neutralized with hippocampal insulin with insulin antibody, which also impaired memory and local glucose consumption. These results indicated that estrogen blockade impaired the spatial memory of the female rats. The mechanisms by which estrogen blockade impaired memory partially contributed to the decline in hippocampal insulin signals, which diminished glucose consumption.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Maternal and Child Health Hospital of Gansu Province, Lanzhou, China
| | - Yan-Feng Song
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jie Yin
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Zi-Hua Liu
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiao-Dan Mo
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - De-Gui Wang
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li-Ping Gao
- Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
| | - Yu-Hong Jing
- Institute of Anatomy and Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lanzhou, China
- * E-mail:
| |
Collapse
|
23
|
Sharma A, Sisodia R, Bhatnagar D, Saxena VK. Spatial memory and learning performance and its relationship to protein synthesis of Swiss albino mice exposed to 10 GHz microwaves. Int J Radiat Biol 2013; 90:29-35. [PMID: 23952535 DOI: 10.3109/09553002.2013.835883] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
PURPOSE To study the possible role of microwave (MW) exposure on spatial memory of Swiss albino mice and its relationship to protein concentration in whole brain. MATERIALS AND METHODS Mice were exposed to 10 GHz (Giga Hertz) microwaves with the power density of 0.25 mW/cm(2) (milliwatt per centimeter square) with average whole body specific absorption rate (SAR) 0.1790 W/kg daily for 2 hours per day (h/day) for 30 days. After exposure mice were tested for spatial memory performance using Morris water maze test (MWT). For this purpose mice (6-8 weeks old) were divided into two groups: (i) Sham exposed, and (ii) microwaves exposed. After initial training for two days, MWT was performed for another 6 days. Protein was estimated 48 h after exposure and immediately after completion of MWT. RESULTS Both sham-exposed and microwaves-exposed animals showed a significant decrease in escape time with training. Microwaves-exposed animals had statistically significant higher mean latency to reach the target quadrant compared to sham exposed. A concurrent decrease in protein levels was estimated in whole brain of the exposed mice compared to sham-exposed mice. CONCLUSIONS It can be concluded from the current study that exposure to microwave radiation caused decrements in the ability of mice to learn the special memory task, this may be due to simultaneous decrease in protein levels in the brain of mice.
Collapse
|
24
|
Zhang Y, She F, Li L, Chen C, Xu S, Luo X, Li M, He M, Yu Z. p25/CDK5 is partially involved in neuronal injury induced by radiofrequency electromagnetic field exposure. Int J Radiat Biol 2013; 89:976-84. [DOI: 10.3109/09553002.2013.817699] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|